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Abstract This paper discusses the structure of skew constacyclic codes and their Hermitian dual over finite commutative non-chain
ring R� := Fq2 [v1, v2, . . . , v�]/〈v2

i − 1, viv j − v jvi 〉1≤i, j≤�, where q is odd prime power. We also extend our study over mixed
alphabet Fq2R� codes. First, we find necessary and sufficient conditions for skew constacyclic codes to contain their duals over

R� and Fq2R�. Then, a Gray map � : R� −→ F
2�

q2 , is defined, and with the help of this map, we also define another Gray

map � : Fq2R� −→ F
2�+1
q2 and prove that both maps are Fq2 -linear Hermitian dual preserving. Finally, by applying Hermitian

construction on dual-containing skew constacyclic codes, we construct many new quantum codes that improve the best-known
parameters.

1 Introduction

Although skew polynomial rings were introduced by Ore [1] in 1933, coding with skew polynomial rings has been the center of
attention after the significant work of Boucher et al. [2] in 2007. They generalized the notion of cyclic codes in a skew polynomial
ring with a non-trivial automorphism and called them skew cyclic codes. Along with the algebraic richness, they [2,3] have produced
some new codes whose minimum distances are comparatively larger than previously best-known codes. In 2008, skew constacyclic
codes were introduced in [4] which are analogous generalizations of constacyclic codes. Later, several skew codes such as skew
cyclic, skew constacyclic and skew quasi-cyclic have been studied by many authors in [5–11].

Recently, the construction of quantum error-correcting codes with good parameters has been one of the most active research areas
because of their significant role in quantum communication and computation. The first quantum code was constructed by Shor [12]
in 1995. These codes have experienced tremendous progress after the seminal work of Calderbank et al. [13] where they discovered
a relation between classical and quantum codes. A q-ary quantum code of length n and size K is defined as K -dimensional subspace
of the complex Hilbert space (Cq)⊗n . Let k = logq(K ). Then, a q-ary quantum code of length n is denoted by [[n, k, d]]q , where
n and k represent the number of encoded physical qubits and the number of original information qubits, respectively, whereas d
denotes the minimum distance. A quantum code with minimum distance d can correct both bit flip and phase shift type of errors up
to � d−1

2 �.
Quantum codes from classical codes have a rich literature, and among these, linear codes (cyclic codes) have a major contribution.

Indeed over last few decades by using CSS and Hermitian constructions, researchers have been constructed a significant amount of
quantum codes from dual-containing cyclic codes. In this context, along with finite fields, finite rings played an important role to
produce good quantum codes. For instance, cyclic codes over finite chain rings such as F4 + uF4, u2 = 0 in [14], F2 + uF2, u2 = 0
in [15], and finite non-chain rings such as Fp + vFp, v

2 = v in [16], Fq + uFq + vFq + uvFq , u2 = u, v2 = v, uv = vu in [17],
Fq + v1Fq + · · · + vrFq , v

2
i = vi , viv j = v jvi = 0 in [18] are a few well-known studies. Being a generalized class, constacyclic

codes also contributed several quantum codes in this direction [19]. It is proved that these codes over Fq + uFq , u2 = 1 in [20],
Fq + vFq + v2

Fq , v
3 = v in [21], Fq + uFq + vFq + uvFq , u2 = u, v2 = v, uv = vu in [22], Fq [u, v]/〈u2 − 1, v2 − v, uv − vu〉

in [23], Fq [u, v]/〈u2 − γ u, v2 − δv, uv = vu = 0〉 in [24], Rk,m = Fpm [u1, u2, . . . , uk]/〈u2
i − 1, uiu j − u jui 〉 in [25] are indeed

a good choice to explore more new quantum codes. In fact, the list of alphabets over which cyclic, constacyclic codes get special
attention is long; we refer few of them as [26–30]. Due to rich algebraic structure, along with linear codes, additive codes have
been studied for more than five decades. After the introduction of additive codes [31] in 1973, these codes have been enlarged over

a e-mail: ram.pma15@iitp.ac.in
b e-mail: om@iitp.ac.in (corresponding author)
c e-mail: habibul.pma17@iitp.ac.in
d e-mail: ashutosh_1921ma05@iitp.ac.in

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-022-02429-9&domain=pdf
http://orcid.org/0000-0002-6512-4229
mailto:ram.pma15@iitp.ac.in
mailto:om@iitp.ac.in
mailto:habibul.pma17@iitp.ac.in
mailto:ashutosh_1921ma05@iitp.ac.in


  213 Page 2 of 13 Eur. Phys. J. Plus         (2022) 137:213 

mixed alphabets. Among many advantages, the flexibility of parameters is one of the prime reasons to investigate such codes. There
are a large number of published articles to address mixed codes in a different setting, and we refer [32–36]. Moreover, quantum
codes in mixed alphabets are investigated in [24,37–40]. It is well known that a skew polynomial ring possesses more polynomial
factorization than a commutative ring. Thus, uses of such rings always help us to obtain new and better codes. The quantum codes
from skew codes have appeared in very few articles [10,40–43], and hence, there is still enough scope to study further. It is noted
that like commutative cases, first, we derive the dual-containing skew constacyclic codes and then use them to construct quantum
codes.

With a strong and enough motivation, we extend our previous study of constacyclic codes [25] to skew constacyclic codes over
a class of finite commutative non-chain rings R� := Fq2 [v1, v2, . . . , v�]/〈v2

i − 1, viv j − v jvi 〉1≤i, j≤�. Note that earlier in [25], we
used Euclidean inner product, whereas in this article we use Hermitian inner product to construct quantum codes. Further, we extend
our study to mixed alphabets skew constacyclic codes and then obtain quantum codes from these codes. It is worth mentioning that
our study produces several new quantum codes which are better in terms of parameters than the codes obtained over commutative
structures.

2 Background

Let Fq2 be the finite field with characteristic p and size q2 where q = pm and p is an odd prime. Throughout this paper,
we use R� := Fq2 [v1, v2, . . . , v�]/〈v2

i − 1, viv j − v jvi 〉1≤i, j≤�. If r ∈ R�, then we can write as r = r0 + ∑
1≤i1≤� ri1vi1 +∑

1≤i1<i2≤� ri1,i2vi1vi2 + · · · + ∑
1≤i1<i2<···<i�≤� ri1,i2,...,i�vi1vi2 . . . vi� , where r0, ri1,i2,...,i j ∈ Fq2 , for all 1 ≤ i j ≤ �. From [25], it

is known that R� is a finite commutative non-chain ring with characteristic p.
Now, we define a map μ : R� −→ R� by

μ

⎛

⎝r0 +
∑

1≤i1≤�

ri1vi1 +
∑

1≤i1<i2≤�

ri1,i2vi1vi2 + · · · +
∑

1≤i1<i2<···<i�≤�

ri1,i2,...,i�vi1vi2 . . . vi�

⎞

⎠

= rq0 +
∑

1≤i1≤�

rqi1vi1 +
∑

1≤i1<i2≤�

rqi1,i2vi1vi2 + · · · +
∑

1≤i1<i2<···<i�≤�

rqi1,i2,...,i�
vi1vi2 . . . vi� .

