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Abstract We study the dynamics of test particle and stability of circular geodesics in the gravitational field of a non-commutative
geometry-inspired Schwarzschild black hole spacetime. The coordinate time Lyapunov exponent (λc) is crucial to investigate the
stability of equatorial circular geodesics of massive and massless test particles. The stability or instability of circular orbits is
discussed by analyzing the variation of Lyapunov exponent with radius of these orbits for different values of non-commutative
parameter (α). In the case of null circular orbits, the instability exponent is calculated and presented to discuss the instability of
null circular orbits. Further, by relating parameters corresponding to null circular geodesics (i.e., angular frequency and Lyapunov
exponent), the quasinormal modes for a massless scalar field perturbation in the eikonal approximation are evaluated and also
visualized by relating the real and imaginary parts. The nature of scalar field potential, by varying the non-commutative parameter
(α) and angular momentum of perturbation (l), is also observed and discussed.

1 Introduction

The most celebrated theory of gravity so-called the general relativity theory (GR) has many successful predictions including
the fascinating black holes (BHs), which are obtained as unique solutions of Einstein’s field equations [1]. Among the various
observational phenomenona detected before, the first BH image by Event Horizon Telescope (EHT) also confirms Einstein’s theory
of GR, which actually shows the shadow of the supermassive BH in the center of Messier 87 (M87), an elliptical galaxy about
55 million light years from earth [2]. The study of geodesic motion of test particles in the gravitational field of BH spacetimes is
an exciting issue among astrophysicists in view of observing various physical properties of spacetime. In particular, the curvature
of any BH spacetime is analyzed through geodesics around it to obtain a rich structure with conveying the characteristics of that
particular spacetime geometry [1,3,4].

In the last few decades, several studies have been done concerning the non-commutative geometry in GR as an intrinsic property
of spacetime, which does not depend on curvature of spacetime, and gained interest in the context of approaching gravity at quantum
level [5–16]. Following the non-commutative Heisenberg algebra [17], the non-commutative inspired geometry in GR can be
interpreted as an uncertainty in the spatial coordinates defined by the commutation relation [xμ, xν] = iαμν , where αμν being an
antisymmetric matrix [10,12,18,19]. It is a topic of keen interest due to the non-commutativity effect on spacetime as a consequence
of which point-like matter structures are turned into smeared objects diffused throughout a region [9,11]. More precisely, non-
commutative geometries have been constructed as an approach to quantum gravity by eliminating the singularities that appear in
GR. In view of non-commutativity, the quantum effect appears only in the matter source such that the mass of the particle will not
be localized at the point, while the Einstein tensor remains the same. The position Dirac delta function of point-like mass density
source is eliminated by Gaussian distribution having a minimal width of

√
α representing smeared objects. The conventional mass

density of a static, spherically symmetric, smeared particle-like gravitational source is defined in the form of Gaussian distribution
as [9,16]

ρα(r) = M

(4πα)3/2 e
−r2/4α, (1)
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where α is called the commutative parameter representing the non-commutativity of spacetime and has a dimension of length
squared.

The main objective of our study is to demonstrate how spatial non-commutativity effects the stability of circular orbits and the
characteristics modes or QNMs in the gravitational field of NCSBH arises due to non-commutative structure of spacetime. These
have interesting features due to the non-commutativity of spacetime. Null circular geodesics play a crucial role in describing the
characteristic modes of a BH, popularly known as QNMs, which can be interpreted as non-massive particles trapped in the unstable
circular orbits.

Several kinds of BH solutions inspired by a non-commutative geometry in GR have been studied by Nicolini et al. [6], which
provide fascinating information about their behavior and properties. The motion of massive (i.e., timelike) and massless (i.e., null)
test particles in the background of non-commutative black holes, especially Schwarzschild BH, was investigated by Rahaman et al.
[9]. The Reissner–Nordström BH inspired by non-commutative geometry was analyzed by Alavi [12], and Modesto et al. [20] have
done the same investigations for the charged rotating non-commutative BHs, viz. the Kerr non-commutative BH and Kerr–Newman
non-commutative BH. So far, the solution of the coupled Einstein–Maxwell field equations with non-commutative geometry which
describe charged, self-gravitating objects in diverse context, including extremal and non-extremal BHs, was investigated by Ansoldi
et al. [5]. The geodesic motion of massless test particles, i.e., photons in the background of a non-commutative geometry-inspired
Schwarzschild BH, has been studied by Kuniyal et al. [11].

