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Abstract In this paper, we investigate the entanglement sudden death with a two-level system and plasmonic surface. We determine
the collective damping and qubit–qubit interaction by employing the quasi-static approximation. To illustrate this approach, we
first derive the Markovian master equation in the Lindblad form using frequency-domain Green function approach. The Wootter’s
concurrence with Dicke states is used to measure the entanglement between two dipoles (two two-level systems). This approach
enabled the present scheme to be applied in the field of quantum information theory.

1 Introduction

The primary premise of quantum information is the entanglement, which has been extensively studied theoretically [1,2]. However,
the decay of entanglement due to the inevitable system–environment interaction generates the obstacle “entanglement sudden
death (ESD)” in quantum information processing [3–6]. Since the pioneering research of Eu and Eberly [4], the researchers have
investigated ESD for various physical situations [7–9]. Recent study on Dark soliton qubits with Bose–Einstein condensates also
confirms the occurrence of ESD [8], and the interaction of Bose–Einstein condensate atoms with a single-mode laser field reveals
the collapse–revival phenomenon [10,11]. Contrary to ESD, the investigations have shown the irreversible process of entanglement
sudden birth, i.e. implying a kind of quantum coherence induced in the emission [12–16].

The investigation of quantum information protocols in the context of plasmonic waveguides [17], nanotubes or quantum dots
[18,19] and phonons [8,20] has attracted an enormous interest during recent years. ESD has been confirmed with experiments
performed with both photonic [3] and atomic systems [21]. Recently, Silveirinha et al. [22] have studied an interesting problem
using the Markov approximation and modelling the point dipole as a two-level atom. To determine the spontaneous emission rate
and to understand the quantum mechanical properties, they employ the Green’s function approach with quasi-static approximation to
two-level atom and the metallic surface, for reciprocal and nonreciprocal systems [22,23]. Enlightened by these recent investigations
[22,23], we employ this approach to determine the entanglement dynamics taking into account the loss effects of the metallic surface.
We compute the collective damping resulting from the mutual exchange of the mediating particle and the dipole–dipole interaction.
We believe this approach enabled the present scheme to be applied in the field of quantum information theory.

The paper is organized as follows: In Sect. 2, we describe the theoretical model and Markovian master equation to determine the
collective damping resulting from mutual exchange of the mediating particle and qubit–qubit interaction by considering quasi-static
approximation. The implication of this approximation to find the entanglement dynamics for different initial states is described in
Sect. 3. In what follows, we conclude the results of present investigation in Sect. 4. Some of the technical aspects are described in
the Appendix.

2 Theoretical model

Considering two dipoles (two two-level systems) separated by distance d , placed at distance h from a plasmonic surface (Fig. 1),
the Hamiltonian can be written as

H = Hat. + Hfield + Hint.

= h̄ω0

2
(σ z

1 + σ z
2 ) +

∑

ωnk>0

h̄ωnk

2

(
a†
nkank + anka

†
nk

)
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Fig. 1 Theoretical model
describes the two dipoles
separated by distance d and placed
at distance h from the plasmonic
surface d
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ŷ

+
∑
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pd · ankFnk(rj) + H.c. (1)

where ω0 is the transition frequency of the states separated by energy (Ee−Eg)/h̄ and σz=|e〉〈e|−|g〉〈g| is the inversion operator. The
operators a†

nk (ank) denote the creation (annihilation) operator of the bosonic field, satisfying the commutation relation [ank, a†
nk′ ] =

δk,k′ and ωnk is the oscillation frequency. The term pd = (γ̃ ∗
jσ

j
+ + γ̃ jσ

j
−) denotes the dipole moment with dipole moment element

γ and the raising σ+ = |e〉〈g| and lowering σ− = |g〉〈e| operators. The function Fnk(r) = fnk(z)eik.r denotes the electromagnetic
modes with the field fnk [22].