It is easy to check that μ is an automorphism on R� of order 2 and μ |Fq2 = σ is an automorphism on Fq2 given by a 
−→ aq for

all a ∈ Fq2 . Moreover, the fixed subring under μ is Fq [v1, v2, . . . , v�]/〈v2
i − 1, viv j − v jvi 〉1≤i, j≤�. We denote it by R

μ
� . Let us

consider the set

R := R�[x;μ] = {a0 + a1x + · · · + anx
n | a j ∈ R� ∀ j, n ∈ N}.

Now, we define addition on R as the usual addition of polynomials and multiplication as the multiplication of polynomials under the
condition (αxi )(βx j ) = αμi (β)xi+ j . It is easy to verify that the set R forms a ring under above defined binary operations. Clearly,
(αxi )(βx j ) �= (βx j )(αxi ) in general unless μ is the identity automorphism. Thus, R� is a non-commutative ring and known as skew
polynomial ring. In particular, if μ is the identity automorphism, then R�[x;μ] ≡ R�[x], where R�[x] is a commutative polynomial
ring with coefficient from R�. Moreover, an element f (x) ∈ R is in the center of R if and only if f (x)g(x) = g(x) f (x) for all
g(x) ∈ R. We denote the center by Z(R) = R

μ
� [x2]. By following the same line of proof of the result [[9], Proposition 2.2], where

they considered ring R as a chain ring, we prove the result for non-chain ring.

Theorem 1 Let R = R�[x;μ] be a skew polynomial ring, λ ∈ R� be unit in R� and n, a positive integer. Then, the following are
equivalent:

1. xn − λ ∈ Z(R).
2. 〈xn − λ〉 is a two-sided ideal.
3. R is a principal one-sided ideal ring.
4. n is even, and λ is fixed by μ.

A linear code C of length n over R� is an R�-submodule of Rn
� , and the Hermitian dual C⊥H of C is defined as

C⊥H = {r ∈ Rn
� |< r, r

′
>H= 0 for all r

′ ∈ C}.
Here, < r, r

′
>H= ∑n−1

i=0 riμ(r
′
i ) is the Hermitian inner product of vectors r = (r0, r1, · · · , rn−1) and r

′ = (r
′
0, r

′
1, . . . , r

′
n−1) in

Rn
� . Let J = {i1, i2, . . . , ik} be a subset of � = {1, 2, . . . , �} where i1 < i2 < · · · < ik and ν ∈ Fq2 such that 2�ν ≡ 1 (mod p).

Suppose

vJ =
∏

i∈J

vi , and for J = φ, vφ = 1;
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and γJ = ν
∏

i j∈J

(1 − vi j )
∏

i j /∈J

(1 + vi j ),

and if J = φ, then γφ = ν
∏�

i j=1(1 + vi j ). Again, from [25], we have

γJγJ ′ =
{

γJ , if J = J
′

0, if J �= J
′

and
∑

J⊆� γJ = 1 in R�. Thus, the collection {γJ }J⊆� is a set of primitive orthogonal idempotent elements in R�. Now, by using
decomposition theorem [[44], Ch. VI], we decompose R� as

R� =
⊕

J⊆�

γJR�
∼=

⊕

J⊆�

γJFq2 .

Then, every element r = ∑
J⊆� αJvJ ∈ R� can be uniquely expressed as

r = α0γ0 +
∑

1≤i1≤�

αi1γi1 +
∑

1≤i1<i2≤�

αi1,i2γi1,i2 + . . .

+
∑

1≤i1<i2<···<i�≤�

αi1,i2,...,i�γi1,i2,...,i�

=
∑

J⊆�

αJγJ , where αJ ∈ Fq2 for all J ⊆ �.

Now, we define a map

� : R� −→ F
2�

q2

by

r = α0γ0 +
∑

1≤i1≤�

αi1γi1 +
∑

1≤i1<i2≤�

αi1,i2γi1,i2 + · · · +
∑

1≤i1<i2<···<i�≤�

αi1,i2,...,i�γi1,i2,...,i�


−→ (α0, αi1 , αi2 , . . . , αi� , αi1,i2 , αi1,i3 , . . . , αi�−1,i� , . . . , αi1,i2...i� )M

= (α1, α2, . . . , α2� )M

= rM,

where M ∈ GL2� (Fq2) such that MMT = κ I. Here, κ ∈ F
∗
q2 , M

T is the transpose of M and I is the identity matrix in GL2� (Fq2).

We use r = (α1, α2, . . . , α2� ) to enumerate the vector (α0, αi1 , αi2 , . . . , αi� , αi1,i2 , αi1,i3 , . . . , αi�−1,i� , . . . , αi1,i2...i� ). The map � can

be extended from Rn
� to F

2�n
q2 componentwise. The Hamming weight of a codeword c = (c0, c1, . . . , cn−1) ∈ C is denoted by wtH (c)

and defined as the number of nonzero components in c. The Hamming distance for the code C is dH (C) = min{dH (c, c′) | c �= c′, for
all c, c′ ∈ C}, where dH (c, c′) is the Hamming distance between c, c′ ∈ C and dH (c, c′) = wtH (c − c′). Also, the Gray weight of an
element r ∈ R� is defined as wtG(r) = wtH (�(r)) and Gray weight for r̄ = (r0, r1, . . . , rn−1) ∈ Rn

� is wtG(r̄) = ∑n−1
i=0 wtG(ri ).

Further, the Gray distance between the codewords c, c
′ ∈ C is defined as dG(c, c′) = wtG(c − c′).

Let C be a linear code of length n over R, and for each J ⊆ �, CJ = {αJ ∈ F
n
q2 | there exists βJ ′ ∈ F

n
q2 for some J

′ ⊆ �

distinct from J such that αJγJ + ∑
J ′⊆�

βJ ′ γJ ′ ∈ C}. Then for every J ⊆ �, CJ is a linear code of length n over Fq2 . We observe
that if C is a linear code of length n over the ring R�, then we can uniquely write C = ⊕

J⊆� CJ and | C |= ∏
J⊆� | CJ |, where

CJ is a linear code of length n over Fq2 for all J ⊆ �. Further, if MJ is the generator matrix of CJ over Fq2 for J ⊆ �, then

generator matrix G of C over R� can be given as G = (
γJ MJ

)
J⊆�

, and thus, �(C) has generator matrix G
′ = (

�(γJ MJ )
)
J⊆�

.

In particular, the following results hold.

Theorem 2 Let C be an [n, K , dL ] linear code over R�. Then, �(C) is a [2�n, K , dH ] linear code over Fq2 where dL = dH .

Proof As � is linear and distance preserving bijection from R� −→ F
2�

q2 , it follows easily. ��

Theorem 3 Let C be a Hermitian self-orthogonal linear code of length n over R� and M ∈ GL2� (Fq2) such that MMT = κ I2� .

Then, �(C) is a Hermitian self-orthogonal linear code of length 2�n over Fq2 . Moreover, C is a Hermitian self-dual code if and only
if �(C) is a Hermitian self-dual code.
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Proof Let a = (a0, a1, . . . , a2�−1) and b = (b0, b1, . . . , b2�−1) be any two arbitrary elements of �(C). Then, there exist x =
(x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) in C such that a = �(x) and b = �(y). Now, MMT = κ I2� and C is Hermitian
self-orthogonal, and we have

< a, b >H=< �(x),�(y) >H=
n−1∑

i=0

xi M(MT yi )
q = 0.

