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Abstract This paper discusses the structure of skew constacyclic codes and their Hermitian dual over finite commutative non-chain
ring Ry = qu[vl, va,..., vg]/(vi2 — 1, v;v; — vjvi)1<i j<¢, Where g is odd prime power. We also extend our study over mixed
alphabet F 2R, codes. First, we find necessary and sufficient conditions for skew constacyclic codes to contain their duals over

R¢ and F2R¢. Then, a Gray map ¥ : Ry —> ]in, is defined, and with the help of this map, we also define another Gray

12
map ¢ : F Ry — IE‘22+1 and prove that both maps are [ 2-linear Hermitian dual preserving. Finally, by applying Hermitian
construction on dual-containing skew constacyclic codes, we construct many new quantum codes that improve the best-known

parameters.

1 Introduction

Although skew polynomial rings were introduced by Ore [1] in 1933, coding with skew polynomial rings has been the center of
attention after the significant work of Boucher et al. [2] in 2007. They generalized the notion of cyclic codes in a skew polynomial
ring with a non-trivial automorphism and called them skew cyclic codes. Along with the algebraic richness, they [2,3] have produced
some new codes whose minimum distances are comparatively larger than previously best-known codes. In 2008, skew constacyclic
codes were introduced in [4] which are analogous generalizations of constacyclic codes. Later, several skew codes such as skew
cyclic, skew constacyclic and skew quasi-cyclic have been studied by many authors in [5—11].

Recently, the construction of quantum error-correcting codes with good parameters has been one of the most active research areas
because of their significant role in quantum communication and computation. The first quantum code was constructed by Shor [12]
in 1995. These codes have experienced tremendous progress after the seminal work of Calderbank et al. [13] where they discovered
arelation between classical and quantum codes. A g-ary quantum code of length n and size K is defined as K -dimensional subspace
of the complex Hilbert space (C?)®". Let k = log, (K). Then, a g-ary quantum code of length » is denoted by [[n, k, d]],, where
n and k represent the number of encoded physical qubits and the number of original information qubits, respectively, whereas d
denc{;tels the minimum distance. A quantum code with minimum distance d can correct both bit flip and phase shift type of errors up
to |5 1.

Qlfantum codes from classical codes have a rich literature, and among these, linear codes (cyclic codes) have a major contribution.
Indeed over last few decades by using CSS and Hermitian constructions, researchers have been constructed a significant amount of
quantum codes from dual-containing cyclic codes. In this context, along with finite fields, finite rings played an important role to
produce good quantum codes. For instance, cyclic codes over finite chain rings such as Fq + uF4, u? =0in[14], Fs + uFs, u®> =0
in [15], and finite non-chain rings such as F, + vF,, v2=vin [16], Fy + uF, + vFy + uvF,, u? =u,v* = v, uv = vu in [17],
Fy +viFy + -+ v, Fy, vi2 = v;, v;vj = vjv; = 0in [18] are a few well-known studies. Being a generalized class, constacyclic
codes also contributed several quantum codes in this direction [19]. It is proved that these codes over F + ulf,, u? = 1in [20],
F, +vF, + Uqu, v> =vin [21], Fy + uF, + vF, +uvlF,, u? = u,v?> = v, uv = vu in [22], Fy[u, v]/(u2 — 1,02 —v,uv— vu)
in [23], Fylu, v1/(u? — yu, v* — 8v, uv = vu = 0) in [24], Rgn = Fpmlur, uz, ..., uxl/? — 1, u;u; — uju;) in [25] are indeed
a good choice to explore more new quantum codes. In fact, the list of alphabets over which cyclic, constacyclic codes get special
attention is long; we refer few of them as [26-30]. Due to rich algebraic structure, along with linear codes, additive codes have
been studied for more than five decades. After the introduction of additive codes [31] in 1973, these codes have been enlarged over
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mixed alphabets. Among many advantages, the flexibility of parameters is one of the prime reasons to investigate such codes. There
are a large number of published articles to address mixed codes in a different setting, and we refer [32-36]. Moreover, quantum
codes in mixed alphabets are investigated in [24,37-40]. It is well known that a skew polynomial ring possesses more polynomial
factorization than a commutative ring. Thus, uses of such rings always help us to obtain new and better codes. The quantum codes
from skew codes have appeared in very few articles [10,40-43], and hence, there is still enough scope to study further. It is noted
that like commutative cases, first, we derive the dual-containing skew constacyclic codes and then use them to construct quantum
codes.

With a strong and enough motivation, we extend our previous study of constacyclic codes [25] to skew constacyclic codes over
a class of finite commutative non-chain rings Ry := qu[vl, V2, ..., vg]/(vl.2 — 1, vjvj —vjv;) 1<, j<¢. Note that earlier in [25], we
used Euclidean inner product, whereas in this article we use Hermitian inner product to construct quantum codes. Further, we extend
our study to mixed alphabets skew constacyclic codes and then obtain quantum codes from these codes. It is worth mentioning that
our study produces several new quantum codes which are better in terms of parameters than the codes obtained over commutative
structures.

2 Background

Let F,2 be the finite field with characteristic p and size g*> where ¢ = p™ and p is an odd prime. Throughout this paper,
we use Ry = qu[vl, vz,...,vg]/(vi2 — Lviv; —vjvi)i<,j<e. If v € Ry, then we can write as t = rg + leilse rivi, +
D i<iy<ip<t TirigViyVig + -+ + Zl§i1<i2<--~<i4§z Fiyig....ig Vit Vi - - - Vi, Where ro, 1y iy i € Fpa, forall 1 <ij < €. From [25], it
is known that 9y is a finite commutative non-chain ring with characteristic p.