In order to characterize the entanglement dynamics, we derive the Markovian master equation (see Appendix A) to obtain the
elegant description of physics involved in the dynamics of interacting system by following the procedure outlined in Ref. [24–26],

∂t ρ̂s(t) = − i

2

∑

i

(
ω0 + g−

i i − g+
i i

) [
σ i
z , ρ̂s(t)

]

−
∑

i, j

�i j

2

(
σ i+σ

j
−ρ̂s(t) + ρ̂s(t)σ

j
+σ i− − σ

j
−ρ̂s(t)σ

i+

−σ i−ρ̂s(t)σ
j

+
)

+
∑

i �= j

igi j
(
σ i+σ

j
−ρ̂s(t)

−σ
j

−ρ̂s(t)σ
i+
)

+ H.c., (2)

with the collective damping term �i j = 2Im
{
γ̃ ∗
i .G(ri , r j ;ω0).γ̃ j

}
/h̄ arises due to the mutual exchange of photons and qubit–qubit

interaction term gi j = Re
{
γ̃ ∗
i .G(ri , r j ;ω0).γ̃ j

}
/h̄. We employ the quasi-static approximation (see Appendix B) to compute the

collective damping and qubit–qubit interaction term,

�12 = γ̃ 2ω2
sp�

4π h̄ε0ω′
sp

{
2h2 − d2

(
d2 + 4h2

)5/2

}[
�2 − �1

�1�2

]
, (3)

g12 = γ̃ 2ω2
sp

4π h̄ε0ω′
sp

{
2h2 − d2

(
d2 + 4h2

)5/2

}

[
(�1 + �2)ω

′
sp + (�1 − �2)ω0

�1�2

]
, (4)

where

�1 = 1
(
ω′
sp − ω0

)2 + (�
2

)2 ,

�2 = 1
(
ω′
sp + ω0

)2 + (�
2

)2 , (5)

with ω′
sp =

√
ω2
sp − (�/2)2, the losses in the metal half space �, the distance between two dipoles d , and the separation of the dipole

and plasmonic slab h. For simplicity, the electric dipole is assumed to be oriented along x-direction γeg = γ̃ x̂ . The spontaneous
decay rate �11 can be obtained by putting d = 0 in Eq. (3). The variation of both collective damping and qubit–qubit interaction with
distance d between qubits is depicted in Fig. 2. Both functions become vanish after long distance d ∼ 5h. Dicke bases (|e〉 = |e1, e2〉,
|g〉 = |g1, g2〉, |±〉 = (|e1, g2〉 ± |g1, e2〉) /

√
2) [27] are used to solve master Eq. (2) as follows,
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Fig. 2 Collective damping �12
and qubit–qubit interaction g12
(inset) as a function of the
dipole–dipole separation d, where
ω0 = 0.5ωsp and � = 0.1ωsp

ρ++(t) = e−�+tρ++(0) + �+
�−
(
e−�+t − e−2�11t

)
ρee(0),

ρ−−(t) = e−�−tρ−−(0) + �−
�+
(
e−�−t − e−2�11t

)
ρee(0),

ρee(t) = e−2�11tρee(0), (6)

with ρgg(t) = 1 − ρee(t) − ρ++(t) − ρ−−(t). Here �± = �11 ± �12. Equation (6) determines that the transition to and from the
state ρ++(t) is superradiant (�+) and from the state ρ−−(t) is subradiant (�−).

3 Entanglement dynamics

How to quantify the entanglement is a central topic within QI theory. There are many measures for the quantification of entanglement,
but a most widely spread measure is the concurrence defined by Wootter’s [28],

C (ρ) = max

⎧
⎨

⎩0,
√

ξ1 −
4∑

j=2

√
ξ j

⎫
⎬

⎭ , (7)

where ξi ’s are the eigenvalues (in decreasing order) of the Hermitian matrix R = ρρ̃, where the spin flip density matrix ρ̃ =(
σy ⊗ σy

)
ρ∗ (σy ⊗ σy

)
, with ρ∗ and σy being the complex conjugate of ρ and the Pauli matrix, respectively. In the Dicke Basis,

the eigenvalues of the matrix R are given by [8]
√

ξ1,2 = √
ρeeρgg ± |ρeg|,

√
ξ3,4 = 1

2

(√
(ρ++ + ρ−−)2 − (ρ+− + ρ−+)2

±
√

(ρ++ − ρ−−)2 − (ρ+− − ρ−+)2
)

. (8)

It is easy to verify that, depending on the largest eigenvalue (either
√

ξ1 or
√

ξ3), the concurrence C(t) = max{0,C1(t),C2(t)} can
be defined in two alternative ways, i.e.