Therefore, �(C) is a Hermitian self-orthogonal linear code of length 2�n overFq2 . Further, ifC is Hermitian self-dual, thenC⊥H = C.
Again, since � is a linear bijection, �(C)⊥H = �(C). ��
Theorem 4 If C = ⊕

J⊆� CJ is a linear code of length n over R�, then following holds

1. C⊥H = ⊕
J⊆� C

⊥H
J .

2. C is Hermitian self-dual if and only if for all J ⊆ �, CJ is Hermitian self-dual.

Proof It follows by using Hermitian inner product along with the same line of arguments as given in [[8], Theorem 3.5]. ��
In the next result, we classify the units of R�. Here, R∗

� represents the set of all units in R�.

Lemma 1 [[25], Lemma 3.2] Let λ = ∑
J⊆� λJvJ = ∑

J⊆� δJγJ ∈ R�. Then, λ is a unit in R� if and only if δJ is a unit in Fq2 ,
for all J ⊆ �.

3 Skew constacyclic codes over R�

In this section, the structure of skew constacyclic codes overR� and their Hermitian duals are discussed. We begin with the following
definition.

Definition 1 Let λ ∈ R∗
� and μ be the automorphism on R�. A linear code C of length n over R� is said to be a skew λ-

constacyclic code with respect to μ if C is closed under the skew λ-constacyclic shift τ(μ,λ) : Rn
� −→ Rn

� defined by τ(μ,λ)(c) =
(λμ(cn−1), μ(c0), . . . , μ(cn−2)) ∈ C for c = (c0, c1, . . . , cn−1) ∈ C. In particular, if λ = 1 and λ = −1, then C is called skew
cyclic and skew negacyclic code, respectively. Moreover, if μ is the identity automorphism, then C is a λ-constacyclic code over
R�.

Let C be a skew λ-constacyclic code of length n over R�. Then similar to polynomial representation of constacyclic codes, we can
also identify each codeword c = (c0, c1, . . . , cn−1) ∈ C by a polynomial c(x) = c0 + c1x + · · · + cn−1xn−1 ∈ R�[x;μ]/〈xn − λ〉
under the correspondence c = (c0, c1, . . . , cn−1) 
→ c(x) = (c0 + c1x + · · · + cn−1xn−1) mod 〈xn − λ〉. Note that the problem to
find all λ-constacyclic codes of length n over the ring R� is equivalent to find all the ideals of the quotient ring R�[x]〈xn−λ〉 . Since skew

polynomial ring R�[x;μ] is non-commutative, therefore, the quotient R�[x;μ]
〈xn−λ〉 need not be a ring, but module structure is always

possible for R�[x;μ], where the scalar multiplication is defined by

a(x)(b(x) − 〈xn − λ〉) = a(x)b(x) + 〈xn − λ〉.
Thus, to construct all skew λ-constacyclic codes of length n over R�, it is enough to find all R�[x;μ]-submodule of R�[x;μ]

〈xn−λ〉 .

From Theorem 1, we observed that if n is even and λ ∈ R∗
� such that μ(λ) = λ, then 〈xn − λ〉 is a two-sided ideal in R�[x;μ];

consequently, R�[x;μ]
〈xn−λ〉 forms a ring structure. However, in both cases skew λ-constacyclic code C of length n over R� is generated

by a monic right divisor of xn − λ.

Remark 1 Throughout this paper, we assume λ ∈ R∗
� is a unit fixed by the automorphism μ and the length of a skew λ-constacyclic

code is divisible by the order of the automorphism μ.

Theorem 5 A linear code C = ⊕
J⊆� γJCJ of length n over R� is a skew λ-constacyclic code if and only if each CJ is a skew

δJ -constacyclic code of length n over Fq2 , for all J ⊆ �.

Proof Let C = ⊕
J⊆� γJCJ be a skew λ-constacyclic code of length n over R�. For J ⊆ �, let aJ = (aJ

0 , aJ
1 , . . . , aJ

n−1) ∈ CJ .
Suppose ri = ∑

J⊆� γJ a J
i for 0 ≤ i ≤ n − 1, then r = (r0, r1, . . . , rn−1) ∈ C. Therefore, τ(μ,λ)(r) = ∑

J⊆� γJ τ(σ,δJ )(a
J ) ∈ C =

⊕
J⊆� γJCJ . Hence, τ(σ,δJ )(a

J ) ∈ CJ , for J ⊆ �. Thus, CJ is a skew δJ -constacyclic code of length n over Fq2 , for J ⊆ �.
Conversely, for J ⊆ �, letCJ be a skew δJ -constacyclic code of lengthn overFq2 with respect to σ . Let r = (r0, r1, . . . , rn−1) ∈ C

where ri = ∑
J⊆� γJ a J

i , for some aJ
i ∈ Fq2 , 0 ≤ i ≤ n − 1. Now, aJ = (aJ

0 , aJ
1 , . . . , aJ

n−1) ∈ CJ for J ⊆ �. Therefore,
τ(σ,δJ )(a

J ) ∈ CJ . Hence, τ(μ,λ)(r) = ∑
J⊆� γJ τ(σ,δJ )(a

J ) ∈ ⊕
J⊆� γJCJ = C. Thus, C is a skew λ-constacyclic code of length n

over R�. ��
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For a unit element δ ∈ Fq2 , Boucher et al. [4] obtained the generator polynomials of skew δ-constacyclic codes of length n over
Fq2 . We use this result to get the generator of skew λ-constacyclic code of length n over R�.

Theorem 6 [4] Let δ ∈ F
∗
q2 and σ ∈ Aut (Fq2). Let C be a linear code of length n over Fq2 such that o(σ ) (the order of σ ) divides

n and σ(δ) = δ. Then, C is skew δ-constacyclic over Fq2 if and only if there exists a monic polynomial g(x) ∈ Fq2 [x; σ ] such that
C = 〈g(x)〉 and xn − δ is right divisible by g(x) in Fq2 [x; σ ].
Theorem 7 If C = ⊕

J⊆� γJCJ is a skew λ-constacyclic code of length n over R�, then there exists a monic polynomial f (x) in
R[x;μ] such that C = 〈 f (x)〉 and xn − λ is right divisible by f (x) in R[x;μ]. Moreover, if f J (x) is the generator polynomial of
skew δJ -constacyclic codes over Fq2 for J ⊆ �, then f (x) = ∑

J⊆� γJ f J (x).

Proof Let C = ⊕
J⊆� γJCJ be a skew λ-constacyclic code of length n over R�. Then by Theorem 5, for each J ⊆ �, CJ is a skew

δJ -constacyclic code of length n over Fq2 . Also, by Theorem 6, there exists a monic polynomial f J (x) ∈ Fq2 [x; σ ] which is a right
divisor of xn − δJ and CJ = 〈 f J (x)〉. Therefore, γJ f J (x) is the generator of C for all J ⊆ �. Let f (x) = ∑

J⊆� γJ f J (x). Then,
〈 f (x)〉 ⊆ C. On the other hand, γJ f J (x) = γJ f (x) ∈ 〈 f (x)〉 for all J ⊆ �. Consequently, C ⊆ 〈 f (x)〉 and hence, C = 〈 f (x)〉.