Now, we define a map i : Ry —> Ny by

pro+ E rip Vi + E Fiy,ig Vi Vig + -+ + § Tiyiz,....ig Uiy Vi - - - Vi

1<ii<¢t 1<ii<ip<t I<ii<ip<-<ip<t
— 4 Z: 9. } : 9 v v, e E 4 -V i
=ry + ri\ Viy + Fi\ iy Vit Vip + + Tiyinsonig Vit Vi =+ - Vig-
I<ii<t I<ii<ir<t I<ii<iz<--<ig=<tl

It is easy to check that p is an automorphism on R, of order 2 and p hF,,z = o is an automorphism on Iqu given by a — a? for

alla € qu. Moreover, the fixed subring under  is Fy[vi, va, ..., v/g]/(vl.2 — 1, vvj — vjv;)1<i,j<¢. We denote it by 9‘{2‘ Let us
consider the set

R:=Relx; ul={ao+arx +---+apx" |aj € RV j,n e N}

Now, we define addition on R as the usual addition of polynomials and multiplication as the multiplication of polynomials under the
condition (ax?)(Bx7) = au! (B)x'T/ . Itis easy to verify that the set R forms a ring under above defined binary operations. Clearly,
(ax')(Bx7) # (Bx7)(ax’) in general unless 1 is the identity automorphism. Thus, R is a non-commutative ring and known as skew
polynomial ring. In particular, if u is the identity automorphism, then SR, [x; ] = R,[x], where PR¢[x] is a commutative polynomial
ring with coefficient from fR,. Moreover, an element f(x) € R is in the center of R if and only if f(x)g(x) = g(x)f(x) for all
g(x) € R. We denote the center by Z(R) = ER’Z [x2]. By following the same line of proof of the result [[9], Proposition 2.2], where
they considered ring R as a chain ring, we prove the result for non-chain ring.

Theorem 1 Let R = Ry[x; ] be a skew polynomial ring, . € Ry be unit in Ry and n, a positive integer. Then, the following are
equivalent:

1. x" —x e Z(R).

2. (x" — A) is a two-sided ideal.

3. R is a principal one-sided ideal ring.

4. nis even, and A is fixed by .

A linear code € of length n over R, is an R¢-submodule of R7, and the Hermitian dual ¢-LH of € is defined as

¢t = f{re R |<t,t >p=0forallt € ¢}.

Here, < t, v >p= Z;:o] t,‘lL(t/,‘) is the Hermitian inner product of vectors v = (tg, vy, - -+ , t,—1) and v = (t/(), t/1, R t/,l_]) in
Ry. Let J = {i1,i2,...,ix} be asubsetof A ={1,2,...,£} wherei; <ip <--- <iyandv e qu such that 2y = 1 (mod D).
Suppose

vj=l_[v,~, and for J =¢, vy =1;
iel
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and y;=v 1_[(1 —v;;) l_[(l +vi;),

ijel ij¢J

andif J = ¢, then yy = v Hszl(l + vij). Again, from [25], we have

s it =T
A C T T A

and ) Jca Y7 = 1in Ry Thus, the collection {y,}sca is a set of primitive orthogonal idempotent elements in R¢. Now, by using
decomposition theorem [[44], Ch. VI], we decompose R, as

Ry = @ yiRe = @ ijqz.

JCA JCA
Then, every element t = ) ;- , ajvy € R can be uniquely expressed as

t=apyo + Zai17/i1+ Z Qi iy Virip - - -

I<ii<t I<iy<ip<t

+ § Uiin,.igVit,in,...ie

I<ii<ip<-<ip<t

= Z ayyy, where oy € IE‘qz forall J C A.
JCA

Now, we define a map
14
v R — ]F;2
by

v =oapyo + Z ®iy Vi + Z Qiy,irVir,ip T F Z Qi in,.sip Vitsin,.it

1<ii<¢t 1<ii<ir<t 1<ij<izg<-<ig<t
? ((X(], Oy Wy s voe s Oy Oy iy Oy gy vo o s Oy gy oo ey ail,iz...i[)M
= (a1, 02,...,000)M

=rM,

where M € GLy (qu) such that MMT = k1. Here, k € F;z, MT is the transpose of M and I is the identity matrix in G L (qu).

Weuser = (o1, @2, ..., 0ye) to enumerate the vector (o, @iy, Oiys - -+, Qiys Oy ins Qi izs -+ - Oiy_yigs « -+ » Qi in...ip)- The map W can
¢ . . . .

be extended from R7 to ]Fzzﬂn componentwise. The Hamming weight of a codeword ¢ = (co, c1, ..., c,—1) € €isdenoted by wtg (c)

and defined as the number of nonzero components in ¢. The Hamming distance for the code € is dyy (€) = min{dy (¢, ¢') | ¢ # ¢/, for
all ¢, ¢/ € €}, where dp (c, ¢) is the Hamming distance between ¢, ¢’ € € and dp (¢, ¢/) = wigy (c — ¢/). Also, the Gray weight of an
element v € MRy is defined as wtg (v) = wry (Y(v)) and Gray weight for 7 = (ro,r1,...,7m—1) € R} is wtg(F) = er:ol wtg(ri).
Further, the Gray distance between the codewords c, ¢ € Cis defined as dg(c, ¢) = wtg(c — ).

Let € be a linear code of length n over R, and for each J € A, €; = {ay € IF’;2 | there exists ,BJ/ € IFZZ for some J' CA

distinct from J such that o yy; + ZJ/CA By vy € €}). Thenforevery J € A, € is a linear code of length n over I >. We observe
that if € is a linear code of length n over the ring 9, then we can uniquely write € = @, €; and | € |=[];c, | €5 |, where
€ is a linear code of length n over qu for all J/ € A. Further, if M is the generator matrix of €; over qu for J C A, then

generator matrix G of € over R, can be given as G = (y M j) Jc > and thus, W(C) has generator matrix G = (\IJ()/ M j))

JCA "
In particular, the following results hold.
Theorem 2 Let € be an [n, K, dy ] linear code over Ry. Then, W(€) is a [2tn, K, dy] linear code over qu where d;, = dy.
Proof As W is linear and distance preserving bijection from R, —> }in, it follows easily. O
q

Theorem 3 Let € be a Hermitian self-orthogonal linear code of length n over Ry and M € G Lyc(F ;2) such that MMT = k1.