C1(t) = 2|ρeg| −
√

(ρ++ + ρ−−)2 − (ρ+− + ρ−+)2,

C2(t) =
√

(ρ++ − ρ−−)2 − (ρ+− − ρ−+)2 − 2
√

ρeeρgg. (9)

It is easy to verify from Eq. (9) that the concurrenceC1(t) measures the entanglement produced by the non zero coherence term ρeg(t),
whileC2(t) measures the entanglement produced by the density matrix of states |±〉 with positivity condition ρ++(t) �= ρ−−(t). The
density matrix elements can be obtained by solving Eq. (2). Hereafter, we are going to determine the dependence of entanglement
sudden death on different initial states.

3.1 Sudden death and revival of entanglement

3.1.1 Entangled state

Two alternative ways to define the concurrence Eq. (9) lead to an interesting phenomenon of entanglement revival [8,29–31], for
which we initially assume a nonmaximally entangled state of excited (|e〉) and ground (|g〉) states.

|〉 = √1 − q |g〉 + √
q |e〉 , (10)
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By inspecting Eq. (9) at t = 0, the initial degree of entanglement is C1(0) = 2
√
q(1 − q). It is not possible to observe the

entanglement in the independently radiating two level system (�12 = 0), because of equally populated |±〉 states. Therefore, the
death time of entanglement can be found via the condition C1(t) = 0, that yields

td = 1

�11
ln

(
q

q − √
q(1 − q)

)
, (11)

from which it is worthy to note that the two qubits are disentangled at q > 1/2. However, the appearance of collective effects
may lead to entanglement sudden birth (ESB) at later time (tr), which can be controlled by changing the interatomic distance. The
transient evolution of concurrence for an initial state |〉 is shown in Fig. 3. It is depicted that the death of entanglement occurs due
to the spontaneous emission but rebirth occurs due to the collective damping term after a collapse of time tr 
 5/γ , for α 
 1/2
and separation d 
 h of qubits. After a careful inspection of Eq. (6), it can be concluded that the concurrence C1(t) is short lived,
i.e. C1(t) < 0 at longer times, where the entanglement survives due to concurrence C2(t) that provides

tr 
 3

4�12
ln

(
4�11√

q(�11 − �12)

)
. (12)

Moreover, Fig. 4 depicts the decay of entanglement at d 
 5h/2 that does not undergo any revival, due to impartiality between
the term ρeg(t) and ρ++(t). In other words, the latter terms go almost to zero at long times. Both two-level systems can be treated
as being independent, equivalent to the situation when each system interacts with its own environment at d 
 7h, because of very
small collective damping term (�12 ≈ 0).

A limiting case (q = 1) generates an unentangled state |〉 = |e〉. Therefore, the density matrix ρ(t) remains diagonal with
nonzero elements,

ρee(t) = e−2�11t ,

ρ++(t) = �+
�−

e−2�11t
(
e−�−t − 1

)
,

ρ−−(t) = �−
�+

e−2�11t
(
e−�+t − 1

)
. (13)

One would expect that no entanglement could build up with Eq. (13). However, after some algebra we arrive at concurrence C2(t)
of Eq. (9). It can be analysed from Fig. 5 that the transient entanglement for the limiting case q = 1 of state |〉 generates at a later
time, due to the large value of symmetric and anti-symmetric states population. In other words, the evolution of the concurrence
follows the evolution of the population of the antisymmetric state because when the symmetric state becomes depopulated due to
faster superradiant decay rate �+ = �12 + �11, the state of the system reduces to the maximally entangled antisymmetric state.