The QNMs of massless scalar field perturbation in a SBH spacetime inspired by non-commutative geometry have been investigated
by adopting the third-order Wentzel–Kramers–Brillouin (WKB) approximation approach that indicates the significant effect of the
non-commutative parameter in QNM frequencies [21]. Also, the spectrum of QNM frequencies of five-dimensional non-commutative
BH spacetime for the perturbations of a massive scalar field using the sixth-order WKB approximation has been recently obtained
by Grigoris et al. [22]. However, the massless scalar QNMs of the non-commutative D-dimensional Schwarzschild–Tangherlini BH
spacetime have also recently been investigated employing the WKB approximation method, the asymptotic iterative method (AIM)
and the inverted potential method (IPM) in a greater detail by Zening et al. [23].

Ćirić et al. [24] have performed a detailed study of QNM spectrum of the Reissner–Nordström BH in the presence of a deformed
spacetime structure, which is obtained from a non-commutative deformation of a scalar field coupled with a commutative Reissner–
Nordström spacetime. Thereafter, they have used a numerical method known as continued fraction method to obtain the QNM
spectrum for a non-extremal Reissner–Nordström BH spacetime (see [25] for details) and compared the obtained results with their
previous results as in [24]. However, Gupta et al. [26] have obtained an exact analytic expression for the QNMs of a non-commutative
massless scalar field in the gravitational field of 2+1-dimensional BTZ BH spacetime up to the first order in the deformation parameter
and quantization of BH entropy [27,28]. Further, the fermionic QNMs of the BTZ BH spacetime in the view of spacetime non-
commutativity, which leads a duality between a spinless and spinning BTZ BH case, are also analyzed in detail [29]. More recently,
the non-commutativity and quantum corrections to the Hawking temperature and entropy of a BTZ BH spacetime are investigated
in [30] by applying the Hamilton–Jacobi method using the WKB approximation, which indicates that the logarithmic correction to
the entropy of the non-commutative BTZ BH is direct evidence of non-commutativity of spacetime.

Among the various methods and techniques for analyzing the stability of geodesics, the measurement of Lyapunov exponent has
been extensively employed. The average rate of separation between two nearby trajectories in phase space is defined as Lyapunov
exponent. The Lyapunov exponent should have a positive and negative value corresponding to divergence and convergence of two
neighboring geodesics, respectively [31–35].

A simple set of unstable circular orbits exist in the extreme case of BH in GR and other alternative theories of gravity including
the usual stable circular orbits. This set of unstable circular orbits in any gravitational field of BH is a direct consequence of the
nonlinearity of GR, which is quantified by a positive value of Lyapunov exponent. The nonlinearity in GR leads to nonintegrability of
the system, and chaos may develop in the unstable circular orbits [36–39]. However, the QNM is a complex quantity corresponding to
unstable null circular geodesics, which can be evaluated by its correlation with Lyapunov exponent and angular frequency [40–42].
According to Cardoso et al., the real part of the QNM is interpreted as the angular frequency, while the imaginary part is interpreted
as the instability timescale of the orbit (i.e., Lyapunov exponent) of the unstable null circular geodesics [31].

This paper is organized as follows: We first discuss the Lyapunov exponent and critical exponent in Sect. 1.1. The NCSBH
spacetime geometry is then briefly discussed in Sect. 2, followed by the stability of geodesics of test particles around considered
spacetime in Sect. 3. Further, the massless scalar field perturbation around NCSBH spacetime is discussed along with the computation
of QNM frequencies in Sect. 4. Finally, the results obtained are summarized and concluded in Sect. 5. Throughout the course of this
work, we have used rescaled units so that the gravitational constant and the speed of light are normalized (i.e., G = c = 1). The BH
mass is, however, considered as M = 1, and the non-commutative parameter α is chosen to be in range 0.1 to 0.3 while depicting
the plots.