Then, W(C) is a Hermitian self-orthogonal linear code of length 2°n over F 2. Moreover, € is a Hermitian self-dual code if and only
if W(C) is a Hermitian self-dual code.
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Proof Let a = (ap,ai,...,ar_y) and b = (bo, by, ..., by_;) be any two arbitrary elements of W (). Then, there exist x =
(x0, X1, ..., xp—1) and y = (yo, y1, ..., yn—1) in € such that « = ¥(x) and b = ¥(y). Now, MMT = kIre and € is Hermitian
self-orthogonal, and we have

n—1
<a,b>p=< V), V() >p=» MM y)? =0.
i=0

Therefore, ¥ (€) is a Hermitian self-orthogonal linear code of length 285 over ]qu. Further, if ¢ is Hermitian self-dual, then €14 = ¢,
Again, since W is a linear bijection, W (E)H = w(e). O

Theorem 4 If € = P, ¢, is a linear code of length n over Ry, then following holds

I et =@, €.
2. Cis Hermitian self-dual if and only if for all J € A, € is Hermitian self-dual.

Proof 1t follows by using Hermitian inner product along with the same line of arguments as given in [[8], Theorem 3.5]. O
In the next result, we classify the units of R,. Here, 9‘{2‘ represents the set of all units in R,.

Lemma 1 [[25], Lemma3.2] Let A = Y ;cp Ajvy = D jcp 81vs € Re. Then, A is a unit in Ry if and only if 8 is a unit in Fg2,
Sforall J C A.

3 Skew constacyclic codes over R,

In this section, the structure of skew constacyclic codes over R, and their Hermitian duals are discussed. We begin with the following
definition.

Definition 1 Let A € R} and u be the automorphism on 9R,. A linear code € of length n over PR is said to be a skew A-
constacyclic code with respect to u if € is closed under the skew A-constacyclic shift 7(, 3y : R} —> R} defined by 7(,,)(c) =
(Au(cn—=1), u(co), - - . u(cp—2)) € € for ¢ = (co,c1,-..,cn—1) € €. In particular, if L = 1 and A = —1, then € is called skew
cyclic and skew negacyclic code, respectively. Moreover, if w is the identity automorphism, then € is a A-constacyclic code over
Re.

Let ¢ be a skew A-constacyclic code of length n over 2R,. Then similar to polynomial representation of constacyclic codes, we can

also identify each codeword ¢ = (co, c1, ..., cy—1) € € by a polynomial ¢(x) =co +c1x +---+ cn1x™ e Ry[x; wl/{(x" — X)
under the correspondence ¢ = (cp, €1, ...,cp—1) = ¢(x) = (co +c1x + -+ ca—1x"~1) mod (x” — 1). Note that the problem to
find all A-constacyclic codes of length n over the ring R, is equivalent to find all the ideals of the quotient ring g‘fi]) . Since skew

Relxspnl
(x"—2)

polynomial ring R¢[x; i] is non-commutative, therefore, the quotient
possible for SRy [x; n], where the scalar multiplication is defined by

need not be a ring, but module structure is always

a(x)(b(x) — (x" = 1)) = a(x)b(x) + (x" — A).

9(%[)(:)/3]
x"—A) °

From Theorem 1, we observed that if n is even and A € R} such that u(1) = A, then (x" — A) is a two-sided ideal in Re[x; ul;

consequently, ggf,,[f ;/{‘)J forms a ring structure. However, in both cases skew A-constacyclic code € of length n over R, is generated

by a monic right divisor of x” — A.

Thus, to construct all skew A-constacyclic codes of length n over PRy, it is enough to find all fR,[x; p]-submodule of

Remark 1 Throughout this paper, we assume A € R} is a unit fixed by the automorphism p and the length of a skew A-constacyclic
code is divisible by the order of the automorphism .

Theorem 5 A linear code € = @JgA v1€; of length n over Ry is a skew A-constacyclic code if and only if each €y is a skew
8 j-constacyclic code of length n over IF‘q2, forall J C A.

Proof Let € = EBJQA y7€; be a skew A-constacyclic code of length n over Ry. For J C A, let al = (a({, a{, e a,{_l) eCy.
Suppose r; = Zch yjaij forO <i <mn—1,thenr = (ro,r1,...,7—1) € €. Therefore, ¢, 3)(r) = Zch y]‘r(g,(gj)(aj) el =
EBJgA yi€y. Hen?:e, 1(0,51)(61]) e ¢y, for J € A. Thus, €; is a skew §7-constacyclic code of length n over qu, for J C A.
Conversely, for J © A, let&; beaskew §,-constacyclic code of lengthn over F > withrespecttoo. Letr = (ro, 1, ..., ra—1) € €
where r; = Z]gA yjaij, for some aij € ]Fq2, 0<i<n—1 Nowal = (a({,alj,...,arffl) e ¢, for J € A. Therefore,
T(a,gj)(aj) € €. Hence, () (r) = ZJCA )/‘]T(g,gj)(a]) € @JCA 7€y = €. Thus, € is a skew A-constacyclic code of length n
over Ry. ]
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For a unit element § € F 2, Boucher et al. [4] obtained the generator polynomials of skew §-constacyclic codes of length n over

2. We use this result to get the generator of skew A-constacyclic code of length n over Ry.

Theorem 6 [4] Let 5 € F;z and o € Aut(qu). Let € be a linear code of length n over qu such that o(o) (the order of o ) divides
n and o (8) = 8. Then, € is skew -constacyclic over F ;2 if and only if there exists a monic polynomial g(x) € F2[x; o] such that
¢ = (g(x)) and x" — § is right divisible by g(x) in ]Fqg[x; gl

Theorem 7 If € = P Jca Vi€ is a skew A-constacyclic code of length n over Ry, then there exists a monic polynomial f (x) in
Rlx; u] such that € = (f (x)) and x™ — X is right divisible by f(x) in R[x; u]. Moreover, if fj(x) is the generator polynomial of
skew & j-constacyclic codes over qu for J C A, then f(x) = ZJgA vy fr(x).