Fig. 3 Time variation of the
concurrence C(t) for initial
entangled state |〉 at interatomic
distance d 
 h

Fig. 4 Evolution of state
population ρge (dotted curve),
ρ++ (dashed curve) and ρ−−
(dotted–dashed curve) with
concurrence C1(t) (solid curve) at
d 
 5h/2 and q = 0.6
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Fig. 5 Panel a shows the time
evolution of transient concurrence
C2(t) for the limiting case (q = 1)
of initial state |〉 and Panel b
depicts the first (dashed) and
second (dotted) term of
concurrence C2(t). The
interatomic distance is considered
to be d 
 h

(a) (b)

Fig. 6 Time variation of the
concurrence C(t) for initial mixed
state prepared in diagonal basis of
the collective states at interatomic
distance d 
 h

3.1.2 Mixed state

Here, we consider a two-qubit system to be initially prepared in a diagonal basis of the collective states, having initial density matrix
of the form [4]

ρ(0) = 1

3

⎛

⎜⎜⎝

q 0 0 0
0 2 0 0
0 0 0 0
0 0 0 r

⎞

⎟⎟⎠ , (14)

where r = 1 − q . At time t = 0, the initial concurrence is C2(0) = 2
(
1 − √

q(1 − q)
)
/3, and the time for disappearance of

concurrence is given by

td = 1

�11
ln

(
q√

q(3q + 5) − (1 + q)

)
. (15)

It is easy to verify from Eq. (15) that the sudden death of concurrence for independent qubits is possible only for q � 1/3. The time
evolution of the concurrence for interacting qubits is depicted in Fig. 6. The entanglement decays for the whole range of parameter
q , but it revives at q � 0.2. In the physical terms, the location of the dipoles at a distance d 
 h from the plasmon interface leads
to a strong collective behaviour of dipoles, resulting in the revival of entanglement. At q = 1/2, ESD happens at td ∼ 0.7/γ , then
it revives at tr ∼ 5.1/γ . It is pertinent to mention here that going beyond d 
 h (i.e. the greater distance between two dipoles than
to the plasmon field) destroys the collective behaviour of the dipoles and no revival occurs.

3.1.3 Werner state

We assume the initial Werner state [32], which is a mixture of isotropic state and maximally entangled symmetric state |s〉,

|ψ1〉 = (1 − p)
I

4
+ p|s〉〈s|, (16)

where I is the 4 × 4 identity matrix and p determines the population of the symmetric state |s〉. Equation (16) interpolates between
separable and entangled state, depending on the parameter p. Figure 7 depicts the time evolution of concurrence for various values
of parameter p at long distance d 
 7h, when both the atoms act like an independent systems. It is shown that the state is separable
for p < 1/3 and the initial concurrence appears as C(0) = (3p − 1)/2 with sudden death in the range 1/3 ≤ p ≤ 3/5 and follows
the asymptotic decay for p ≥ 3/5. It is pertinent to mention here that the greater distance between two dipoles than to the plasmon
field destroys the collective behaviour of the dipoles and no revival occurs. In Fig. 8, entanglement sudden death appears for almost
the whole range of parameter p (except p = 1) at interatomic distance d 
 h. The more interesting feature is the appearance of
entanglement for p < 1/3 at later times, which is called entanglement sudden birth. This behaviour appears due to the collective
dynamics of the two two-level systems and is more effective for the isotropic case (p = 0), when all the levels are equally populated,
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Fig. 7 Time evolution of
concurrence C(t) for initial
Werner state |ψ1〉 at interatomic
distance d 
 6h

Fig. 8 Time evolution of
concurrence C(t) for initial
Werner state |ψ1〉 at interatomic
distance d 
 h

i.e. ρ(0) = I/4. For p > 0.7, the entanglement dies out in a finite time and did not appear again. The practical realization of quantum
computation and information requires a prolong entanglement. Thus, the local unitary operators can be applied to qubits to avert or
delayed the dark period of entanglement [33,34].

4 Conclusion

In summary, we use the green function approach with quasi-static approximation to explore the decay of entanglement for different
initial states. In what follows, we first derive the Markovian master equation to extract the collective damping resulting from the
mutual exchange of mediating particle and dipole–dipole interaction. Our results reveal the sudden death and birth of the entanglement
depending on distance d between dipoles. This approach opens up new possibilities for systematically studying a wide class of open
quantum systems and applications of quantum information theory.
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Appendix 1: Derivation of Born–Markov master equation

The Liouville–von Neumann equation by writing the global density matrix ρQP is found to be

dρQP

dt
= − ı

h̄
[H0 + Hint, ρQP ], (A1)

where H0 = Hd + Hp . It is convenient to write Eq. (A1) in the interaction picture of H0, for which we define