1.1 The Lyapunov exponent and critical exponent

The concept of Lyapunov exponent has regularly been implemented to study the behavior of dynamical systems especially to
determine the unpredictable behavior of nonlinear dynamical systems. Basically, the Lyapunov exponent or Lyapunov characteristic
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exponent characterizes quantitatively the rate of separation of infinitesimally nearby trajectories or orbits say x(t) and x0(t) in phase
space of a dynamical system (see refs. [43,44] for details).

One can thus define an observed trajectory or orbit x(t) representing the solution of a continuous-time smooth dynamical system
in any arbitrary dimension with the differential equation [45],

dx

dt
= F(x). (2)

So far, for a small perturbation ξ(t) on x(t) defined by

x(t) = x0 + ξ(t), (3)

where x0 is a fixed point at t = 0.
According to Sano et al. [45], one can define the principal Lyapunov exponent as the mean exponential rate of expansion or
contraction of the trajectory x0 in the direction of ξ(0) as

λ = lim
t→∞

1

t
ln

‖ ξ(t) ‖
‖ ξ(0) ‖ , (4)

here ‖ .. ‖ represents a vector norm.
Starting from the necessary Lagrangian for the motion of a test particle around the BH spacetime, Cardoso et al. [31] derived a
relationship between the second-order derivative of the radial effective potential (ṙ2) and the Lyapunov exponent (λ). For the motion
of a non-spinning test particle in the gravitational field of any static, spherically symmetric spacetime, the proper-time Lyapunov
exponent is defined as (see Appendix-A in [46] for details)

λp = ±
√(

ṙ2
)′′

2
, (5)

and the coordinate-time Lyapunov exponent is derived as:

λc = ±
√(

ṙ2
)′′

2ṫ2 . (6)

Here and throughout, the works (′) and (.) represent differentiation w.r.t. radial coordinate r and affine parameter τ , respectively.
The unstable circular orbits can be found for the real values of Lyapunov exponents, while the stable circular orbits may be found

for imaginary values and the marginally stable orbits are found for zero values of the Lyapunov exponent [31]. Moreover, the critical
exponent (γ ) is used to obtain the quantitative characterization of instability of circular orbits defined as the ratio of orbital timescale
TΩ = 2π

Ω
to the Lyapunov timescale Tλ = 1

λ
in the following form [31,47],

γ = Tλ

TΩ

= Ω

2πλ
. (7)

where Ω represents angular frequency or orbital angular velocity.

2 The non-commutative Schwarzschild black hole (NCSBH)

The non-commutative geometry is an crucial approach to unify other fundamental forces with gravity revealing the quantum nature
of gravity at very high energy regime. The non-commutative inspired BH spacetimes based on the mathematical framework of
quantum gravity are one of the leading candidates of this theory [5,6]. Considering a matter source having mass density described by
Eq. (1) and solving the Einstein field equation, one can obtain SBH inspired by non-commutative geometry (i.e., NCSBH spacetime)
defined by a line element in standard spherical coordinates (t, r, θ, φ) given as [5,9–11,16]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 (

dθ2 + sin2 θdφ2) , (8)

where the metric function f (r) reads as [9,12],

f (r) = 1 − 2m(r)

r
. (9)

The mass function m(r), which is proportional to the mass M of BH, is related to the non-commutative parameter α, by a relation

m(r) = 2M√
π

γ

(
3

2
,
r2

4α

)
. (10)
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Fig. 1 The variation of “ f (r)′′ as
a function of “r ′′ for different
values of non-commutative
parameter α with M = 1 and for
SBH in limit α → 0

Here, the lower incomplete gamma function is given by: [48]

γ

(
3

2
,
r2

4α

)
=

∫ r2
4α

0

√
te−t dt. (11)

The lower and upper incomplete gamma functions satisfy the following relation:

γ

(
3

2
,
r2

4α

)
+ Γ

(
3

2
,
r2

4α

)
=

√
π

2
. (12)

Hence, the metric function Eq. (9) can be rewritten in terms of the upper incomplete gamma function as

f (r) = 1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)
, (13)

i.e., the third term represents the perturbation due to non-commutativity of spacetime.
However, the SBH spacetime can be recovered from NCSBH metric in the prescribed limit α → 0 or r/

√
α → ∞ as the gamma

function Γ ( 3
2 , r2

4α
) vanishes in this limit.