Proof Let € = P, 7€ be askew A-constacyclic code of length n over 9. Then by Theorem 5, for each J € A, € is a skew
8 j-constacyclic code of length n over F,2. Also, by Theorem 6, there exists a monic polynomial f;(x) € F,2[x; o] which is a right
divisor of x" — §; and &€; = (f;(x)). Therefore, y; f(x) is the generator of € forall / C A. Let f(x) = ZJCA y7 f1(x). Then,
(f(x)) € €. On the other hand, y; f;(x) = y; f(x) € (f(x)) forall J € A. Consequently, € C (f(x)) and hence, € = (f(x)).
Since for every J C A, fy(x) is a right divisor of x" — §; in qu[x; o], so there exists skew polynomial % (x) such that
X =87 = hy () f7(0- Now, [ e p ¥ahs I (¥) = Xy p vrhy (0 f2(x) = ¥y p v (6" = 87) = x" — & Hence, f(x) is a
right divisor of x" — X in R [x; ul. O

For a polynomial f(x) = Zf:o aixt e qz[x; o] with ag # 0, the left monic skew reciprocal polynomial of f(x) is defined

as f(x)* = #GO)(ZZF:O o' (ag—)x"), and the conjugate polynomial of f(x)is f(x) = Zf:g o (a;)x'. Now, it is easy to see that

f)* = m* = f%(x). The polynomial f'(x) is known as the skew Hermitian reciprocal polynomial of f (x). From [[45],
Theorem 1], if § is a unit fixed under the automorphism o such that 8> = 1 and ¢ = (f(x)) is a skew 8-constacyclic code of length n
over qu, then Hermitian dual €+# of € is a skew 8 ’l-constacyclic code generated by hT(x) where f(x)h(x) = h(x) f(x) = x" —35.
Hence, we have the following result.

Corollary 1 Let € = @Jg\ y1&y be a skew \-constacyclic code of length n over Ry and €; = (f;(x)) such that x* — §; =
hy(x)fy(x)forJ € A.Then, €11 = Dica yﬂif” is a skew A~ -constacyclic code over Ry. Moreover, €11 = (X sea J/]h;()(f)),
where h;(x) is the skew Hermitian reciprocal polynomial of hj(x), for all J C A.

4 Quantum codes from skew A-constacyclic codes over R,

In this section, we employ the skew A-constacyclic codes over the ring SR, to construct non-binary quantum codes over IF,,. Toward
this, first we provide the necessary and sufficient conditions for skew A-constacyclic codes over 2 to contain their Hermitian duals.
Then, we establish the Hermitian dual-containing condition for skew A-constacyclic codes over the ring 9R,.

Theorem 8 [46] [Hermitian construction] Let C be a linear code over qu with parameters [n, k, dy] satisfying ¢t C C. Then,
there exists a quantum code over ¥, with parameters [[n, 2k —n, > dp]l,.

Lemma 2 [[40], Lemma 6] Let § € IFZ2 such that 8> = 1 and € = (g(x)) be a skew §-constacyclic code of even length n over F.
Then, €11 C ¢ if and only ifh*(x)h(x) is right divisible by x" — § where x" — § = h(x)g(x) and h'(x) is the skew Hermitian
reciprocal polynomial of h(x).

Theorem 9 Let A € R} and MV =1LetC= GBJSA v1€; be a skew A-constacyclic code of length n over Ry. Then, €+ C ¢
if and only if for all subsets J C A, the polynomial h;(x)hj(x) is right divisible by x" — 8, where x" — §5 = hj(x) f7(x) and
h'J (x) is the skew Hermitian reciprocal polynomial of h j (x).

Proof Firstassume that € = P, ¥/ € is a skew A-constacyclic code of length n over 2Ry and ¢1# C ¢, Therefore, by Corollary

1,
P e < P e $h)

JSA JCA

Again, since n is even and A2 =1, thus 83 = 1. Now, for each J € A taking modulo y; in equation (1), we have Qﬁ” c ¢y,
Therefore, by Lemma 2, the polynomial h;(x)h J(x) is right divisible by x — §; for all J € A where x" —38; = hj(x)gs(x) and
hTJ (x) is the Hermitian skew reciprocal polynomial of % ; (x).

Conversely, suppose for each J C A, h; (x)hy(x) is right divisible by x” — &, then again by Lemma 2, for all / C A, we have
€§H C &;. Therefore, P ;5 ]/.[Qj_H C Djca vs€y, or in other words, ¢ltu C ¢, O
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Corollary 2 Let ) € R} and =1 Let¢ = @JEA vs€y be a skew A-constacyclic code of length n over Ry. Then, €1H C & if
and only if for all subsets J C A, QZj‘H c¢y.

Theorem 10 Let ) € R} and 22 =1 If¢ = @Jg/\ yy€y is a skew A-constacyclic code of length n over Ry with Gray image
W (&) such that CLH C @ then there exists a quantum code with parameters [[2¢n, 2k — 2tn, > dy1] over F,.

Proof By using Theorem 9 and the Hermitian construction given in Theorem 8, we get the desired result. O

5 qu $R¢-additive skew A-constacyclic codes

Let F 2Ry = {(a,b) : a € Fp2, b € Ry} and IFZZD%Z” = {(a,b) : a € FZz»b € R}'}. We define a projection map 7 : Ry —

IF‘qz by t(f(vi,va,...,v)) = f(0) for all f(vy,va,...,ur) € PRe. With the help of the map 7, we define a multiplication

* 1 Ry x (R} —> FLARY by ¢ x (a, b) = (t(c)a, cb). Now, it is checked that F”,R}’' forms an 9R,-module. In this case,
q q q

any non-empty subset € of F”,R}" is said to be an F 2% -additive code of length (n, m) if it is an R,-submodule of Fgﬂﬁi'g‘.

F 2[x] . L . .
Denote R(;,m) = % X 7 X,Zz_ s where R = NRy[x; u] is the skew polynomial ring over R, with automorphism p on R, and

A is a unit in $R,. We identify each codeword (a, b) € IFZZSRZ’ by a polynomial (a(x), b(x)) € R, ) under the correspondence

F
(a,b) — (a(x), b(x)), where a(x) = ap +ajx + - +a,_1x" ! € %, b(x) =by+bix+---+by,_1x" " e ﬁ for
a = (ag,ay,...,a,_1) € ]F;z, b = (bo, by, ..., bu—1) € R}'. Again, R, ) is a left R-module where the left multiplication is

defined by c(x) * (a(x), b(x)) = (tr(c(x))a(x), c(x)b(x)) fora(x) € %’ b(x),c(x) € ﬁ

Definition 2 Let € be an IF‘qz R¢-additive code of length (n, m). Then, it is called an IF‘qz R¢-additive skew A-constacyclic code if
for any
(a,b) = (ap,ai,...,an—1,b0,b2,...,by_1) €C
implies
T(a,b) = (an—1,00, ..., an—2, AL(by—1), u(bo), ..., u(by-2)) € C.