Hint(t) = e
i
h̄ H0t Hint e

− i
h̄ H0t , (A2)

and
ρ(t) = e− i

h̄ H0t ρQP e
i
h̄ H0t . (A3)

With the new definition of Hamiltonian and density operator, we can decompose Eq. (A1) as

ρ(t) = ρ(t0) − i

h̄

∫ t

t0
[H(τ ), ρ(τ )]dτ (A4)

Using Eq. (A4) in Eq. (A1), we get

∂tρ = − i

h̄
[Hint(t), ρ(t0)]
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+ 1

h̄2

[
Hint(t),

∫ t

t0
[Hint(τ ), ρ(τ )] dτ

]
(A5)

With the Markov approximation and letting t0 → −∞, it is possible to write

∂tρ = i

h̄
[ρ(t0), Hint(t)]

− 1

h̄2

∫ ∞

0
[[ρ(t), Hint(t − τ)] , Hint(t)] dτ (A6)

Let assume that the density matrix is of the form ρ = ∑
n pn |n(t), E0〉〈n(t), E0| at all times, so that the degrees of freedom

of the environment are to a first approximation unaffected by the dynamics of the atom (Born approximation). Hence, defining
ρs =∑E 1s ⊗ 〈E |ρI 1s ⊗ |E〉 = trEρI (t), it follows that trE ([ρ(t0), Hint (t)]) = 0,

∂tρs = − 1

h̄2

∫ ∞

0
trE [[ρ(t), Hint(t − τ)] , Hint(t)] dτ, (A7)

where

Hint = −
∑

j

(
γ̃ ∗
j σ

j
+eiω0, j t + γ̃ jσ

j
−e−iω0, j t

)
.F̂(r j , t)

F̂(r, t) =
∑

ωnk>0

√
h̄ωnk

2

(
ânke

−iωnk t Fnk(r)
)

+ H.c. (A8)

Equation (A7) is the Born–Markov master equation. To proceed, we assume that the environment is in ground state for which we
define the parameter

Ai j
ω = 1

h̄2

∑

ωnk>0

ε0,ωnk

1

i
(
ωnk − ω − i0+) F

∗
nk(ri )F

∗
nk(r j ), (A9)

where ε0,ωnk = h̄|ωnk |/2. Hereafter, we introduce a frequency-domain Green function G = G+ + G− + M−1∞ δ(r − r0)/ iω, where
G± = −iωḠ± denotes the positive and negative frequency parts of the Green function,

G+ =
∑

ωnk>0

ωnk

2

1

ωnk − ω
Fnk(ri ) ⊗ F∗

nk(r j ),

G− =
∑

ωnk>0

ωnk

2

1

ωnk + ω
F∗
nk(ri ) ⊗ Fnk(r j ), (A10)

corresponding to the poles on the positive and negative real frequency axes, respectively. Therefore, Eq. (A9) can be written as

Ai j
ω = 1

i h̄

(−iωḠ+) (ri , r j ;ω − i0+). (A11)

Using
(−iωḠ+(ri , r j , ω)

) |−ω = (−iωḠ−(ri , r j , ω)
)∗ |ω∗ , we introduce

g±
i j = 1

h̄
Re
{
γ̃ ∗
i .G±(ri , r j ;ω0).γ̃ j

}
,

�±
i j = 2

h̄
Im
{
γ̃ ∗
i .G±(ri , r j ;ω0).γ̃ j

}
. (A12)

Therefore, Eq. (A7) can be written as

∂tρs(t) =
∑

i, j

(
�+
i j

2
+ ig+

i j

)[
σ i−ρs(t)σ

j
+ − ρs(t)σ

j
+σ i−

]

+
∑

i, j

(
�+
i j

2
− ig+

i j

)[
σ

j
−ρs(t)σ

i+ − σ i+σ
j

−ρs(t)
]

+
∑

i, j

(
�−
i j

2
+ ig−

i j

)[
σ i−σ

j
+ρs(t) − σ

j
+ρs(t)σ

i−
]