Since for every J ⊆ �, f J (x) is a right divisor of xn − δJ in Fq2 [x; σ ], so there exists skew polynomial hJ (x) such that
xn − δJ = hJ (x) f J (x). Now, [∑J⊆� γJ h J (x)] f (x) = ∑

J⊆� γJ h J (x) f J (x) = ∑
J⊆� γJ (xn − δJ ) = xn − λ. Hence, f (x) is a

right divisor of xn − λ in R�[x;μ]. ��
For a polynomial f (x) = ∑k

i=0 ai x
i ∈ Fq2 [x; σ ] with a0 �= 0, the left monic skew reciprocal polynomial of f (x) is defined

as f (x)∗ = 1
σ k (a0)

(
∑k

i=0 σ i (ak−i )xi ), and the conjugate polynomial of f (x) is f (x) = ∑k
i=0 σ(ai )xi . Now, it is easy to see that

f (x)∗ = f (x)
∗ = f †(x). The polynomial f †(x) is known as the skew Hermitian reciprocal polynomial of f (x). From [[45],

Theorem 1], if δ is a unit fixed under the automorphism σ such that δ2 = 1 and C = 〈 f (x)〉 is a skew δ-constacyclic code of length n
over Fq2 , then Hermitian dual C⊥H of C is a skew δ−1-constacyclic code generated by h†(x) where f (x)h(x) = h(x) f (x) = xn −δ.

Hence, we have the following result.

Corollary 1 Let C = ⊕
J⊆� γJCJ be a skew λ-constacyclic code of length n over R� and CJ = 〈 f J (x)〉 such that xn − δJ =

hJ (x) f J (x) for J ⊆ �. Then,C⊥H = ⊕
J⊆� γJC

⊥H
J is a skewλ−1-constacyclic code overR�.Moreover,C⊥H = 〈∑J⊆� γJ h

†
J (x)〉,

where h†
J (x) is the skew Hermitian reciprocal polynomial of h J (x), for all J ⊆ �.

4 Quantum codes from skew λ-constacyclic codes over R�

In this section, we employ the skew λ-constacyclic codes over the ring R� to construct non-binary quantum codes over Fq . Toward
this, first we provide the necessary and sufficient conditions for skew λ-constacyclic codes over Fq2 to contain their Hermitian duals.
Then, we establish the Hermitian dual-containing condition for skew λ-constacyclic codes over the ring R�.

Theorem 8 [46] [Hermitian construction] Let C be a linear code over Fq2 with parameters [n, k, dH ] satisfying C⊥H ⊆ C. Then,
there exists a quantum code over Fq with parameters [[n, 2k − n,≥ dH ]]q .
Lemma 2 [[40], Lemma 6] Let δ ∈ F

∗
q2 such that δ

2 = 1 and C = 〈g(x)〉 be a skew δ-constacyclic code of even length n over Fq2 .

Then, C⊥H ⊆ C if and only if h†(x)h(x) is right divisible by xn − δ where xn − δ = h(x)g(x) and h†(x) is the skew Hermitian
reciprocal polynomial of h(x).

Theorem 9 Let λ ∈ R∗
� and λ2 = 1. Let C = ⊕

J⊆� γJCJ be a skew λ-constacyclic code of length n over R�. Then, C⊥H ⊆ C

if and only if for all subsets J ⊆ �, the polynomial h†
J (x)hJ (x) is right divisible by xn − δJ , where xn − δJ = hJ (x) f J (x) and

h†
J (x) is the skew Hermitian reciprocal polynomial of h J (x).

Proof First assume that C = ⊕
J⊆� γJCJ is a skew λ-constacyclic code of length n over R� and C⊥H ⊆ C. Therefore, by Corollary

1,
⊕

J⊆�

γJC
⊥H
J ⊆

⊕

J⊆�

γJCJ . (1)

Again, since n is even and λ2 = 1, thus δ2
J = 1. Now, for each J ⊆ � taking modulo γJ in equation (1), we have C

⊥H
J ⊆ CJ .

Therefore, by Lemma 2, the polynomial h†
J (x)hJ (x) is right divisible by xn − δJ for all J ⊆ � where xn − δJ = hJ (x)gJ (x) and

h†
J (x) is the Hermitian skew reciprocal polynomial of hJ (x).

Conversely, suppose for each J ⊆ �, h†
J (x)hJ (x) is right divisible by xn − δJ , then again by Lemma 2, for all J ⊆ �, we have

C
⊥H
J ⊆ CJ . Therefore,

⊕
J⊆� γJC

⊥H
J ⊆ ⊕

J⊆� γJCJ , or in other words, C⊥H ⊆ C. ��
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Corollary 2 Let λ ∈ R∗
� and λ2 = 1. Let C = ⊕

J⊆� γJCJ be a skew λ-constacyclic code of length n over R�. Then, C⊥H ⊆ C if

and only if for all subsets J ⊆ �, C⊥H
J ⊆ CJ .

Theorem 10 Let λ ∈ R∗
� and λ2 = 1. If C = ⊕

J⊆� γJCJ is a skew λ-constacyclic code of length n over R� with Gray image
�(C) such that C⊥H ⊆ C, then there exists a quantum code with parameters [[2�n, 2k − 2�n,≥ dH ]] over Fq .

Proof By using Theorem 9 and the Hermitian construction given in Theorem 8, we get the desired result. ��

5 Fq2R�-additive skew λ-constacyclic codes

Let Fq2R� = {(a, b) : a ∈ Fq2 , b ∈ R�} and F
n
q2R

m
� = {(a, b) : a ∈ F

n
q2 , b ∈ Rm

� }. We define a projection map τ : R� −→
Fq2 by τ( f (v1, v2, . . . , v�)) = f (0) for all f (v1, v2, . . . , u�) ∈ R�. With the help of the map τ , we define a multiplication
∗ : R� × (Fn

q2R
m
� ) −→ F

n
q2R

m
� by c ∗ (a, b) = (τ (c)a, cb). Now, it is checked that Fn

q2R
m
� forms an R�-module. In this case,

any non-empty subset C of Fn
q2R

m
� is said to be an Fq2R�-additive code of length (n,m) if it is an R�-submodule of Fn

q2R
m
� .

Denote R(n,m) = Fq2 [x]
〈xn−1〉 × R

〈xm−λ〉 , where R = R�[x;μ] is the skew polynomial ring over R� with automorphism μ on R� and
λ is a unit in R�. We identify each codeword (a, b) ∈ F

n
q2R

m
� by a polynomial (a(x), b(x)) ∈ R(n,m) under the correspondence

(a, b) 
−→ (a(x), b(x)), where a(x) = a0 + a1x + · · · + an−1xm−1 ∈ Fq2 [x]
〈xn−1〉 , b(x) = b0 + b1x + · · · + bm−1xm−1 ∈ R

〈xm−λ〉 for
a = (a0, a1, . . . , an−1) ∈ F

n
q2 , b = (b0, b1, . . . , bm−1) ∈ Rm

� . Again, R(n,m) is a left R-module where the left multiplication is

defined by c(x) ∗ (a(x), b(x)) = (τ (c(x))a(x), c(x)b(x)) for a(x) ∈ Fq2 [x]
〈xn−1〉 , b(x), c(x) ∈ R

〈xm−λ〉 .