Theorem 11 Let € be an F 2R ¢-additive code of length (n, m). Then, it is an ¥ 2R¢-additive skew A-constacyclic code if and only
if Cis a left Re[x; pn]-submodule of R, m).

Proof Let € be an ]qu%g-additive skew A-constacyclic code of length (n, m). If (a(x), b(x)) € €, wherea(x) =ap+ajx +---+
an_1x" 1 b(x) = by + b1x + -+ + bp_1x™ L, then in R, m), we have
x % (@(x), b(x)) = (@n—1 + aox +ayx® + -+ + ap_ox"',
A1) + 1 (bo)x + p(b1)x> + -+ + pu(by-2)x™ ") € €.

In this way, for any j > 1, x4 (a(x), b(x)) € €. Therefore, for any c(x) € Relx; u] we have c(x) * (a(x), b(x)) € €. Hence, € is
a left Re[x; ul-submodule of R, ). Conversely, let € be a left R¢[x; p]-submodule of R, ). Then for any (a(x), b(x)) € €, we

have x * (a(x), b(x)) € €. Since T (a, b) = x * (a(x), b(x)), thus € is an qui)‘{g additive skew A-constacyclic code. ]
For any two codewords v = (a, b) = (ao, ai, ..., an—1,bo, b2, ..., bp_1), V' = (@', b') = (ay,a}, ..., a,_ |, by, by, ....0, )
in IFZZSR;", the Hermitian inner product is defined by

n—1 m—1
(0 g =Y vy apa)+ Y bipb).
i=1 =0 i=0

Further, the Hermitian dual is defined as C+# = {v € ng%f{’ : (v,v)y = 0 forall v € C}. It is easy to verify that for an

F,2M-additive code, its dual C*# is also an F,2M-additive code. Now, we define a Gray map & : F 2Ry — Fjﬁ“ by
Q(a,r) = (a, V() = (a, (ro,r1, ..., rp0)M),

¢ . . Lo 2t .
wherea € Fo,r = lez 1 Yiti € Ry. Itis alinear bijection and can be extended over IF‘ZZ%’? — IF‘;’;J“ m) componentwise. Based
on above discussion, we have the following result.

4
Lemma 3 The map O : IFZQ%Z” — IF;’;H ™ is an F,2-linear distance preserving map. Further, if € is an F 2R ¢-additive code

with parameters (n +m, M, d), then ® () is an (n + 26m, long M, d) where M represents the size of €.
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Proof Same as the proof of [[40], Proposition 2]. O

Lemmad Let € be an quﬂ‘ig—additive code of length (n, m). Then, O(@)1tH = d(etr). In particular, € is Hermitian self-dual if
and only if ® (<) is so.

Proof Same as the proof of [[24], Lemma 6]. O

Let 7, : ng%? — FZz defined by 7, (a, b) = a and &, : IF‘ZZSR? —> R}’ defined by 7, (a, b) = b are projection maps.
Clearly, these maps are also 9R,-module homomorphisms. Therefore, for an qu MR¢-additive code €, 1, (¢€) = &, and 7, (€) = &, are

linear codes over qu and Ry, respectively. In particular, if € = ¢, x &,,,, then € is called separable. In that case, el = Q:,J,‘H X Q:,J?;H .

Theorem 12 Let € = &, x &, be a separable quiﬁg-additive code of length (n,m). Then, € is an quiﬁg-additive skew A-
constacyclic code if and only if €, is a cyclic code of length n over ¥ > and &, is a skew A-constacyclic code of length m over
Re.

Proof Let€ = ¢, x €, be an ]quiﬁg-additive skew A-constacyclic code of length (n, m). Let a = (ag, ay, ...,an—1) € €, b =
(bo, b1, ...,by—_1) € €. Then, (a, b) € C, and hence
T(a, b) = (ap—1,0a0, a1, ...,a,-2, )\,u(bmflx .u(bO)’ ey /'L(bm72)) e, x¢, =0

Then, (a,—1, aop, ai, ..., an—2) € €, Apu(by—1), L(bo), ..., w(by—-2)) € €. Therefore, €, is a cyclic code of length n over Iqu
and €, is a skew A-constacyclic code of length m over ;.
Conversely, let €, be a cyclic code of length n over F ;> and €, be a skew A-constacyclic code of length m over Ry. Let (a, b) € C,
where a = (ag, ay,...,an—1) € €, b = (bo, b1, ...,bp_1) € €,,. Then,
(anflv a05 a17 ce anfz) € ¢n7 ()\/J'(bmfl)a M(bO); MR M(bmfz)) € sz»

and T'(a, b) € ¢, x €,, = €. Therefore, € is an quiﬁg-additive skew A-constacyclic code. O

Theorem 13 Let € = &, x &, be a separable F 2R ¢-additive code of length (n, m). Then, cli C Cifand only ifQ:f[H C &, and
! S €

Proof Since €11 = ¢t x €51 @l C ¢ if and only if €% C €, and €57 C €. o

Now, we review some basic concepts from [47] that are useful for further discussion. For an integer s with0 < s <n —1, a
qz—cyclotomic coset modulo 7 containing s is denoted by C; and defined as Cy = {sqzj (modn) : 0 < j < j; — 1}, where js is
the least positive integer such that s¢g*/s = s (mod n) and | C |= j;. The smallest integer in C; is called the coset leader of Cy,
and we use F(n’qz) for the set of all coset leaders. Note that C; N Cy = ¢, for any two coset leaders s and s in F(nyqz). Further,

let n € N such that ged(n, ¢) = 1 and ord, (¢%) = I be the multiplicative order of g> modulo 7. Let 1 be the generator of IFZZ,.
Puté = 77(‘12] —/n Then, £ is a primitive n-th roots of unity in F,2. The minimal polynomial m;(x) of §* over IF2 is the smallest
degree monic polynomial over F 2> with §° as a root. Based on above discussion, one can easily check that
ms(x) = [[(x =€) €Fplxl,
ieCy

and

=1= ] m).
sel_‘(n.qz)
Let € be a cyclic code of length n over F 2 with generator polynomial g(x). Then, the set
T={1g¢)=00=<)=<n-1}

is called the defining set of €. Note that the defining set of € is the union of some g>-cyclotomic cosets modulo 7 and dim(€) = n— | 7.
Also, one can see that the defining set of ¢l jg

