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Abstract Obviously, from the geometrical point of view, it is impossible to distinguish the electrically and magnetically charged
Reissner–Nordström black holes. One way of describing the differences between these solutions is to study the dynamical motion of
charged test particles in the vicinity of the charged black hole and explore the effects of the charge coupling parameters (σe, σm) on the
instability of the circular orbits. On the other hand, it is also possible to investigate the fundamental frequencies, such as Keplerian,
Larmor, and epicyclic frequencies of charged particles orbiting around a charged black hole. Lastly, we investigate the synchrotron
radiation by charged particles accelerated by charged black hole and estimate the intensity of relativistic radiating charged particles.
Finally, we comment on the possible utilization of our findings for the relativistic jets and magneto-hydrodynamical outflows.

1 Introduction

Recent observation of evidence of astrophysical black holes, such as images of supermassive black hole [1–6], X-ray flare due to
the orbital motion of matter near a supermassive black hole [7–9] and other type of stellar X-ray sources, provide new motivations
for studying the dynamical motion of test particles and massless photons in the framework of general relativity and theories of
gravity. The neutral particles motion is governed by geodesic equations and directly examines the geodesic structure of spacetime.
However, charged test particles can experience not only gravitational, but also an electromagnetic field, and, accordingly can provide
information about the electromagnetic properties of black holes being responsible for their rich observational phenomenology in
high energy electromagnetic radiation.

It is also widely believed that high-energy cosmic rays are produced due to relativistic charged particle in the presence of the
external electromagnetic field in the vicinity of the black hole [10–15]. The high-energy acceleration of ionized particles by electric
Penrose process has been discussed in [16]. The producing high energy caused by the collisions of two particles in the vicinity of
the regular black holes has been studied in Refs. [17–20]. The quasi-periodic oscillations (QPOs) occurred in the inner parts of the
accretion disks around the black holes have been extensively explored in Refs. [21–25]. The detailed description of the oscillation
models in the accretion disk is presented in the review paper [26].

In Refs. [27,28], the significance of the electric and magnetic charges of the astrophysical black hole has been discussed. The
detailed analyses of neutral particles motion [29], dynamics of charged particles [30–34] in Reissner–Nordström spacetime has been
studied. In the Ref. [35], the dynamics of electrically and magnetically charged test particles in the Reissner–Nordström spacetime
has been investigated. The capture cross-section of massless and massive particles by the charged black hole has been investigated
in [36]. Charged particle motion around string charged black hole has been discussed in [37]. The innermost stable circular orbits
of charged spinning test particles have been analyzed in [38]. The analytical and numerical analysis of the quasi-normal modes and
relaxation rate of wave in the spacetime of the charged black hole has been discussed in [39–44]. In Ref. [45], the effect of charged
particles acceleration by the black holes in Reissner–Nordström spacetime has been studied. The acceleration of charged particles
from the polar cap of the magnetized neutron star has been studied in [46–48]. The dynamics and stable orbital motion circular of
the test particle around tidal charged black hole has been studied in [49,50].
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It is well-known that spherically symmetric, charged gravitational body with the mass M and charge Q can be described by the
Reissner–Nordström spacetime [51]:

− gtt = g−1
rr = 1 − 2GM

c2r
+ GQ2

c4r2 , gθθ = r2 , gθθ = r2 sin2 θ . (1)

where G = 6.67430(15) × 10−8cm3g−1s−1 is the Newtonian gravitational constant, and c = 2.99792458 × 1010cm s−1 is the
speed of light (see, for example [52]). However, throughout the paper, we use a spacelike signature (−,+,+,+) and a geometrized
units with G = c = 1, while in the estimation of observational quantities we restore the gravitational constant and speed of light. It
is worth noting that Q can be either the electric charge (Q = Qe) or magnetic charge (Q = Qm) of the black hole, and associated
electromagnetic vector potential can be expressed as

Aα =
(

−Qe

r
, 0, 0, 0

)
, Aα = (0, 0, 0,−Qm cos θ) , (2)

with the following components of the electromagnetic fields Er̂ = Qe/r2 and Br̂ = Qm/r2, respectively.
Note that both solutions for vector potential in (2) together with the spacetime metric (1) satisfy the Einstein-Maxwell field

equations. In the literature, it is claimed by several authors that the black hole can be dyonically charged, which means that it
possesses both electric and magnetic charges, simultaneously with a total charge Q = √

Q2
e + Q2

m . In this case, the components of
the associated vector potential will be given by the superposition of solutions in (2) (See, for example: [35]). However, according
to Refs. [53,54], the electric and magnetic charges of the black hole can be imposed simultaneously.