Definition 2 Let C be an Fq2R�-additive code of length (n,m). Then, it is called an Fq2R�-additive skew λ-constacyclic code if
for any

(a, b) = (a0, a1, . . . , an−1, b0, b2, . . . , bm−1) ∈ C

implies

T (a, b) := (an−1, a0, . . . , an−2, λμ(bm−1), μ(b0), . . . , μ(bm−2)) ∈ C.

Theorem 11 Let C be an Fq2R�-additive code of length (n,m). Then, it is an Fq2R�-additive skew λ-constacyclic code if and only
if C is a left R�[x;μ]-submodule of R(n,m).

Proof Let C be an Fq2R�-additive skew λ-constacyclic code of length (n,m). If (a(x), b(x)) ∈ C, where a(x) = a0 + a1x + · · · +
an−1xn−1, b(x) = b0 + b1x + · · · + bm−1xm−1, then in R(n,m), we have

x ∗ (a(x), b(x)) = (an−1 + a0x + a1x
2 + · · · + an−2x

n−1,

λμ(bm−1) + μ(b0)x + μ(b1)x
2 + · · · + μ(bm−2)x

m−1) ∈ C.

In this way, for any j ≥ 1, x j (a(x), b(x)) ∈ C. Therefore, for any c(x) ∈ R�[x;μ] we have c(x) ∗ (a(x), b(x)) ∈ C. Hence, C is
a left R�[x;μ]-submodule of R(n,m). Conversely, let C be a left R�[x;μ]-submodule of R(n,m). Then for any (a(x), b(x)) ∈ C, we
have x ∗ (a(x), b(x)) ∈ C. Since T (a, b) = x ∗ (a(x), b(x)), thus C is an Fq2R� additive skew λ-constacyclic code. ��

For any two codewordsv = (a, b) = (a0, a1, . . . , an−1, b0, b2, . . . , bm−1), v
′ = (a′, b′) = (a′

0, a
′
1, . . . , a

′
n−1, b

′
0, b

′
2, . . . , b

′
m−1)

in F
n
q2R

m
� , the Hermitian inner product is defined by

〈v, v′〉H =
�∑

i=1

vi

n−1∑

i=0

aiμ(ai ) +
m−1∑

i=0

biμ(bi ).

Further, the Hermitian dual is defined as C⊥H = {v ∈ F
n
q2R

m
� : 〈v, v′〉H = 0 for all v′ ∈ C}. It is easy to verify that for an

Fq2R�-additive code, its dual C⊥H is also an Fq2R�-additive code. Now, we define a Gray map � : Fq2R� −→ F
2�+1
q2 by

�(a, r) = (a, �(r)) = (a, (r0, r1, . . . , r2� )M),

where a ∈ Fq2 , r = ∑2�

i=1 γi ri ∈ R�. It is a linear bijection and can be extended over Fn
q2R

m
� −→ F

(n+2�m)

q2 componentwise. Based
on above discussion, we have the following result.

Lemma 3 The map � : Fn
q2R

m
� −→ F

(n+2�m)

q2 is an Fq2 -linear distance preserving map. Further, if C is an Fq2R�-additive code

with parameters (n + m, M, d), then �(C) is an (n + 2�m, logq2 M, d) where M represents the size of C.
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Proof Same as the proof of [[40], Proposition 2]. ��
Lemma 4 Let C be an Fq2R�-additive code of length (n,m). Then, �(C)⊥H = �(C⊥H ). In particular, C is Hermitian self-dual if
and only if �(C) is so.

Proof Same as the proof of [[24], Lemma 6]. ��
Let πn : Fn

q2R
m
� −→ F

n
q2 defined by πn(a, b) = a and πm : Fn

q2R
m
� −→ Rm

� defined by πm(a, b) = b are projection maps.
Clearly, these maps are alsoR�-module homomorphisms. Therefore, for anFq2R�-additive codeC, πn(C) = Cn and πm(C) = Cm are

linear codes over Fq2 and R�, respectively. In particular, if C = Cn ×Cm , then C is called separable. In that case, C⊥H = C
⊥H
n ×C

⊥H
m .

Theorem 12 Let C = Cn × Cm be a separable Fq2R�-additive code of length (n,m). Then, C is an Fq2R�-additive skew λ-
constacyclic code if and only if Cn is a cyclic code of length n over Fq2 and Cm is a skew λ-constacyclic code of length m over
R�.

Proof Let C = Cn × Cm be an Fq2R�-additive skew λ-constacyclic code of length (n,m). Let a = (a0, a1, . . . , an−1) ∈ Cn, b =
(b0, b1, . . . , bm−1) ∈ Cm . Then, (a, b) ∈ C, and hence

T (a, b) = (an−1, a0, a1, . . . , an−2, λμ(bm−1), μ(b0), . . . , μ(bm−2)) ∈ Cn × Cm = C.

Then, (an−1, a0, a1, . . . , an−2) ∈ Cn, (λμ(bm−1), μ(b0), . . . , μ(bm−2)) ∈ Cm . Therefore, Cn is a cyclic code of length n over Fq2

and Cm is a skew λ-constacyclic code of length m over R�.
Conversely, let Cn be a cyclic code of length n overFq2 and Cm be a skew λ-constacyclic code of lengthm overR�. Let (a, b) ∈ C,

where a = (a0, a1, . . . , an−1) ∈ Cn, b = (b0, b1, . . . , bm−1) ∈ Cm . Then,

(an−1, a0, a1, . . . , an−2) ∈ Cn, (λμ(bm−1), μ(b0), . . . , μ(bm−2)) ∈ Cm,

and T (a, b) ∈ Cn × Cm = C. Therefore, C is an Fq2R�-additive skew λ-constacyclic code. ��

Theorem 13 Let C = Cn × Cm be a separable Fq2R�-additive code of length (n,m). Then, C⊥H ⊆ C if and only if C⊥H
n ⊆ Cn and

C
⊥H
m ⊆ Cm.

Proof Since C⊥H = C
⊥H
n × C

⊥H
m , C⊥H ⊆ C if and only if C⊥H

n ⊆ Cn and C
⊥H
m ⊆ Cm . ��

Now, we review some basic concepts from [47] that are useful for further discussion. For an integer s with 0 ≤ s ≤ n − 1, a
q2-cyclotomic coset modulo n containing s is denoted by Cs and defined as Cs = {sq2 j (mod n) : 0 ≤ j ≤ js − 1}, where js is
the least positive integer such that sq2 js ≡ s (mod n) and | Cs |= js . The smallest integer in Cs is called the coset leader of Cs ,
and we use �(n,q2) for the set of all coset leaders. Note that Cs ∩ Cs′ = φ, for any two coset leaders s and s

′
in �(n,q2). Further,

let n ∈ N such that gcd(n, q) = 1 and ordn(q2) = l be the multiplicative order of q2 modulo n. Let η be the generator of F∗
q2l .

Put ξ = η(q2l−1)/n . Then, ξ is a primitive n-th roots of unity in Fq2l . The minimal polynomial ms(x) of ξ s over Fq2 is the smallest
degree monic polynomial over Fq2 with ξ s as a root. Based on above discussion, one can easily check that

ms(x) =
∏

i∈Cs

(x − ξ i ) ∈ Fq2 [x],

and

xn − 1 =
∏

s∈�
(n,q2)

ms(x).