T 7={-q) (modn)| j € T}

Lemma 5 [[48], Lemma 8] Let € be a cyclic code over ]qu of length n such that gcd(n, q) = 1 with defining set T. Then, € contains
its Hermitian dual if and only if T N'T~9 = ¢ where T4 is the defining set of ¢4
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Let € = €, x €, be a separable F_20R,-additive skew A-constacyclic code of length (n, m) such that ged(n, g) = 1 and the order

of the automorphism p of PR divides m. Let A € Ry such that u(1) = A and 22 = 1. Let &7 be the corresponding units in IF‘qz.
Then, we have the following results.

Theorem 14 Let € = &, x &, be a separable quiﬁg-additive skew A-constacyclic code of length (n, m). Also, let €, = (g(x))
with defining set T and €, = (ng\ vy fr(x)) where x™ —8; = hj(x) fj(x) for every subset J  A. Then, ¢ln ce if and only
if T NT~1 = ¢ and for every subset J C A, x™ — §; is a right divisor ofh]; (x)h j (x), where T4 is the defining set on,f” and
hTJ (x) is the skew Hermitian reciprocal polynomial of h j(x).

Proof 1t follows from Theorem 9, Theorem 13 and Lemma 5. O
Now, we can construct quantum codes by using the Hermitian construction given in Lemma 9 and Theorem 14 as follows.

Theorem 15 Let € = &, x &, be a separable F 2R -additive skew A-constacyclic code of length (n, m). Also, let ¢lH C ¢ and
@ (&) has parameters [n + 2m, k, dH]qZ- Then, there exists a quantum code [[n + 26m, 2k —n —2%m, > dylly.

5.1 Computational results

In this subsection, we provide some examples in support of our study.

Example 1 Consider the ring Ry := ]F7z[v1]/<v]2 — 1), where ;2 = F7(¢) and ¢ satisfies t2 =t +4. Then, J = ¢, J = {1} and
Yy = %(1 +o),yy = %(1 — v1). Let u be the automorphism over R defined by w(ro + rjvy) = rg + r17v1 and € be a skew
A-constacyclic code of length 56 over 2R} under w, where & = —vy. Let g(x) = y;g,(x) + v, g, (x) be the generator polynomial
of ¢ where gy (x) = x> + x + 3% and gy (x) = x3 4 6x2 + t'%x 4 13 are generator polynomials of skew negacyclic code € and
skew cyclic code €/ over F2, respectively. Let

M = |:} é] € GLy(Fp),

satisfying MM" = 21,. Then, the Gray image W (C) has the parameters [112, 107, 4]. Also,

By(x) = 3 4 65 o 47552 1351 1150 x40 4 f18,48 4 6,46 4 (45 | 23 44 | 043 | 35 42

+x4l + t42x40 +x38 + 6x37 + t47x36 + 3x35 + t11x34 + 6x33 + t18x32 + 6x30 +x29 + t23x28

+4x7 435520 x4 2 x P2 e %0 310 1 I8 ox 1T 18010 fex 14

BB 4 43510 k% P a0 e + 1Yt 303 % 4 6x 118,
hJ/(X) :x53 +x52+t12x51 +t3x50+t38x49+t21x48+x45 +x44+t12x43+t3x42+t38x41 +t21)C4O

+x37 +x36 + t12x35 + 1‘3)634 + t38x33 + t21x32 +x29 +x28 + t12x27 + t3x26 + t38x25 + t21x24

420 20 12,19 4 3008 380107 21016 4 13 (12 4 12000 43010 4 (38,9 21,8

—|—x5 —|—x4 +t12x3 +t3x2 +t38x +t21,

hj(x) =34 4 253 AT 52 4 26,51y 11,50 4 42049 | 18 48 L 0,46 (1845 | 23 44 | 243
135442 I8, AL (42,40 4 (38 42,37 4 47,36 4 (26,35 4 (11,34 L (4233 | (18,30 | 0,30
—I—t18x29—|—t23x28+t2x27+t35x26—|—t18x25+t42x24+x22+t42x21 +t47x20+t26x19+t11x18

+t42x17+t18x16+6x14+118x13+t23x12+l2x” +t35x10+t18x9+t42x8+x6

+ *2x3 + 4Tx4 + 12653 + t1x2 + *2x + 1‘18,

h’;/ (x) :x53 + [5x52 + [30x51 + t15x50 + t27x49 + t27x48 +x45 + t5x44 + t30x43 + [15x42 + [27x41

+ 177X 3T 4 O30 4 0% 3 T3 T3 L 20 x4 30X 5y

+t27x25+t27x24 +x21+t5x20+t30x19+t15x18+t27x17+t27x16+x13+t5x12+t30x”

+ 0510 2750 8 S O 03 P 1 x4

5,28 30,.27 15,26
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and

h;(x)hj(x) = (32 4551y 12,50 4 13,49 4 3 AR 437,47 | 34,46 (3T 45 | (9 44 47 4D

4Oy 4 2,40 4 429,39 | 26,38 (29,37 | (31,36 | (21,35 4 (33,34 | 29 33
+ t30x32 + [45)631 + [42)630 + t45x29 + t21x28 + t13x27 + t34x26 + t13x25 + t39x24
523 42,22 4 45 21 46,20 4 (29019 | 27 18 21,17 4 413,06 4 (29 15
426,14 4 (29013 4 2002 |29 11 29,10 4 308 4 377 | 34,6
+ 757 Mt 180 pox? + 1 Px + P00+ 1,

hj, h (x) = 0+ 280 T 4 ox®® + 13 p o 3 4 2 Tt 4 0 450
+ 538 4 3237 45230 4 Va3 1323 41100 B 10032 53 40 B0 g
39527 44326 4 415,25 4 3024 (39,23 4 3,22 L (19,21 4 3,20 4 41519 | 5,18
+ 13817 axt6 4 VxS o 2T pox 2 B0t p6x10 200

+ 58+ 3T xS 4t 7 A+ 6) (0 — ).