From the astrophysical point of view, it is interesting to estimate the charge of the black hole. The maximal charge of the
Reissner–Nordström black hole can be estimated from the fact of existence of the black hole horizon, as Qmax = √

GM , more
precisely, one can get

Qmax � 5.13843 × 1029
(

M

M�

)
statC , (3)

which is huge charge in nature. However, the maximal specific charge for Reissner–Nordström black hole can be estimated as
Qmax/M � 2.58342 × 10−4statC/g. On the other hand, it is well-known that the specific charge of the electron is e/me �
5.27281 × 1017statC/g (see, for example [52]), and it can be easily found that

e

me
>>

Qmax

M
, (4)

where me, e are the mass and charge of electron, respectively.
Here we plan to study charged test particle motion around spherically symmetric, electrically (ECBH) and magnetically (MCBH)

charged black holes. In order to compare the effect of the gravitational and electromagnetic fields one can consider the ratio of the
Coulomb potential and the rest energy of particle as −qQ/(rmc2), which can be easily estimated as

qQ

mc2r
≤ qQmax

mc2r
� 2 × 1021

(q
e

) (me

m

) (
1

r̄

)
, (5)

where r̄ = r/(GM/c2) is the normalized radial coordinate. One can see here that electromagnetic interaction dominates for charged
particle which means that the small value of the black hole charge is enough to accelerate charged particles.

In the present paper, we investigate charged particle dynamics in the vicinity of the charged black hole. We explicitly show
the difference between ECBH and MCBH by studying the circular motion of a charged particle around a charged black hole. (1)
studying the ISCO position of charged particle around charged black hole which is widely believed to be a candidate for an inner
edge of the accretion disk surrounding an astrophysical black hole. (2) the fundamental frequencies, namely, Keplerian, Larmor
and epicyclic frequencies, which are good candidate to explore quasi-periodic oscillation QPO in the accretion disk around X-ray
sources. (3) the synchrotron radiation from charged particle orbiting around the charged black hole.

The paper has been organized as follows: In Sect. 2, we provide basic necessary equations related to charged particle motion in
the spacetime of the charged black hole. In Sect. 3, we investigate the general description to derive the fundamental frequencies
for charged particles orbiting around static black hole described by an arbitrary spacetime with given stationary, axially-symmetric
metric coefficients, and electromagnetic fields. Later on, we apply results obtained for Reissner–Nordsröm spacetime in order to
derive the difference between properties of ECBH and MCBH. In next Sect. 4, we overview basic equations in curved spacetime to
determine the intensity of relativistic charged particle accelerated by the black hole, as well as ECBH and MCBH. Then we compare
the results obtained for these two different black holes. Finally, in Sect. 5, we summarize the main results and give a future outlook
related to this work.
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2 Basic equations

In this section, we investigate charged particle dynamics in the vicinity of the ECBH and MCBH separately. We study the dynamical
motion of charged particle around a charged black hole. The Lagrangian for a charged particle with mass of m and charge q can be
expressed as

L = 1

2
mgαβU

αUβ + qUαAα , (6)

and the dynamical motion of charged particle is governed by the following equation

dUα

dλ
+ Γ α

μνU
μU ν = q

m
Fα

βU
β , (7)

where Uα = dxα/dλ is the four-velocity of particle normalized as gαβUαUβ = −1, λ is an affine parameter, Fαβ = Aβ,α − Aα,β is
the electromagnetic field tensor and Γ α