Let C be a cyclic code of length n over Fq2 with generator polynomial g(x). Then, the set

T = {j | g(ξ j ) = 0, 0 ≤ j ≤ n − 1}
is called the defining set ofC. Note that the defining set ofC is the union of someq2-cyclotomic cosets modulon and dim(C) = n− |T |.
Also, one can see that the defining set of C⊥H is

T −q = {−qj (mod n) | j ∈ T }.

Lemma 5 [[48], Lemma 8] Let C be a cyclic code over Fq2 of length n such that gcd(n, q) = 1 with defining set T . Then, C contains

its Hermitian dual if and only if T ∩ T −q = φ where T −q is the defining set of C⊥H .
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Let C = Cn × Cm be a separable Fq2R�-additive skew λ-constacyclic code of length (n,m) such that gcd(n, q) = 1 and the order
of the automorphism μ of R� divides m. Let λ ∈ R∗

� such that μ(λ) = λ and λ2 = 1. Let δJ be the corresponding units in Fq2 .
Then, we have the following results.

Theorem 14 Let C = Cn × Cm be a separable Fq2R�-additive skew λ-constacyclic code of length (n,m). Also, let Cn = 〈g(x)〉
with defining set T and Cm = 〈∑J⊆� γJ f J (x)〉 where xm − δJ = hJ (x) f J (x) for every subset J ⊆ �. Then, C⊥H ⊆ C if and only

if T ∩ T −q = φ and for every subset J ⊆ �, xm − δJ is a right divisor of h†
J (x)hJ (x), where T −q is the defining set of C⊥H

n and

h†
J (x) is the skew Hermitian reciprocal polynomial of h J (x).

Proof It follows from Theorem 9, Theorem 13 and Lemma 5. ��

Now, we can construct quantum codes by using the Hermitian construction given in Lemma 9 and Theorem 14 as follows.

Theorem 15 Let C = Cn × Cm be a separable Fq2R�-additive skew λ-constacyclic code of length (n,m). Also, let C⊥H ⊆ C and

�(C) has parameters [n + 2�m, k, dH ]q2 . Then, there exists a quantum code [[n + 2�m, 2k − n − 2�m,≥ dH ]]q .
5.1 Computational results

In this subsection, we provide some examples in support of our study.

Example 1 Consider the ring R1 := F72 [v1]/〈v2
1 − 1〉, where F72 = F7(t) and t satisfies t2 = t + 4. Then, J = φ, J

′ = {1} and
γJ = 1

2 (1 + v1), γJ ′ = 1
2 (1 − v1). Let μ be the automorphism over R1 defined by μ(r0 + r1v1) = r7

0 + r7
1 v1 and C be a skew

λ-constacyclic code of length 56 over R1 under μ, where λ = −v1. Let g(x) = γJ gJ (x) + γJ ′ gJ ′ (x) be the generator polynomial
of C where gJ (x) = x2 + x + t30 and gJ ′ (x) = x3 + 6x2 + t14x + t3 are generator polynomials of skew negacyclic code CJ and
skew cyclic code CJ ′ over F72 , respectively. Let

M =
[

1 1
1 6

]

∈ GL2(F72),

satisfying MMt = 2I2. Then, the Gray image �(C) has the parameters [112, 107, 4]. Also,

hJ (x) = x54 + 6x53 + t47x52 + 3x51 + t11x50 + 6x49 + t18x48 + 6x46 + x45 + t23x44 + 4x43 + t35x42

+ x41 + t42x40 + x38 + 6x37 + t47x36 + 3x35 + t11x34 + 6x33 + t18x32 + 6x30 + x29 + t23x28

+ 4x27 + t35x26 + x25 + t42x24 + x22 + 6x21 + t47x20 + 3x19 + t11x18 + 6x17 + t18x16 + 6x14

+ x13 + t23x12 + 4x11 + t35x10 + x9 + t42x8 + x6 + 6x5 + t47x4 + 3x3 + t11x2 + 6x + t18,

hJ ′ (x) =x53 + x52 + t12x51 + t3x50 + t38x49 + t21x48 + x45 + x44 + t12x43 + t3x42 + t38x41 + t21x40

+ x37 + x36 + t12x35 + t3x34 + t38x33 + t21x32 + x29 + x28 + t12x27 + t3x26 + t38x25 + t21x24

+ x21 + x20 + t12x19 + t3x18 + t38x17 + t21x16 + x13 + x12 + t12x11 + t3x10 + t38x9 + t21x8

+ x5 + x4 + t12x3 + t3x2 + t38x + t21,

h†
J (x) =x54 + t42x53 + t47x52 + t26x51 + t11x50 + t42x49 + t18x48 + 6x46 + t18x45 + t23x44 + t2x43

+ t35x42 + t18x41 + t42x40 + x38 + t42x37 + t47x36 + t26x35 + t11x34 + t42x33 + t18x32 + 6x30

+ t18x29 + t23x28 + t2x27 + t35x26 + t18x25 + t42x24 + x22 + t42x21 + t47x20 + t26x19 + t11x18

+ t42x17 + t18x16 + 6x14 + t18x13 + t23x12 + t2x11 + t35x10 + t18x9 + t42x8 + x6

+ t42x5 + t47x4 + t26x3 + t11x2 + t42x + t18,

h†
J ′ (x) =x53 + t5x52 + t30x51 + t15x50 + t27x49 + t27x48 + x45 + t5x44 + t30x43 + t15x42 + t27x41

+ t27x40 + x37 + t5x36 + t30x35 + t15x34 + t27x33 + t27x32 + x29 + t5x28 + t30x27 + t15x26

+ t27x25 + t27x24 + x21 + t5x20 + t30x19 + t15x18 + t27x17 + t27x16 + x13 + t5x12 + t30x11

+ t15x10 + t27x9 + t27x8 + x5 + t5x4 + t30x3 + t15x2 + t27x + t27,
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and

h†
J (x)hJ (x) = (x52 + t45x51 + t12x50 + t13x49 + 3x48 + t37x47 + t34x46 + t37x45 + t9x44 + t47x42

+ t29x41 + t2x40 + t29x39 + t26x38 + t29x37 + t31x36 + t21x35 + t33x34 + t29x33

+ t30x32 + t45x31 + t42x30 + t45x29 + t21x28 + t13x27 + t34x26 + t13x25 + t39x24

+ t45x23 + t42x22 + t45x21 + t6x20 + t29x19 + t27x18 + t21x17 + t13x16 + t29x15

+ t26x14 + t29x13 + t2x12 + t29x11 + t29x10 + t3x8 + t37x7 + t34x6

+ t37x5 + t44x4 + t13x3 + 6x2 + t45x + t36)(x56 + 1),

h†
J ′ (x)hJ ′ (x) = (x50 + t38x49 + t7x47 + 6x46 + t35x45 + 6x44 + t31x43 + 2x42 + t17x41 + x40 + t23x39

+ 5x38 + t3x37 + 5x36 + t47x35 + 3x34 + t10x33 + 2x32 + t15x31 + 4x30 + t43x29 + 4x28

+ t39x27 + 4x26 + t15x25 + 3x24 + t39x23 + 3x22 + t19x21 + 3x20 + t15x19 + 5x18

+ t28x17 + 4x16 + t47x15 + 2x14 + t27x13 + 2x12 + t23x11 + 6x10 + t29x9

+ 5x8 + t31x7 + x6 + t11x5 + x4 + t7x3 + 4x + 6)(x56 − 1).