Since h;(x)hj(x) and h;, (x)h  (x) are right divisible by 2% 4+ 1and x°° — 1, respectively, by Theorem 9, we have ¢l C g
Also, by Theorem 10, there exists a quantum code [[112, 102, > 4]];. It is noted that the constructed quantum code has better code
rate than best-known quantum code [[112, 92, 4]]7 in [49].

Example 2 Consider the ring R; = F52[v1]/(v]2 — 1), where s> = F5(¢) and ¢ satisfies t2 =t +3.Then, J = ¢, J = {1}
and y; = %(1 +u), Yy = %(1 — v1). Let i be the automorphism over R defined by w(rg + rivy) = rg + rfvl and € be a
skew A-constacyclic code of length 8 over R} with respect to i where A = v;. Let g(x) = y;gs(x) + v, g (x) be the generator
polynomial of ¢, where g;(x) = x> + x2 + t2x + ¢'* and gy (x) = x* 4+ 1%x3 +120x2 4+ ¢16x + 1 are generator polynomials of
skew cyclic code €, and skew negacyclic code €,/ over Fsa, respectively. Let

11
M = |:1 4] € GLy(Fs),

satisfying MM' = 21I,. Then, the Gray image W (&) has the parameters [16, 9, 7]. Also,

hy(x) = x4 axt 413 4 B ey 172,
hy(x) = x40 4 4 1t + 1,
h;(x) =0+ x4+ 5%+t 42,

h;, (x) = x4 12052 410y 1,

and

Wy 0y () = (6 +HEE =1,
B k) = S+ 1),

Since h;h J and h;,h  are right divisible by x% — 1 and x8 + 1, respectively, by Theorem 9, €1# C €. Again, by Theorem 10,
there exists a quantum code [[16, 2, > 7]]5 which has better parameters than [[16, 1, 6]]5 given in [50].

Example 3 Suppose Fy = F3(t), ¢ satisfies 1> = t + 1 and €, is a cyclic code of length n = 40 over F5 with defining
set 7 = {5, 12, 28}. Then, the generator polynomial of &, is f,(x) = X34 x2 4+ t7x 4+ 1. Also, as T3 = {4, 25,36} and
TNT 3 = ¢, by Lemma 5 ¢, is a Hermitian dual-containing cyclic code over F32. Let R 1= F3z[v1]/(v% —1). Then, J = ¢,
J' = {1}and y; = 2(1 +v1). ¥,y = 2(1 = v1). Let 1 be the automorphism over 9 defined by (o + r1vi) = r§ + riv; and
¢, be a skew cyclic code of length m = 48 over R; with respect to the automorphism wu. Let g(x) = y; g (x) + v, g (x) be the
generator polynomial of € where g;(x) = x> +>x + %> and g ;) = x3 +13x% 4 x + 1 are generator polynomials of skew cyclic
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codes €; and €/ over F32, respectively. Here,

hy(x) = x40 4 1Ox® 4 PxM 100 4 10x% 4 200 203 3 4 20T 4 2030 4 3 4 0433
+ x32 + 1031 + £0x30 + 2x28 + 2x%7 + tx20 + 252 + 2x2 + x?? + 10521 + x20
+ t6x19 + I6X18 + 2x16 + t2x]5 + Zx14 + 12x13 + t2x12 +X10 + t6x9 + z5)‘:8 + 16x7

+10x0 + 2x* + 1243 px? + 2x + 12,

hj/ (x) :X45 +t5x44 +x43 + t7x42 +2x41 +tx40 +x39 +x38 +t2x36 +t6X34 +2x33 + t3x32 +)C29
+ 0508 X2 17X 4 2x B x4 xB x4 2020 45018 ox 1T 4 3510 4 x 3
+ 02 M 710 05 a8 T a0 2t 102 4+ 2x + t3,
h}l(x) _ x46 + 2x45 + t5x44 + 2x43 + l‘6x42 + 2x40 +x39 + l‘x38 +X37 + t2x36 +x34 + 2x33 + t5x32
5.20 618

+ 203 410030 4 202 4 X2 1?0 xB 4+ 2% x4 202 %0 4 2x !0 0%
42010 P ax px B 22 x2S 2T+ O 2t P P x4+ 12

htj/(x):x45+tx44+t3x43+t7x41 +t5x39+t5x38+t6x37+tx36+2x35+t5x34+12x33+t5x32

+x29+tx28+t3x27+t7x25+t5x23+t5x22+t6x21+tx20+2x19+t5x18+t2x17+t5x16

B a2 B T T P 0 et 2+ P+ + t5,

and

h;(.x)]’lj(x):(x44+l3x43+2x42+2X38+t7.x37+x36+x32+t3x31+2x30+2x26+t7x25+x24

+x20+t3x19+2x18+2x14+t7x13 +x12+x8+t3x7+2x6+2x2+t7x+1)(x48—1),
h;/ (X)h r(x) :(x42 + 00 2080 2030 4 T O30 £ 3 T3 400 OB X3

+t5x30+t5x29+t5x28+t5x27+t3x26+t7x25+x24+x23+t5x22+t3x21 +tx20

+t2x19+2x18+t7x17+t7x16+tx15+tx14+tx13+tx12+tx“+t2x10+2x9

+ 838+ 837 +ax +2° + P+ 0% + 2 + 2)(x48 —1).

Since hT](X)hj(X) and h;, (x)h 7 (x) both are right divisible by x®—1, by Theorem 9, we have Cf,;” c¢,. Let¢=¢, x¢, bea
skew cyclic code of length (40, 48) over F;320R|. Then by Lemma 13, ¢l C ¢ Moreover, if

11
M= [1 2] € GLy(Fy),

satisfying M M' = 21I,, then the Gray image ®(€) has the parameters [136, 128, 3]. Thus, by Theorem 15, there exists quantum
code with parameters [[136, 120, > 3]]3 which has better code rate than the best-known quantum code [[136, 118, 3]]3 available in
[49].