μν are the Christoffel symbols. Notice that Eq. (7) is valid for charged particle motion around
both ECBH and MCBH, respectively. However, difference arises due to the canonical four-momentum of charged particle defined
as Pα = mUα + q Aα . Taking into account the definitions of the four-potential in (2), the conserved quantities, namely, specific
energy E , and specific angular momentum L of charged particle, measured at the infinity, around ECBH can be found as

gttU
t + q

m
At = −E , gφφU

φ = L , (8)

while around MCBH, they have the form

gttU
t = −E , gφφU

φ + q

m
Aφ = L . (9)

As we can see from Eqs. (8) and (9) that the specific energy of charged particle in the vicinity of ECBH is shifted by −(q/m)At ,
and its angular momentum does not change, while in the vicinity of MCBH the specific energy does not change, and the angular
momentum is shifted by (q/m)Aφ , respectively.

Hereafter, using normalization of the four-velocity, taking into account the expressions (8) and (9), one can obtain

grr (U
r )2 + gθθ (U

θ )2 + V (r, θ) = 0 , (10)

where the function V (r, θ) is defined as

V (r, θ) = 1 + 1

gtt
E2 + 1

gφφ

(
L − q

m
Aφ

)2
. (11)

On the other hand, using the normalization of four-velocity and hereafter introducing the spatial components of three-velocity
of test particle measured by local observer

vr̂ = dr

dt

√
−grr

gtt
, vr̂ = dθ

dt

√
−gθθ

gtt
, vr̂ = dφ

dt

√
−gφφ

gtt
, (12)

with v2 = v2
r̂ +v2

θ̂
+v2

φ̂
, one can obtain the classical expression for the energy of charged test particle, in the presence of the external

electromagnetic fields, in curved spacetime as

E =
√ −gtt

1 − v2 − q

m
At . (13)

2.1 Innermost stable circular orbit (ISCO)

It is important to compute the radius of the stable circular orbit for charged particles, so-called innermost stable circular orbit (ISCO),
orbiting around ECBH and MCBH. In order to find ISCO radius for charged test particle, one can explore the following conditions:

V (r, θ) = 0, ∂r V (r, θ) = ∂θV (r, θ) = 0, ∂2
r V (r, θ) ≥ 0, ∂2

θ V (r, θ) ≥ 0. (14)

Here the first condition in Eq. (14) provides the particle motion to be in the circular orbit i.e. Ur = U θ = 0, which can be easily
derived from Eq. (10), while the first-order derivatives with respect to coordinates (r, θ ) represent the stationary point of the function
V (r, θ), and finally, the last two conditions in (14) correspond to the minimum of the function V (r, θ), which allows to write equation
for ISCO radius of charged test particle. Here we will discuss the different aspects of the properties of ECBH and MCBH. The
function V (r, θ) explains the behavior of charged particles in the vicinity of ECBH and MCBH, where they are influenced by the
gravitational and electromagnetic forces, simultaneously.

Now we are in a position to determine the ISCO radius for charged particles orbiting around ECBH and MCBH. For simplicity, we
assume that the contribution of the black hole’s charge on background spacetime is comparatively small, however, the electromagnetic
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Fig. 1 Dependence of the ISCO
radius for charged particle orbiting
around ECBH and MCBH from
the various values of coupling
parameters σe = qQe/(mM) and
σm = qQm/(mM) in the range
between (−5, 1) assuming that
both coupling parameters are in
the same scale. (Left panel) The
ISCO radius for charged particle is
function of the coupling
parameters. (Right panel) The
off-equatorial position of the
ISCO is the function of the
coupling parameters

Fig. 2 The trajectories of charged
particles in the vicinity of the
MCBH in the different horizontal
and vertical planes. The
trajectories of charged test particle
in the (x − y) plane in the left, in
the (x − z) plane in the right panel
are illustrated

interaction between the black hole and charged particle is very important. For simplicity, one can simply ignore the effect of the
electromagnetic contribution on the background spacetime Q2 → 0. In this section, the whole analysis will be done by using the
dimensionless charge coupling parameters which are given by, σe = qQe/(

√
GmM) and σm = qQm/(

√
GmM), or

σe,m < 2 × 1021
(q
e

) (me

m

)
. (15)