Since h†
J (x)hJ (x) and h†

J ′ (x)hJ ′ (x) are right divisible by x56 + 1 and x56 − 1, respectively, by Theorem 9, we have C⊥H ⊆ C.
Also, by Theorem 10, there exists a quantum code [[112, 102,≥ 4]]7. It is noted that the constructed quantum code has better code
rate than best-known quantum code [[112, 92, 4]]7 in [49].

Example 2 Consider the ring R1 := F52 [v1]/〈v2
1 − 1〉, where F52 = F5(t) and t satisfies t2 = t + 3. Then, J = φ, J

′ = {1}
and γJ = 1

2 (1 + v1), γJ ′ = 1
2 (1 − v1). Let μ be the automorphism over R1 defined by μ(r0 + r1v1) = r3

0 + r3
1 v1 and C be a

skew λ-constacyclic code of length 8 over R1 with respect to μ where λ = v1. Let g(x) = γJ gJ (x) + γJ ′ gJ ′ (x) be the generator
polynomial of C, where gJ (x) = x3 + x2 + t2x + t14 and gJ ′ (x) = x4 + t4x3 + t20x2 + t16x + 1 are generator polynomials of
skew cyclic code CJ and skew negacyclic code CJ ′ over F52 , respectively. Let

M =
[

1 1
1 4

]

∈ GL2(F52),

satisfying MMt = 2I2. Then, the Gray image �(C) has the parameters [16, 9, 7]. Also,

hJ (x) = x5 + 4x4 + t15x3 + t13x2 + t14x + t22,

hJ ′ (x) = x4 + t16x3 + t4x2 + t4x + 1,

h†
J (x) = x5 + x4 + t15x3 + t5x2 + t14x + t2,

h†
J ′ (x) = x4 + t4x3 + t20x2 + t16x + 1,

and

h†
J (x)hJ (x) = (x2 + 4)(x8 − 1),

h†
J ′ (x)hJ ′ (x) = (1)(x8 + 1).

Since h†
J h J and h†

J ′ hJ ′ are right divisible by x8 − 1 and x8 + 1, respectively, by Theorem 9, C⊥H ⊆ C. Again, by Theorem 10,
there exists a quantum code [[16, 2,≥ 7]]5 which has better parameters than [[16, 1, 6]]5 given in [50].

Example 3 Suppose F32 = F3(t), t satisfies t2 = t + 1 and Cn is a cyclic code of length n = 40 over F32 with defining
set T = {5, 12, 28}. Then, the generator polynomial of Cn is fn(x) = x3 + t x2 + t7x + t5. Also, as T −3 = {4, 25, 36} and
T ∩ T −3 = φ, by Lemma 5 Cn is a Hermitian dual-containing cyclic code over F32 . Let R1 := F32 [v1]/〈v2

1 − 1〉. Then, J = φ,
J

′ = {1} and γJ = 1
2 (1 + v1), γJ ′ = 1

2 (1 − v1). Let μ be the automorphism over R1 defined by μ(r0 + r1v1) = r3
0 + r3

1 v1 and
Cm be a skew cyclic code of length m = 48 over R1 with respect to the automorphism μ. Let g(x) = γJ gJ (x) + γJ ′ gJ ′ (x) be the
generator polynomial of C where gJ (x) = x2 + t2x + t2 and gJ ′ (x) = x3 + t3x2 + x + t are generator polynomials of skew cyclic
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codes CJ and CJ ′ over F32 , respectively. Here,

hJ (x) = x46 + t6x45 + t5x44 + t6x43 + t6x42 + 2x40 + t2x39 + t x38 + t2x37 + t2x36 + x34 + t6x33

+ t5x32 + t6x31 + t6x30 + 2x28 + t2x27 + t x26 + t2x25 + t2x24 + x22 + t6x21 + t5x20

+ t6x19 + t6x18 + 2x16 + t2x15 + t x14 + t2x13 + t2x12 + x10 + t6x9 + t5x8 + t6x7

+ t6x6 + 2x4 + t2x3 + t x2 + t2x + t2,

hJ ′ (x) =x45 + t5x44 + x43 + t7x42 + 2x41 + t x40 + x39 + x38 + t2x36 + t6x34 + 2x33 + t3x32 + x29

+ t5x28 + x27 + t7x26 + 2x25 + t x24 + x23 + x22 + t2x20 + t6x18 + 2x17 + t3x16 + x13

+ t5x12 + x11 + t7x10 + 2x9 + t x8 + x7 + x6 + t2x4 + t6x2 + 2x + t3,

h†
J (x) = x46 + 2x45 + t5x44 + 2x43 + t6x42 + 2x40 + x39 + t x38 + x37 + t2x36 + x34 + 2x33 + t5x32

+ 2x31 + t6x30 + 2x28 + x27 + t x26 + x25 + t2x24 + x22 + 2x21 + t5x20 + 2x19 + t6x18

+ 2x16 + x15 + t x14 + x13 + t2x12 + x10 + 2x9 + t5x8 + 2x7 + t6x6 + 2x4 + x3 + t x2 + x + t2,

h†
J ′ (x) = x45 + t x44 + t3x43 + t7x41 + t5x39 + t5x38 + t6x37 + t x36 + 2x35 + t5x34 + t2x33 + t5x32

+ x29 + t x28 + t3x27 + t7x25 + t5x23 + t5x22 + t6x21 + t x20 + 2x19 + t5x18 + t2x17 + t5x16

+ x13 + t x12 + t3x11 + t7x9 + t5x7 + t5x6 + t6x5 + t x4 + 2x3 + t5x2 + t2x + t5,

and

h†
J (x)hJ (x) = (x44 + t3x43 + 2x42 + 2x38 + t7x37 + x36 + x32 + t3x31 + 2x30 + 2x26 + t7x25 + x24

+ x20 + t3x19 + 2x18 + 2x14 + t7x13 + x12 + x8 + t3x7 + 2x6 + 2x2 + t7x + 1)(x48 − 1),

h†
J ′ (x)hJ ′ (x) =(x42 + t6x41 + t2x40 + t2x39 + x37 + t5x36 + t3x35 + t7x34 + t6x33 + t6x32 + t5x31

+ t5x30 + t5x29 + t5x28 + t5x27 + t3x26 + t7x25 + x24 + x23 + t5x22 + t3x21 + t x20

+ t2x19 + 2x18 + t7x17 + t7x16 + t x15 + t x14 + t x13 + t x12 + t x11 + t2x10 + 2x9

+ t3x8 + t3x7 + t x6 + t2x5 + x3 + t6x2 + 2x + 2)(x48 − 1).