The position of the horizon radius (rh) at which the metric function f (r) vanishes is presented in Fig. 1. One can conclude that the
non-commutative inspired SBH spacetime introduces two horizons for α = 0.1, one horizon for α = 0.28, no horizon for α = 0.3.
Contrary to NCSBH, the SBH has only one horizon at r = 2M .

3 Geodesic stability around NCSBH spacetime

In this section, we first investigate the affinely parametrized geodesics (timelike and null) by the Lagrangian approach, i.e., the
Euler–Lagrange equations [1,4]. For this purpose, we begin with the Lagrangian defined as below:

L = 1

2
gμν ẋμ ẋν, (14)

where gμν represents the metric tensor and ẋμ refers the derivative of spacetime coordinates w.r.t. affine parameter τ . Therefore, the
Lagrangian for test particles motion in NCSBH background considering the motion in equatorial plane (i.e., θ = π

2 ) can be written
as:

2L = −
[

1 − 2M

r
+ 4M√

πr
Γ (

3

2
,
r2

4α
)

]
ṫ2 + ṙ2[

1 − 2M
r + 4M√

πr
Γ ( 3

2 , r2

4α
)
] + r2φ̇2. (15)

Corresponding to the cyclic coordinates t and φ in the above Lagrangian, the constants of motion E and angular momentum L
are identified. Using the Euler–Lagrange equations of motion, the canonical momenta with respect to these cyclic coordinates are
deduced as:

pt = −
[

1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)]
ṫ = −E, (16)

pφ = r2φ̇ = L . (17)

From Eqs. (16) and (17), the first integrals of the geodesic equations yield:

ṫ = E[
1 − 2M

r + 4M√
πr

Γ
(

3
2 , r2

4α

)] , φ̇ = L

r2 . (18)
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Fig. 2 The behavior of “V ′′
eff with

respect to “r ′′ for massive (see left
panel) and massless (see right
panel) particles with different
values of parameters α and fixed
mass M = 1. The same is also
presented for SBH at α → 0

(a) (b)

The constraint on the geodesics reads as:

gμν ẋ
μ ẋν = ε, (19)

i.e.,

−
[

1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)]
ṫ2 + ṙ2[

1 − 2M
r + 4M√

πr
Γ

(
3
2 , r2

4α

)] + r2φ̇2 = ε, (20)

where ε = 0 and -1 corresponds to null (massless particles) and timelike (massive particles) geodesics, respectively.
The radial geodesic equation of test particles for NCSBH can be obtained by substituting ṫ and φ̇ from Eq. (18) into constraint Eq.
(20) as follows:

ṙ2 = E2 −
[

1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)] (
L2

r2 − ε

)
. (21)

Now, by comparing Eq. (21) with ṙ2 = E2 − Veff , we found

Veff =
[

1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)] (
L2

r2 − ε

)
, (22)

which is called the effective potential for the NCSBH spacetime.

3.1 The timelike geodesics and Lyapunov exponent

From Eq. (21), when ε = −1 taken into account, the radial equation for massive test particles becomes

ṙ2 = E2 −
[

1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)] (
1 + L2

r2

)
. (23)

Thus, the effective potential of NCSBH for massive (timelike) test particles reads as

V time
eff =

[
1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)](
1 + L2

r2

)
. (24)

As shown in Fig. 2, the minima of the effective potential shifted towards higher values of radius as non-commutative parameter α

increases. It is also observed that potentials coincide with potential of SBH for radius greater than the horizon of SBH (i.e., ≥ 2M).
Thus, it can be concluded that the effect of non-commutativity is insignificant for radius r ≥ 2M .

Further, we consider circular geodesic motion of particles in specified NCSBH background by restricting radius of orbits to
r = r0 = constant.