The charged particle motion around ECBH (i.e., σe �= 0, σm = 0) is quite well-known task and been studied by many authors (see,
for example: [32,33,35]). Nevertheless, we produce all results in order to show the difference between ECBH and MCBH through
particle dynamics. The ISCO radius for charged particle around MCBH is rather simple than that obtained in ECBH. Using the
conditions (14), we find that the ISCO radius and the energy of the charged particle at ISCO will be the same as for a neutral particle,
as shown in Ref. [29], however, the critical angular momentum takes a form L0 = √

σ 2
m + 12. Another interesting result is that

the position of a charged particle rotating around MCBH is displaced from the equatorial plane with angle θ0 = tan−1
(

2
√

3/σm

)
,

depending on the coupling parameter σm , which concludes that the charge separation will happen around MCBH. Figure 1 shows
the ISCO position for charged particles orbiting around ECBH and MCBH.

In order to better understand charged particle motion in the vicinity of the charged black hole, we produce the trajectory of
charged particles around the MCBH illustrated in Fig. 2. This consideration has been studied in the Refs. [55–58]. We set the
constants of motion, which are the specific energy and specific angular momentum, and the initial position of the particle (r0, θ0).
One can observe that in (x, y) plane there is no difference between trajectories of positively and negatively charged particles around
the MCBH. In opposite, in (x, z) plane, one can observe the charge separation symmetrically to the equatorial plane in vertical
directions, which is shown in central panel of Fig. 2. In the last panel the same plot is illustrated in (x − y − z) plane.

The energy efficiency of the particle can be determined as η = 1 − E0, where E0 is the specific energy of a particle at the ISCO.
This value of the energy efficiency for a neutral particle in Schwarzschild space is about ∼ 5.7%, while for a maximally charged
black hole it is ∼ 8.9%. It can reach up to ∼ 70% for a charged particle orbiting around ECBH, while around MCBH it is independent
of coupling parameter σm and will be the same as for neutral particle.

In Table 1, the detailed numerical calculations of the ISCO parameters such as radius, location, orbital velocity, specific energy,
specific angular momentum, and energy efficiency of charged particles are listed. It can be easily seen from Table 1 that the ISCO
radius for a charged particle around MCBH is the same as for a neutral particle, while around ECBH it is always larger for positively
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Table 1 The critical values of radius, angle, specific energy, specific angular momentum, energy efficiency and orbital velocity of charged particle at the
innermost stable circular orbit (ISCO) around ECBH and MCBH are listed. For simplicity, we assume that the square of the black hole charge is negligible
Q2 → 0

σe r̄0 |π/2 − θ0| E0 L0 η [%] v0

0.7 6.705 0 0.35 3.500 65.33 0.20

0.6 6.408 0 0.50 3.500 50.20 0.27

0.5 6.234 0 0.61 3.500 39.40 0.32

0.4 6.128 0 0.69 3.487 30.67 0.37

0.3 6.063 0 0.77 3.477 23.24 0.40

0.2 6.025 0 0.83 3.469 16.75 0.43

0.1 6.006 0 0.89 3.466 10.95 0.48

0 6 0 0.94 3.46 5.72 0.5

− 0.1 6.005 0 0.99 3.500 1 0.54

− 0.3 6.035 0 1.08 3.500 −7.6 0.61

− 0.5 6.085 0 1.15 3.500 −15.1 0.72

− 0.8 6.180 0 1.25 3.500 −24.9 0.79

− 1.0 6.253 0 1.31 3.500 −30.7 0.85

σm r̄0 |π/2 − θ0| E0 L0 η [%] v0/c

0 6 0 0.94 3.46 5.72 0.5

±0.1 6 0.029 0.94 3.46 5.72 0.5

±0.2 6 0.058 0.94 3.47 5.72 0.5

±0.3 6 0.086 0.94 3.48 5.72 0.5

±0.4 6 0.115 0.94 3.49 5.72 0.5

±0.5 6 0.143 0.94 3.50 5.72 0.5

±0.6 6 0.172 0.94 3.51 5.72 0.5

±0.7 6 0.199 0.94 3.53 5.72 0.5

±0.8 6 0.227 0.94 3.56 5.72 0.5

±0.9 6 0.254 0.94 3.58 5.72 0.5

±1.0 6 0.281 0.94 3.61 5.72 0.5

and negatively charged particles. Interestingly, one can see that the location of charged particles around ECBH is in the equatorial
plane, however, around MCBH it is displaced from the equatorial plane, which concludes that charged separation can be observed
near the equatorial plane depending on the coupling parameter σm . One can see that the orbital velocity of a charged particle around
MCBH is half the speed of light, however, around ECBH it can reach the values between zero and the speed of light.