Example 4 LetFp = F7(¢), ¢ satisfies t*> = t+4and €, be acyclic code of lengthn = 80 over F> with defining set 7 = {32, 45, 48}.
Then, the generator polynomial of ¢, is f, (x) = x> + 3x + 3. Also, as T~/ = {5, 16,64} and T N T~ = ¢. Therefore, by
Lemma 5, ¢, is a Hermitian dual-containing cyclic code over F2. Let Ry = F72[v1]/(vf — 1). Then, J = ¢, J = {1} and
yy = %(1 +v), Yy = %(1 — v1). Let u be the automorphism over R defined by p(rg + rjvy) = rg + r17v1 and €, be a skew A-
constacyclic code of lengthm = 8 over R with respect to the automorphism p, where A = vy. Suppose g(x) = vy g/ (x)+y, g, (x)
is the generator polynomial of ¢,, where g;(x) = x 4¢3 and g g ) = x2 4 12x + 6 are generator polynomials of skew cyclic
codes € and skew negacyclic code €/ over F2, respectively. Here,

hy(x) =xT 4+ x4+ 610 + 121t + 13 + 1852 + 6x + 121,
hyr(x) =xO 4 12 4 3x* + 1103 + 4x2 4+ %% + 6,

h;(x) =x"+3x0+ 60 +x + 3+ 337+ 6x + 17,
h;, (x) =x0 4+ 200 + 3 + 243 ax? + 2x 46,
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Table 1 New quantum codes from skew A-constacyclic codes over Ry for £ = 1

n A (87.8,) fr(x) Sy @) v (T) [[n, k, d]lq (', k', d'y

26 - )] 11 121 [52,48, 3] [[52, 44, > 3113 [152, 43, 3]13 [49]
12 -1 (=1,-1) 9111 1:134711 [24,17, 6] [[24, 10, > 6]]s [[24, 10, 5]]5 [40]
8 v a,-1) 14211 1716420441 [16,9,7] [[16,2, > 75 [[16, 1, 6]]5 [50]
40 1 1,1 1 17410449 [80, 76, 3] [[80, 72, > 3115 [[78, 70, 3115 [49]
14 v a, -1 1141 31 [28, 25, 3] (28,22, > 3117 [[28, 20, 3117 [49]
36 1 an 511 9241 [72, 67, 3] [[72, 62, > 3117 [[72, 40, 3117 [49]
38 -1 (=1,-1) 31 113331 [76,72, 3] [[76, 68, > 3117 (175, 69, 3117 [49]
42 —v (-1,1) 1224301 6211 [84,79, 4] ((84, 74, > 4]]7 [[87, 73, 4117 [49]
56 — (-1,1) 141 6311 (112,108, 3] [[112, 104, > 3]]7 [[112, 101, 3117 [49]
56 —v; (-1, 1) 3011 311461 [112, 107, 4] [[112, 102, > 4] [[112,92, 4]]7 [49]
6 -1 (=1,=1) 41101 112811 [12,8, 5] [[12, 4, > 51113 [[12,2, 51113 [50]
24 V] a,-1) 131 *411 [48, 44, 4] (148, 40, > 41117 (148, 38, 41117 [25]
and

Ry () =8 + 6x* + x> +6)(x® — 1),
Rk () =(* + 487 + DS 4 1),

Since h;h J and hj,h  areright divisible by x® — 1 and x® 4 1, respectively, by Theorem 9, we have Cufl € €. Let€ = ¢, x €y
be a skew A-constacyclic code of length (80, 8) over F2fR;. Then by Lemma 13, ¢Lu C ¢. Moreover, if

11
M = [1 6} € GLy(Fy),

satisfying M M"' = 21, then the Gray image ® (&) has the parameters [96, 90, 3]. Thus, by Theorem 15, there exists quantum code
with parameters [[96, 84, > 3]];. Notice that the constructed quantum code has better code rate than the code [[96, 80, 3]]7 obtained
in [24].

Let € be a skew A-constacyclic code of length n over R := IE‘qz[vl]/(vl2 —1). Then, J = ¢, J = {Band€=y,&; dy,Cp,
where €; and € s are corresponding skew 4 j-constacyclic and skew § s -constacyclic codes over F > of length n, respectively. Here,
the matrix

11
M = [1 —l] € GLQ(qu)

is used to find the Gray image W (C). By using the MAGMA computation software, we obtain (in Table 1) several better quantum
codes than the best-known codes from dual-containing skew A-constacyclic over R. First column of Table 1 denotes length of
skew A-constacyclic code € over R, whereas second and third columns are used to write the units A and the corresponding units
8, respectively. The generator polynomials g;(x) and g,/ (x) of €; and € are written in columns fourth and fifth, respectively.
Column sixth contains the Gray image W (&), whereas column seventh is used to write the parameters of the obtained quantum
codes. Last column of the table denotes the parameters of the existing quantum codes available in the literature to compare our
obtained codes. Note that instead of writing the whole polynomial, we just write the coefficients of polynomial in ascending order
of the powers of the variable. For example, the polynomial t'#x3 4 t2x? + x + 1 is written as #'4s%11. In this way, we have shown
that the skew constacyclic codes produced better quantum codes.

6 Conclusion

Here, we investigated the algebraic structure of skew constacyclic codes over a class of non-chain rings R,. Then, we have extended
our study to mixed alphabets F,>9,. Among others, we have established the conditions for these codes to contain their Hermitian
duals, and consequently, under Hermitian construction, we obtained many new quantum codes. Recent literature shows that the
constacyclic codes over non-chain rings are worthy to produce good quantum codes (see [20-25]). Thus, we have obtained many
new quantum codes from skew constacyclic codes. To validate the novelty of the approach, we also compare our obtained codes
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to the existing codes that appeared in some recent articles. We believe that our study will inspire researchers a lot to study skew
constacyclic codes over other non-chain rings and their application in the coming years.
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