The condition for occurrence of circular orbits (i.e., ṙ2 = (ṙ2)′ = 0) and the radial equation expressed in Eq. (23) result in the
energy and angular momentum describing a circular orbit of the massive particle, respectively, as given below,

E2
0 = f (r0) (1 − Ψ ) , (25)

L2
0 = −Ψ r2

0 , (26)
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Fig. 3 The Lyapunov exponent
“λc” as a function of radius of
orbit “r0” for different values of
parameter α (labeled in figure) for
mass M = 1

where the term Ψ associated with the above equations is represented as:

Ψ =
M

(
r2

0

√
r2

0
α

− 2e
r2
0

4α
√

πα + 4e
r2
0

4α αΓ

(
3
2 ,

r2
0

4α

))

Mr2
0

√
r2

0
α

− 6e
r2
0

4α M
√

πα + 2e
r2
0

4α
√

πr0α + 12e
r2
0

4α MαΓ

(
3
2 ,

r2
0

4α

) . (27)

The circular orbits are possible for real and finite values of the energy and angular momentum, for which the quantity Ψ must be
negative, i.e., Ψ < 0.

However, the angular frequency (Ω0) for timelike circular orbits is deduced as:

Ω0 = φ̇

ṫ
= f (r0)

r2
0

L0

E0
. (28)

In order to discuss the stability of circular orbits of massive particles around NCSBH, by calculating the second-order derivative of
Eq. (23) with respect to radius (r ), the coordinate-time Lyapunov exponent represented by Eq. (6) is evaluated as:

λc =

√√√√√√√ (−1 + Ψ ) f (r0)

⎡
⎣ e

r2
0

4α
Mr0

√
r2
0
α

2
√

πα2 −
8M

( √
π

2 −Γ

(
3
2 ,

r2
0

4α

))
√

πr3
0

⎤
⎦ − 4Ψ

r0
f (r0)

⎡
⎣− e

r2
0

4α M

√
r2
0
α√

πα
+

4M

( √
π

2 −Γ

(
3
2 ,

r2
0

4α

))
√

πr2
0

⎤
⎦ + 6Ψ f (r0)2

r2
0

2(1 − Ψ )
.

(29)

One can illustrate the stability or instability of the timelike circular orbits for NCSBH by Lyapunov exponent computed above. The
orbits are stable for complex nature (i.e., imaginary) of λc, and unstable orbits exist for real value of λc. The nature of Lyapunov
exponent λc with radius of circular orbits by varying non-commutative parameter α is depicted in Fig. 3, which indicates the
instability defined by λc decreases with increase in radius of circular orbits and coincide at higher values of radius.

3.2 The null geodesics and Lyapunov exponent

Substitute ε = 0 into Eq. (21) in order to investigate null circular geodesics for NCSBH. The radial equation for photons (massless
particles) reads as:

ṙ2 = E2 −
[

1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)](
L2

r2

)
. (30)

The effective potential for photons is then obtained as:

V null
eff =

[
1 − 2M

r
+ 4M√

πr
Γ

(
3

2
,
r2

4α

)] (
L2

r2

)
, (31)

and the same is depicted in Fig. 2 with same observations as that for timelike case.
The null circular orbits are possible when ṙ2 = 0 at constant radius r = rc, which yield the angular momentum to energy ratio (i.e.,
impact parameter) as follows

Dc = Lc

Ec
=

√
r2
c

f (rc)
, (32)

and (ṙ2)′ = 0 leads to an equation for the radius of unstable circular orbits as

r2
c e

− r2
c

4α − 12α3/2

rc

[√
π

2
− Γ

(
3

2
,
r2
c

4α

)]
+ 2

α3/2√π

M
= 0. (33)
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Fig. 4 a The variation of the
instability exponent “( λNull

Ωc
)”

with radius “rc” for various values
of parameter α (labeled in figure)
and fixed mass M = 1. b
“( λNull

Ωc
)” as a function of α for a

circular orbit of radius rc = 2.5
and M = 1

(a) (b)

The solution of the above equation provides the radius of the unstable null circular orbit or photon sphere given as:

rc = 3M

(
1 − M√

πα
e− M2

α

)
. (34)

Thus, the radius of unstable circular orbit of photons for NCSBH is smaller than that for SBH (i.e., < 3M) due to the presence
of non-commutative geometry in spacetime. Also, both the impact parameter (Dc) and rc of null circular orbits for NCSBH are
dependent on mass and non-commutative parameter.
The angular frequency at r = rc comes out as

Ωc = φ̇

ṫ
=

√
f (rc)

r2
c

= 1

Dc
. (35)

So, it is interesting to say that the angular frequency of null circular geodesics is equivalent to inverse the impact parameter.
Further, we derived the coordinate-time Lyapunov exponent for null circular orbits by using Eqs. (6) and (30) as given below:

λNull =

√√√√√√ f (rc)

2r2
c

⎡
⎢⎣ 24M√

πrc

(√
π

2
− Γ

(
3

2
,
r2
c

4α

))
− e− r2

c
4α Mr3

c

√
r2
c
α

2
√

πα2
− 4

e− r2
c

4α Mrc

√
r2
c
α√

πα
− 6 f (rc)

⎤
⎥⎦. (36)

The null circular orbits are unstable at the radius rc for real values of Lyapunov exponent λNull . The instability of unstable null
circular orbits can be determined by a quantity known as instability exponent, which is defined as the ratio of Lyapunov exponent
to angular frequency (λNull/Ωc) and comes out as follows

λNull

Ωc
=

√√√√√√1

2

⎡
⎢⎣ 24M√

πrc

(√
π

2
− Γ

(
3

2
,
r2
c

4α

))
− e− r2

c
4α Mr3

c

√
r2
c
α

2
√

πα2
− 4

e− r2
c

4α Mrc

√
r2
c
α√

πα
− 6 f (rc)

⎤
⎥⎦. (37)

Figure 4a depicts the variation of instability exponent for null circular orbits with respect to radius rc. For various values of
non-commutative parameter α, it can be observed that instability of increases sharply to the highest value and then decreases as
radius of circular orbit increases. Also, the height of instability decreases as value of the parameter α increases and shows the same
behavior for values of radius (rc > 3M). Therefore, one can state that the null circular orbits in NCSBH spacetime are found unstable
in nature. Furthermore, in Fig. 5b, we visualize the variation of instability of circular orbit of radius rc = 2.5 with respect to α. It is
observed that the instability of circular orbit first remains constant for smaller values of α and then decreases gradually as values of
α increase.
Further, we deduced the critical exponent that measures the instability of null circular orbits quantitatively as

γNull = Ωc

2πλNull
= 1

2π

√√√√√ 1
2

⎡
⎣ 24M√

πrc

(√
π

2 − Γ
(

3
2 ,

r2
c

4α

))
− e− r2

c
4α Mr3

c

√
r2
c
α

2
√

πα2 − 4
e− r2

c
4α Mrc

√
r2
c
α√

πα
− 6 f (rc)

⎤
⎦

. (38)

In the case of null geodesics, the Lyapunov exponent λEle
Null has a real value at r = rc. Therefore, the Lyapunov timescale is less

than orbital timescale (Tλ < TΩ ) of orbits, which implies the observational appearance of instability in the null circular orbits for
NCSBH.
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Fig. 5 The scalar field potential
“V ′′

s versus “r ′′
c by varying

non-commutative parameter α for
fixed l = 3 and M = 1 (see left
panel) and by varying perturbation
parameter l for fixed values of
α = 0.1 and M = 1 (see right
panel)

(a) (b)

4 Massless scalar field perturbation around NCSBH spacetime

In this section, we analyze the behavior of NCSBH geometry in view of perturbations by a massless scalar field following S.
Fernando [49–51]. The massless scalar field perturbation in eikonal approximation has been widely used to evaluate QNMs of
various spacetime background due to its considerable accuracy.

The Klein–Gordon (K-G) equation describing the motion of a test particle in scalar field around any BH has the form:

(Δ2 − μ2)χ = 0. (39)

As we consider massless scalar field perturbations so that μ = 0, the K-G equation reduces to

Δ2χ = 0. (40)

The above K-G Eq. (40) leads to a scalar field with decomposition

χ = e−iωt Yl,m(θ, φ)
R(r)

r
, (41)

where Yl,m(θ, φ) represents the spherical harmonics, l is angular quantum number and m the magnetic quantum number, whereas
the frequency of the oscillations of the scalar field is represented by ω.

The radial component of Eq. (39) can be simplified to a Schrödinger-type equation as below:

d2R(r∗)
dr2∗

+ (
ω2 − Vs(r)

)
R(r∗) = 0, (42)

where r∗ is “tortoise” coordinate ranging from −∞ to +∞ and is defined as dr∗ = dr
f (r) .