3 Fundamental frequency of charged particle

It is interesting to consider the periodic motion of charged particles orbiting around the black hole which allows determining the
fundamental frequencies such as Keplerian and Larmor frequencies. The most simple way of deriving the expressions for the
frequencies is to consider motion in the stable circular orbit with, Uα = (Ut , 0, 0,Uφ), which allows to write

Ut = 1√−gtt − Ω2gφφ

, (16)

where Ω = dφ/dt is the angular velocity of the orbital motion measured by a distant observer. Using the expression (16), the
expressions for the conservative quantities in the spacetime of ECBH are rewritten as

E = − gtt√−gtt − Ω2gφφ

− q

m
At , L = Ωgφφ√−gtt − Ω2gφφ

,

while in the spacetime of MCBH, they take the form:

E = − gtt√−gtt − Ω2gφφ

, L = Ωgφφ√−gtt − Ω2gφφ

+ q

m
Aφ . (17)
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Fig. 3 Dependence of orbital
velocity of particle from
blackhole’s charge in positions
with different radii

We determine the orbital velocity of charged particle around black hole. The expression for the orbital velocity of particle
measured by a local observer in curved spacetime is defined as [32,59]

v = Ω

√
−gφφ

gtt
. (18)

In order to evaluate the orbital linear velocity of the neutral particles orbiting around a charged black hole, we first calculate it at
the different radii as illustrated in Fig. 3. One can easily see from Fig. 3 that the neutral particle rounds with half of the speed of
light, v0 = 0.5, at the ISCO position around the Schwarzschild black hole, while it can orbit rapidly around charged black hole
depending on the value of the charge parameter. For extreme Reissner–Nordström black hole, the orbital velocity can reach up to
v0 = 1/

√
3. We have also calculated the orbital linear velocity of the neutral particle at the marginally bound orbit (MBO), it is

about v0 = 1/
√

2 with respect to that around Schwarzschild black hole. The value of the orbital velocity of the neutral particle at
the stable orbit around the extreme black hole is about v0 = c. Similarly, the orbital velocity of charged particles orbiting around the
charged black hole can be derived. The numerical values of the orbital velocities of charged particles at the ISCO position around
ECBH and MCBH are listed in the top and bottom panels of Table 1, respectively.

3.1 Keplerean and Larmor frequencies

Now we focus on the derivation of the expression for the orbital angular frequencies, such as Keplerian and Larmor frequencies of the
charged particles orbiting around the black hole. To do this, we assume motion of particles in circular orbit withUα = Ut (1, 0, 0,Ω).
In this case, according to (7), equations for radial and vertical motion for charged particles around ECBH can be written as

gtt,r + Ω2gφφ,r = −2q

m

Frt
U t

, Ωgφφ,θ = 0, (19)

and around MCBH it takes a form:

gtt,r + Ω2
Ggφφ,r = 0, ΩLgφφ,θ = −2q

m

Fθφ

Ut
. (20)

Note that the physical meaning of the quantity Ω in equations (19) is the angular velocity of a charged particle orbiting around ECBH,
while ΩG and ΩL in Eq. (20) are the angular velocity of charged particle around MCBH due the gravitational and electromagnetic
fields, respectively. However Ω and ΩG have the same meaning for a neutral particles i.e., when q = 0. In this case, the solution of
the first Eqs. in (19) and (20) becomes, ΩK = √−gtt,r/gφφ,r at θ = π/2, which represents Keplerian frequency for neutral particle,
while the solution of the second equation will vanish. The solution of Eq. (19) is responsible for the angular velocity of charged
particle. Hereafter we eliminate Ut by inserting the expression (18) into (19), and after performing simple algebraic manipulations
the angular velocity for charged particle orbiting around the ECBH can be found as