+
∑

i, j

(
�−
i j

2
− ig−

i j

)[
ρs(t)σ

j
−σ i+ − σ i+ρs(t)σ

j
−
]
. (A13)
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By employing the series expansion, it is easy to verify for the nonresonant part (−) of the Green function that �−
i i = 0, �−

i j = −�−
j i

and g−
i j = g−

j i . Using the relations σ̂z = 2σ̂+σ̂− − 1, σ̂−σ̂+ = 1 − σ̂+σ̂− and again transforming Eq. (A13) to the Schrodinger
picture, we obtain

∂tρs(t) = − i

2

∑

i

(
ω0 + g−

i i − g+
i i

) [
σ i
z , ρs(t)

]

−
∑

i, j

�i j

2

(
σ i+σ

j
−ρs(t) + ρs(t)σ

j
+σ i− − σ

j
−ρs(t)σ

i+

−σ i−ρs(t)σ
j

+
)

+
∑

i �= j

igi j
(
σ i+σ

j
−ρs(t)

− σ
j

−ρs(t)σ
i+
)

+ H.c., (A14)

where

�i j = 2

h̄
Im
{
γ̃ ∗
i .G(ri , r j , ω0).γ̃ j

}
,

gi j = 1

h̄
Re
{
γ̃ ∗
i .G(ri , r j , ω0).γ̃ j

}
. (A15)

Equation (A14) determines the Markovian master equation and used to obtain elegant description of physics involved in the dynamics
of interacting atoms. Equation (A14) is consistent with the results of Ref. [20,24–26].

Appendix 2: Quasi-static approximation

To illustrate the concept developed throughout this paper, we employ the quasi static approximation [22,35,36] by assuming the
fields are purely electric Fnk 
 (Ek 0)T 
 (−∇φk 0)T (φk represents the electric potential), satisfying ∇ · (ε(ω, z)∇φk) = 0,
with the general solution of the form

φk = Ak||√
S
eik||.r

{
e−k||z, z > 0,

e+k||z, z < 0,
(B1)

where Ak|| denotes the normalization constant and the wave vector k|| = kx x̂+ky ŷ is parallel to the interface of dipole and plasmonic
slab. In this case, the plasmonic slab is assumed to locate in the region z < 0 (for which the metal–air boundary corresponds to
z = 0). Therefore, the relevant eigenfrequency ωk = ωsp corresponds to the surface plasmon resonance ε(ωsp) = −ε0. To find the
normalization constant Ak|| , we employ

|Ak|| |2
∫

k2||e−2k|||z| ∂(ωε(ω, z))

∂ω
d3r = 1, (B2)

that provides Ak|| = √
1/2k||ε0S, where S determines the surface area of plasmonic slab and by considering the lossless Drude

model,
∂(ωε(ω, z))

∂ω
|ω=ωsp →

{
ε0, z > 0
3ε0, z < 0.

(B3)

This procedure follows to write the green function G± in a way such that

G± = ε(ω) − 1

ε(ω) + 1
× 1

4πε0

−→∇ r2

⎧
⎨

⎩
1√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 + z1)
2

⎫
⎬

⎭
←−∇ r1 , (B4)

with ε(ω) = ε0

(
1 − ω2

sp/ω(ω + i�)
)

for lossy metal surface, where � denotes the losses in the metal half space. By employing

the quasi-static approximation, the collective damping term �12 and the dipole–dipole coupling parameter g12 can be written as

�12 = γ̃ 2ω2
sp�

4π h̄ε0ω′
sp

{
2h2 − d2

(
d2 + 4h2

)5/2

}[
�2 − �1

�1�2

]
, (B5)
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g12 = γ̃ 2ω2
sp

4π h̄ε0ω′
sp

{
2h2 − d2

(
d2 + 4h2

)5/2

}

[
(�1 + �2)ω

′
sp + (�1 − �2)ω0

�1�2

]
, (B6)

with

�1 = 1
(
ω′
sp − ω0

)2 + (�
2

)2 ,

�2 = 1
(
ω′
sp + ω0

)2 + (�
2

)2 . (B7)

here ω′
sp =

√
ω2
sp − (�/2)2, d = x2 − x1 denotes the distance between two dipoles and h = z determines the separation of the

dipole and plasmonic slab. For simplicity, the electric dipole is assumed to be oriented along x-direction γeg = γ̃ x̂ . The spontaneous
decay rate �11 can be obtained by putting d = 0 in Eq. (B5).
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