Since h†
J (x)hJ (x) and h†

J ′ (x)hJ ′ (x) both are right divisible by x48 − 1, by Theorem 9, we have C⊥H
m ⊆ Cm . Let C = Cn × Cm be a

skew cyclic code of length (40, 48) over F32R1. Then by Lemma 13, C⊥H ⊆ C. Moreover, if

M =
[

1 1
1 2

]

∈ GL2(F32),

satisfying MMt = 2I2, then the Gray image �(C) has the parameters [136, 128, 3]. Thus, by Theorem 15, there exists quantum
code with parameters [[136, 120,≥ 3]]3 which has better code rate than the best-known quantum code [[136, 118, 3]]3 available in
[49].

Example 4 LetF72 = F7(t), t satisfies t2 = t+4 andCn be a cyclic code of lengthn = 80 overF72 with defining setT = {32, 45, 48}.
Then, the generator polynomial of Cn is fn(x) = x3 + t3x + t3. Also, as T −7 = {5, 16, 64} and T ∩ T −7 = φ. Therefore, by
Lemma 5, Cn is a Hermitian dual-containing cyclic code over F72 . Let R1 := F72 [v1]/〈v2

1 − 1〉. Then, J = φ, J
′ = {1} and

γJ = 1
2 (1 + v1), γJ ′ = 1

2 (1 − v1). Let μ be the automorphism over R1 defined by μ(r0 + r1v1) = r7
0 + r7

1 v1 and Cm be a skew λ-
constacyclic code of lengthm = 8 overR1 with respect to the automorphism μ, where λ = v1. Suppose g(x) = γJ gJ (x)+γJ ′ gJ ′ (x)
is the generator polynomial of Cm where gJ (x) = x + t3 and gJ ′ (x) = x2 + t2x + 6 are generator polynomials of skew cyclic
codes CJ and skew negacyclic code CJ ′ over F72 , respectively. Here,

hJ (x) =x7 + t45x6 + 6x5 + t21x4 + x3 + t45x2 + 6x + t21,

hJ ′ (x) =x6 + t26x5 + 3x4 + t10x3 + 4x2 + t26x + 6,

h†
J (x) =x7 + t3x6 + 6x5 + t27x4 + x3 + t3x2 + 6x + t27,

h†
J ′ (x) =x6 + t2x5 + 3x4 + t34x3 + 4x2 + t2x + 6,
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Table 1 New quantum codes from skew λ-constacyclic codes over R� for � = 1

n λ (δJ , δ
J ′ ) f J (x) f

J ′ (x) �(C) [[n, k, d]]q [[n′, k′, d ′]]q
26 −v1 (−1, 1) t1 121 [52, 48, 3] [[52, 44,≥ 3]]3 [[52, 43, 3]]3 [49]

12 −1 (−1, −1) t19111 1t13t7t1 [24, 17, 6] [[24, 10, ≥ 6]]5 [[24, 10, 5]]5 [40]

8 v1 (1, −1) t14t211 1t16t20t41 [16, 9, 7] [[16, 2, ≥ 7]]5 [[16, 1, 6]]5 [50]

40 1 (1, 1) (t4)1 t17t10t41 [80, 76, 3] [[80, 72,≥ 3]]5 [[78, 70, 3]]5 [49]

14 v1 (1, −1) 1t41 t31 [28, 25, 3] [28, 22, ≥ 3]]7 [[28, 20, 3]]7 [49]

36 1 (1, 1) t5t1 t52t41 [72, 67, 3] [[72, 62,≥ 3]]7 [[72, 40, 3]]7 [49]

38 −1 (−1, −1) t31 1t33t31 [76, 72, 3] [[76, 68, ≥ 3]]7 [[75, 69, 3]]7 [49]

42 −v1 (−1, 1) t22t301 62t1 [84, 79, 4] [[84, 74,≥ 4]]7 [[87, 73, 4]]7 [49]

56 −v1 (−1, 1) 1t411 6t311 [112, 108, 3] [[112, 104,≥ 3]]7 [[112, 101, 3]]7 [49]

56 −v1 (−1, 1) t3011 t3t1461 [112, 107, 4] [[112, 102, ≥ 4]]7 [[112, 92, 4]]7 [49]

6 −1 (−1, −1) t4t101 t12811 [12, 8, 5] [[12, 4,≥ 5]]13 [[12, 2, 5]]13 [50]

24 v1 (1, −1) t4t31 t4411 [48, 44, 4] [[48, 40, ≥ 4]]17 [[48, 38, 4]]17 [25]

and

h†
J (x)hJ (x) =(x6 + 6x4 + x2 + 6)(x8 − 1),

h†
J ′ (x)hJ ′ (x) =(x4 + 4x2 + 1)(x8 + 1).

Since h†
J h J and h†

J ′ hJ ′ are right divisible by x8 − 1 and x8 + 1, respectively, by Theorem 9, we have C⊥H
m ⊆ Cm . Let C = Cn ×Cm

be a skew λ-constacyclic code of length (80, 8) over F72R1. Then by Lemma 13, C⊥H ⊆ C. Moreover, if

M =
[

1 1
1 6

]

∈ GL2(F72),

satisfying MMt = 2I2, then the Gray image �(C) has the parameters [96, 90, 3]. Thus, by Theorem 15, there exists quantum code
with parameters [[96, 84,≥ 3]]7. Notice that the constructed quantum code has better code rate than the code [[96, 80, 3]]7 obtained
in [24].

Let C be a skew λ-constacyclic code of length n over R1 := Fq2 [v1]/〈v2
1 − 1〉. Then, J = φ, J

′ = {1} and C = γJCJ ⊕ γJ ′CJ ′ ,
where CJ and CJ ′ are corresponding skew δJ -constacyclic and skew δJ ′ -constacyclic codes over Fq2 of length n, respectively. Here,
the matrix

M =
[

1 1
1 −1

]

∈ GL2(Fq2)

is used to find the Gray image �(C). By using the MAGMA computation software, we obtain (in Table 1) several better quantum
codes than the best-known codes from dual-containing skew λ-constacyclic over R1. First column of Table 1 denotes length of
skew λ-constacyclic code C over R1, whereas second and third columns are used to write the units λ and the corresponding units
δJ , respectively. The generator polynomials gJ (x) and gJ ′ (x) of CJ and CJ ′ are written in columns fourth and fifth, respectively.
Column sixth contains the Gray image �(C), whereas column seventh is used to write the parameters of the obtained quantum
codes. Last column of the table denotes the parameters of the existing quantum codes available in the literature to compare our
obtained codes. Note that instead of writing the whole polynomial, we just write the coefficients of polynomial in ascending order
of the powers of the variable. For example, the polynomial t14x3 + t2x2 + x + 1 is written as t14t211. In this way, we have shown
that the skew constacyclic codes produced better quantum codes.

6 Conclusion

Here, we investigated the algebraic structure of skew constacyclic codes over a class of non-chain rings R�. Then, we have extended
our study to mixed alphabets Fq2R�. Among others, we have established the conditions for these codes to contain their Hermitian
duals, and consequently, under Hermitian construction, we obtained many new quantum codes. Recent literature shows that the
constacyclic codes over non-chain rings are worthy to produce good quantum codes (see [20–25]). Thus, we have obtained many
new quantum codes from skew constacyclic codes. To validate the novelty of the approach, we also compare our obtained codes
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to the existing codes that appeared in some recent articles. We believe that our study will inspire researchers a lot to study skew
constacyclic codes over other non-chain rings and their application in the coming years.
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