Ω2
ECBH = Ω2

K − gφφ

2

(
2qFrt
mgφφ,r

)2

± 2qFrt
mgφφ,r

√
−gtt − Ω2

K gφφ + g2
φφ

4

(
2qFrt
mgφφ,r

)2

. (21)

On the other hand, the same problem can be easily considered for charged particle around the MCBH. However, one needs to be
careful because the angular velocity of charged particle is caused due to the gravitational and magnetic field effects. One needs to
take the effects simultaneously and find the angular velocity ΩMCBH for charged particle. The solution of the first Eq. (20) gives the
angular velocity of charged particle due to pure gravitational field ΩG while the second one represents the Larmor frequency ΩL

due to the external monopole magnetic field. One can get ΩMCBH = ΩG + ΩL for the explicit expressions for angular frequency
of charged particle orbiting around MCBH. Replacing Ω in Eq. (16) with ΩMCBH and combining it with Eq. (20) one can find ΩG
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and ΩL . Indeed, in this case, one can solve three equations for three unknown quantities. The solution of the first Eq. (20) is simple
and can be found as ΩG = √−gtt,r/gφφ,r . The Larmor frequency ΩL satisfies the following equation:

Ω2
L (1 + δ) + 2ΩGΩL + Ω2

G + gtt
gφφ

= 0 , (22)

where

δ = 2

gφφ

(
mgφφ,θ

2qFθφ

)2

.

Finally, the angular velocity of charged particle orbiting around MCBH can be expressed as

ΩMCBH = 1

1 + δ

[
δΩG +

√
−δΩ2

G − (1 + δ)
gtt
gφφ

]
. (23)

Indeed, for neutral particle i.e. q = 0, ΩMCBH simply reduces to Keplerian frequency, which can be easily verified by considering
the following limit:

lim
σm→0

ΩMCBH = lim
δ→∞ ΩMCBH = ΩG = ΩK , (24)

at the equatorial plane θ = π/2.

3.2 The epicyclic frequencies

It is also interesting to derive the expressions for the epicyclic frequencies (Ωr ,Ωθ ) produced by the oscillatory motion of charged
particles (hot spots) along the radial and vertical directions located at the stable circular orbits around the black hole. Our main
interest is in study of the quasi-periodic oscillations (QPOs) of charged particles in the vicinity of the black hole. The QPO is quite
well-known observational feature of the accretion disk around the black hole. One of the simple models of explanation of the QPO
origin is described by harmonical oscillatory test particles motion [60,61]. In order to find the epicyclic frequencies, one may expand
the function V (r, θ) around stationary points (r0, θ0) in the form:

V (r, θ) = V (r0, θ0) + ∂r V (r, θ)δr + ∂θV (r, θ)δθ + 1

2
∂2
r V (r, θ)δ2

r + 1

2
∂2
θ V (r, θ)δ2

θ + ∂r∂θV (r, θ)δr δθ + O (
δr3, δθ3)

� 1

2
δ2
r ∂2

r V (r, θ) + 1

2
δ2
θ ∂2

θ V (r, θ) , (25)

which is analog of the harmonic oscillator problem. Here we have used the conditions represented in (14). Now, inserting the
expression (11) into (10), and using the expression (25) one can obtain equation of harmonic oscillatory motion for charged particles
along the stationary orbit (r0, θ0), for the displacement δr = r − r0, δθ = θ − θ0 in the form: δ̈r + Ω2

r δr = 0 and δ̈θ + Ω2
θ δθ = 0,

where double dots indicate derivative with respect to time and the epicyclic frequencies are determined as

(
Ω2

r ,Ω2
θ

) = 1

2(Ut )2

(
1

grr
∂2
r V (r, θ),

1

gθθ

∂2
θ V (r, θ)

)
. (26)