The function Vs(r) is known as the scalar field potential for massless scalar field perturbation having the angular momentum of
the perturbation l. In view of null circular orbit at r = rc for eikonal limit (l → ∞), it is obtained as

Vs(rc) ≈ l

(
Ec

Lc

)2

= lΩ2
c . (43)

Hence, the scalar field potential in case of NCSBH geometry is given by:

Vs(rc) = l
f (rc)

r2
c

= l

r2
c

(
1 − 2M

rc
+ 4M√

πrc
Γ

(
3

2
,
r2
c

4α

))
. (44)

Thus, one can notice that the scalar field potential for this geometry depends on the mass of BH (M), non-commutative parameter
(α) and angular momentum of the perturbation (l). Figure 5a shows the effect of parameter (α) on the nature of the scalar potential
for fixed values of perturbation parameter (l = 3) and BH mass M = 1. It is observed that the potential decreases to minimum value
and then increases to positive region, whereas the depth of the potential increases as the value of α decreases. However, the depth of
scalar potential increases with an increase in angular momentum of perturbation l as shown in Fig. 5b for fixed values of parameters
M = 1 and α = 0.1. Consequently, the negative scalar field potential indicates the presence of unstable null circular orbits around
NCSBH spacetime.

4.1 QNMs of NCSBH Spacetime

According to Cardoso et al. [31], the QNMs or “free” modes of vibration of any static, spherically symmetric, asymptotically
flat BH spacetime can be interpreted by unstable null circular orbits corresponding to that spacetime background. In view of the
eikonal approximation, i.e., for large limit (l >> 1), the QNM frequency under massless scalar field perturbation is represented by
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(a) (b)

Fig. 6 The relation between real and imaginary parts of QNMs “ω′′
QNM by varying angular momentum of perturbation l (see left panel) and by varying

overtone number n (see right panel) for fixed values of remaining parameters

Table 1 QNMs of scalar field perturbation in the NCSBH spacetime by varying l for fixed M = 1, rc = 2.5 and n = 4

ωQNM (l = 1) ωQNM (l = 2) ωQNM (l = 3) ωQNM (l = 4)

α = 0.1 0.178886–1.0799 i 0.357771–1.0799 i 0.536657–1.0799 i 0.715543–1.0799 i

α = 0.2 0.179369–1.03271 i 0.358738–1.03271 i 0.538107–1.03271 i 0.717476–1.03271 i

α = 0.3 0.184291–0.778012 i 0.368582–0.778012 i 0.552873–0.778012i 0.737164–0.778012 i

a complex quantity, which can be determined by the parameters of null circular orbits. The product of angular frequency (Ωc) with
“l” is defined as the real part, whereas the product of Lyapunov exponent (λNull) with (n+1/2) is called imaginary part of QNMs,
i.e.,

ωQNM = lΩc − i

(
n + 1

2

)
λNull, (45)

where n is the overtone number.
The above expression with Eqs. (35) and (36) will yield the QNMs valid in eikonal regime of NCSBH as follows:

ωQNM = l

√
f (rc)

r2
c

− i

(
n + 1

2

) √√√√√√ f (rc)

2r2
c

⎡
⎢⎣ 24M√

πrc

(√
π

2
− Γ

(
3

2
,
r2
c

4α

))
− e− r2

c
4α Mr3

c

√
r2
c
α

2
√

πα2
− 4

e− r2
c

4α Mrc

√
r2
c
α√

πα
− 6 f (rc)

⎤
⎥⎦.

(46)

Significantly, one can interpret the Lyapunov exponent appearing in QNMs as the decay rate of unstable null circular orbits. It is
obvious that the real and imaginary parts of QNMs of NCSBH depend on the non-commutative parameter (α); therefore, we intend
to observe the effect of non-commutativity on QNM frequencies.

The complex list plot of QNMs, i.e., the relation between the real and imaginary parts of the QNMs, is visualized in Fig. 6a by
varying angular momentum of perturbation l by fixing remaining parameters. The same is presented in Fig. 6b by varying overtone
number n for fixed values of other parameters.