Finally, using Eqs. (17) and (25), the explicit form of the epicyclic frequencies (Ωr ,Ωθ ) of charged particle orbiting around
ECBH can be expressed as

giiΩ
2
i = (gtt,i )2

gtt
− 1

2
gtt,i i + Ω2

(
(gφφ,i )

2

gφφ

− 1

2
gφφ,i i

)
− q

m

1

Ut

(
At,i i − 2At,i

gtt,i
gtt

)
−

( q

m

)2 1

(Ut )2

A2
t,i

gtt
, (27)

while around MCBH, they take the form:

giiΩ
2
i = (gtt,i )2

gtt
− 1

2
gtt,i i + Ω2

(
(gφφ,i )

2

gφφ

− 1

2
gφφ,i i

)
− q

m

Ω

Ut

(
Aφ,i i − 2Aφ,i

gφφ,i

gφφ

)
−

( q

m

)2 1

(Ut )2

A2
φ,i

gφφ

, (28)

where i = (r, θ). From Eqs. (27) and (28), one can see that the radial and vertical frequencies (Ωr ,Ωθ ) depend on the background
geometry, the external electromagnetic field, and also parameters of the test particle. Once background spacetime geometry and
external magnetic field are given,one can immediately determine Ωr and Ωθ , however, keep in mind that they still depend on
Keplerian frequency, which is the most important quantity in the calculation of the fundamental frequencies.
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4 Radiation intensity of accelerated charged particle

Accretion of surrounding matter onto a super massive and stellar mass black holes is strongly believed and justified to produce the
high energy relativistic particles in the vicinity of the active galactic nuclei (AGN) and stellar low mass X-ray binary sources. The
detailed mechanisms of the production of energy in such high energetic sources are still need to be clarified. However, it is widely
believed that the magnetic field in rotating black hole environment plays an important role to produce the high energetic relativistic
particles (See for example, [13,14,16]). Now question arises how the charge of black hole is important to produce energy extraction
from the black hole. It is well-known that relativistic charged particle accelerated, in particular, by an external electromagnetic field
emits electromagnetic radiation. One of the simplest examples of such radiation processes is known as synchrotron radiation of an
accelerated charged particle, which is formed as a relativistic form of the cyclotron radiation. For example synchrotron radiation
from charged particle near the magnetized Schwarzschild black hole has been studied in [62]. Here we concentrate on study of
the electromagnetic radiation from the accelerated charged particle orbiting the charged black hole. The radiation spectrum of the
relativistically moving charged particle in strongly curved spacetime can be expressed as [63]

I = 2q2

3
wαwα, (29)

where wα is the four-acceleration of particle in a curved spacetime, defined as wα = Uβ∇βUα , on the other hand, taking into
account non-geodesic equation (7), one can write

wα = q

m
Fα

βU
β , wαU

α ≡ 0. (30)

As one can see from Eq. (30) that four-acceleration of particle is an orthogonal to its four-velocity. Finally, taking into account all
above-mentioned, one can write expression for the electromagnetic radiation spectrum as

I = 2q4

3m2 Fαγ F
γβUαUβ . (31)

For simplicity, we consider the motion of charged particle in the stable circular orbit with Uα = Ut (1, 0, 0,Ω) to see the
behavior of the radiation spectrum. Since the velocity and acceleration of particle are orthogonal to each other, i.e., wαUα ≡ 0, we
can immediately express the four-acceleration of particle in the form, wα = (0, wr , wθ , 0), where the components of the acceleration
of charged particle around ECBH can be found as

wr = qFrt

m
√−gtt − Ω2gφφ

, wθ = 0 , (32)

while around MCBH, they are defined as

wr = 0, wθ = qΩFθφ

m
√−gtt − Ω2gφφ

. (33)

Finally, the expressions for the intensity of electromagnetic radiation (29) of the radiating accelerated charged particle orbiting
around ECBH and MCBH are

IECBH = 2q4

3m2

(
1

−gtt − Ω2gφφ

grr F2
r t

)
ECBH

, (34)

IMCBH = 2q4

3m2

(
Ω2

−gtt − Ω2gφφ

gθθ F2
θφ

)
MCBH

, (35)

which can be estimated as

IECBH � 1.3 × 1024
(q
e

)4 (me

m

)2
(
M�
M

)2 (
f

f − Ω2r2

)
ECBH

, (36)

IMCBH � 1.3 × 1024
(q
e

)4 (me

m

)2
(
M�
M

)2 (
Ω2r2

f − Ω2r2

)
MCBH

, (37)

for maximally charged black hole with Qmax = √
GM . The ratio of the intensities of charged particle at the ISCO position around

MCBH and ECBH is IMCBH/IECBH � 1.41(Qm/Qe)
2, while for the identical electric and magnetic charges this ratio reduces to

IMCBH/IECBH � 1.41.
Similarly, one can also explore more realistic situation when the charged particle falling into black hole with the four-velocity,

Uα = Ut (1, u, 0, ω), where u = dr/dt is radial velocity and ω = dφ/dt is angular velocity of the particle. In this case, the
four-acceleration of charged particle falling onto ECBH can be introduced as wα = (wt , wr , 0, 0), where wt = (q/m)FtrUr and
wr = (q/m)FrtU t , which satisfies the orthogonality condition wαUα = 0. On the other hand, the four-acceleration of charged
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particle falling into MCBH can be written as wα = (0, 0, wθ , 0). Finally, the intensity of electromagnetic radiation from relativistic
charged particle can be expressed as

IECBH = − 2q4

3m2

(
u2gtt + grr

gtt + u2grr + ω2gφφ

)
F2

θφ , (38)

IMCBH = − 2q4

3m2

(
ω2gθθ

gtt + u2grr + ω2gφφ

)
F2

θφ , (39)

which concludes that charged particles accreting onto ECBH and MCBH with radial and angular velocities ur and ω, emit the
electromagnetic radiation. Now using the three-velocity (12) and replacing the electromagnetic tensor as Frt = Qe/r2 and Fθφ =
Qm sin θ above expression can be expressed as

IECBH = 2q4Q2
e

3m2r4

(
1 − v2

r̂

1 − v2

)
, IMCBH = 2q4Q2

m

3m2r4

⎛
⎝ v2

φ̂

1 − v2

⎞
⎠ , v2 = v2

r̂ + v2
φ̂

. (40)

5 Conclusions and future outline

In this research note, we investigate the charged particle motion around ECBH and MCBH. We perform analyses on the effects of
the charge coupling parameter on the ISCO parameters, namely, the specific energy, specific angular momentum, the critical angle,
and the innermost radius, respectively. Our numerical calculations show that the ISCO position for charged particle around ECBH
at the equatorial plane gets always larger than that obtained for neutral particle, depending on the charge parameter σe, while around
MCBH the ISCO position can be derived analytically, and it will be the same as for neutral particle, however it is displaced from
the equatorial plane by angle θ0 = tan−1(2

√
3/σm) depending on the coupling parameter σm . It concludes that one can distinguish

charge separation in accreting matter around MCBH.
According to the standard way of deriving the fundamental frequencies, such as Keplerian and Larmor frequencies, for charged

particles around the charged black hole they have been explicitly derived. We show that Keplerian frequency of charged particle can
be either greater or less than that is obtained in the Schwarzschild spacetime depending on the sign of the coupling parameter.

Finally, it has been investigated the synchrotron radiation caused by acceleration of charged particle in the vicinity of the charged
black hole. The explicit expressions for the intensity of the radiating charged relativistic particle around ECBH and MCBH due to
acceleration by electromagnetic (Coulomb and Lorentz) have been derived. Numerical calculations show that the radiation intensity
of accelerated charged particle around MCBH is always greater than the radiation intensity around ECBH. Another important result
shows that radially falling charged particles onto ECBH and MCBH, with arbitrary radial and angular velocities (u, ω), produce
synchrotron radiation with intensity proportional to I ∼ (2q4Q2)/(3m2r4) with the different factors. These facts also show various
distinguishable features of the electric and magnetic charge of a black hole.

It would also be interesting to study charged particle acceleration around rotating electrically charge (Kerr-Newman) black hole
and magnetized black hole, as well as the effects of rotation of the black hole and external magnetic field on synchrotron radiation
from accelerated charged particle.
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