Further, we have evaluated the QNMs for the scalar field perturbation in the background of the NCSBH for different values of
parameter α by varying perturbation parameter l (listed in Table 1) and overtone number n (listed in Table 2) for fixed values of
other parameters. Therefore, from Table 1, one can observe that for fixed l, the real part of QNM increases and absolute value of the
imaginary part of decreases as the value of non-commutative parameter α increases. Hence, the oscillations damped more rapidly
with increasing non-commutativity of spacetime. Similarly, from Table 2, it is observed that for fixed n, the real part of QNMs
increases and absolute value of imaginary part decreases with increasing value of α which represents rapid damping in oscillations.
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Table 2 QNMs of scalar field perturbation in the NCSBH spacetime by varying n for fixed M = 1, rc = 2.5 and l = 3

ωQNM (n = 1) ωQNM (n = 2) ωQNM (n = 3) ωQNM (n = 4)

α = 0.1 0.536657–0.359968 i 0.536657–0.599947 i 0.536657–0.839925 i 0.536657–1.0799 i

α = 0.2 0.538107–0.344238 i 0.538107–0.57373 i 0.538107–0.803222 i 0.538107–1.03271 i

α = 0.3 0.552873–0.259337 i 0.552873–0.432229 i 0.552873–0.60512 i 0.552873–0.778012 i

5 Summary and conclusions

The stability analysis of circular orbits of massive particles and photons around Schwarzschild BH with non-commutative geometry
(NCSBH) has been investigated in detail. Also, the QNMs of NCSBH have been derived and evaluated by employing massless scalar
field perturbation in the eikonal approximation. Some of the interesting results drawn from our study are summarized as follows:

• The standard SBH spacetime in the context of non-commutative inspired geometry turns out to have either two horizons (for
α = 0.1), one horizon (for α = 0.28) and no horizon for higher value (for α = 0.3). Contrary to NCSBH spacetime geometry,
there is only one horizon present in the case of SBH.

• The respective plots of effective potential for NCSBH spacetime have concluded that the effective potential of such non-
commutative geometry differs from the Schwarzschild case within the horizon radius (r = 2M) of SBH as a consequence of
the non-commutativity in spacetime. Beyond this limit of radius, all potentials coincide with each other conveying insignificant
effect of non-commutativity.

• More specifically, we have derived the coordinate-time Lyapunov exponent (λc) in order to study the stability of timelike circular
orbits on the equatorial plane of NCSBH spacetime. For different values of non-commutative parameter α, the λc decreases as
radius of circular orbits increases, and it shows the same behavior for all values of α beyond r0 = 3M .

• In the case of null circular orbits, the radius of unstable circular orbits (rc) is found to be less than that the SBH case and depends
upon the non-commutative parameter (α). So far, by deriving the instability exponent λNull/Ωc for unstable circular orbits, it is
observed that the instability increases to a highest value and then decreases rapidly for circular orbits of higher radius. However,
as the non-commutative parameter (α) increases, the height of instability decreases accordingly and shows the same behavior
for radius rc > 3M . The instability exponent versus α for circular orbit of rc = 2.5 shows that the instability of null circular
orbits decreases gradually with parameter α.

• Further, we have employed the massless scalar field perturbation around NCSBH spacetime having unstable null circular orbits
to compute the QNMs. In the eikonal limit, i.e., for large l, the QNMs consist of a real part and an imaginary part depending upon
orbital angular velocity Ωc and the instability timescale of the orbit (i.e., Lyapunov exponent) for unstable null circular orbits,
respectively. In case of NCSBH, both parts of QNMs (ωQNM ) are non-commutative parameter (α) dependent. Furthermore,
we have also calculated QNMs and discussed the relationship between real and imaginary parts by varying parameters n and l
with increasing non-commutative parameter α. It is concluded that the non-commutative parameter α has a significant effect on
damping in oscillations. The negative behavior of scalar field potential Vs by varying parameters α and l indicates the instability
of the null circular orbits of photons in NCSBH spacetime.
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25. M.D. Ćirić, N. Konjik, A. Samsarov, Noncommutative scalar field in the non-extremal reissner-nordstr\” om background: Qnm spectrum. arXiv preprint

arXiv:1904.04053, (2019)
26. K.S. Gupta, E. Harikumar, T. Jurić, S. Meljanac, A. Samsarov, Noncommutative scalar quasinormal modes and quantization of entropy of a btz black

hole. J. High Energy Phys. 2015(9), 1–17 (2015)
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