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Abstract In the present work, we investigate the dynamical behaviours of solitons in the quantum field theory. The medium
is described by the chiral nonlinear Schrödinger equation in (1 + 2)-dimensions. The study is carried out by three integration
methodologies including extended auxiliary equation method, functional variable method and Kudryashov method. Different types
of soliton structures such as W-shaped, bright, dark and singular solitons are derived. The obtained results show that the W-type
structure is transmitted to bright and dark solitons under specific conditions. The physical interpretations of soliton behaviours are
presented so as to pave the way for likely engineering or industrial applications.

1 Introduction

Soliton has become one of the important wave solutions for nonlinear evolution equations. It has the ability to describe the physics
of media in many fields of sciences such as fluid dynamics, plasma physics, nonlinear optics and many other fields [1–5]. Mostly,
the dynamics of solitons are described by the model of nonlinear Schrödinger equation (NLSE) and its generalized forms. It is
known that this type of waves arises in a nonlinear media because of the balance between the dispersion and nonlinearity. In the
field of photonics, for example, the soliton solutions of NLSE are classified into different structures such as bright, dark and singular
solitons [6,7]. During the last two decades, there is a remarkable intention directed to a new type of solitons having the shape of W.
To study the features of this wave, several mechanisms have been applied to analyse the mathematical models that describe various
physical phenomena [8–14].

Solitons are found to arise in the context of quantum hall effect where chiral excitations are detected. The governing model of
soliton propagation in this field of science is the chiral nonlinear Schrödinger equation (CNLSE) which is formed in a process of
one dimensional reduction for a system describing fractional quantum Hall effect. The derived soliton solution for this equation is
known as chiral solitons which have an essential role in nonlinear optics. Numerous studies have been devoted towards examining
exact analytic solutions for CNLSE. For example, Nishino et al. [15] investigated CNLSE in (1 + 1) dimensions and found two
kinds of the progressive wave solutions characterizing bright and dark solitons, see also [16,17]. In the presence of the quantum
potential perturbation, this model was examined in literature [18–21], where the potential is known as Bohm potential and it has the
role on changing the dispersion of the CNLSE. To shed light thoroughly on the behaviour of chiral solitons, the problem of CNLSE
in (1 + 2) dimensions was studied with constant coefficients and time-dependent coefficients by Biswas [22] where both bright and
dark soliton solutions were extracted. In order to retrieve chiral solitons of different forms in (1 + 2) dimensions, many powerful
approaches have been exploited such as trial solution technique, sine-Gordon expansion method, modified simple equation method
and exp(−ψ(ρ))-expansion method, Lie symmetry analysis, first integral method, extended Fan sub-equation technique, modified
Jacobi elliptic expansion method. For more details about the methodologies applied to (1 + 2)-dimensional CNLSE, the reader is
referred to the references [23–31].

The target of the current study is to investigate various soliton solutions of the (1 + 2)-dimensional Chiral nonlinear Schrödinger
equation. Three mathematical techniques, namely extended auxiliary equation method, functional variable method and Kudryashov
method, are employed to deal with the dominating model. The rest of the paper is organized as follows. In Sect. 2, the governing
model is analysed and its traveling wave reduction is derived. Then, Sect. 3 describes the extraction of soliton solutions by the
proposed integration schemes where the behaviours of solitons are examined. In Sect. 4, the main outlook of results and remarks
are presented. Section 5 displays the stability investigation for the constructed solutions by using linear stability analysis. Finally,
the conclusion of work is given in Sect. 6.
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2 Governing equation and mathematical pen-picture

The model of (1 + 2)-dimensional Chiral nonlinear Schrödinger equation discussed in the present work is given by

i Qt + α(Qxx + Qyy) + i
{
β1(QQ∗

x − Q∗Qx ) + β2(QQ∗
y − Q∗Qy)

}
Q = 0, (1)

where the dependent variable Q(x, y, t) refers to the optical soliton profile, whereas the independent variables x and y are the space
coordinates and t is the time coordinate. The superscript ∗ indicates the complex conjugate. In equation above, the first term denotes
the temporal evolution of the pulse. The second term with the coefficient of α stands for the dispersion term. The nonlinear terms
given by the coefficients of β1 and β2 represent the self-steepening effect. This type of nonlinearity is known as current density.
Equation (1) is found to fail the Painleve test of integrability, and thus, it is not integrable by inverse scattering transform method.
Moreover, it is noteworthy that this equation is not invariant under the Galilean transformation [22].

Now, we intend to obtain the traveling wave reduction of Eq. (1) so as to derive the soliton solutions. Thus, we introduce the
traveling wave transformation of the form

Q(x, y, t) = q(ξ)eiφ(x,y,t), (2)

where q(ξ) accounts for the amplitude of the soliton while φ(x, y, t) denotes the phase component. The wave variable ξ is given
by

ξ = κ1x + κ2y − νt, (3)

and the phase component is presented as

φ(x, y, t) = λ1x + λ2y + ωt + θ(ξ), (4)

where κ1 and κ2 are the inverse width of the soliton along x- and y-directions, respectively, whereas ν is the velocity of the soliton.
The parameters λ1 and λ2 indicate the frequencies in the x- and y-directions, respectively, and ω represents the soliton frequency.
The function θ(ξ) is defined as a nonlinear phase shift which is more general than the one considered as a constant parameter in
many previous studies [23–31].

Applying the transformation (2) to Eq. (1) and separating the real and imaginary parts, this leads to a pair of equations having the
form

[−ν + 2α(κ1λ1 + κ2λ2)]q ′ + 2α(κ2
1 + κ2

2 )q ′θ ′ + α(κ2
1 + κ2

2 )qθ ′′ = 0, (5)

α(κ2
1 + κ2

2 )q ′′ − [ω + α(λ2
1 + λ2

2)]q + 2(β1λ1 + β2λ2)q
3 + [ν − 2α(κ1λ1 + κ2λ2)]qθ ′

−α(κ2
1 + κ2

2 )qθ ′2 + 2(κ1β1 + κ2β2)q
3θ ′ = 0, (6)

where the prime denotes the derivative with respect to ξ . Once we multiply Eq. (5) by q , we arrive at the first integral given by

[−ν + 2α(κ1λ1 + κ2λ2)]
2

q2 + α(κ2
1 + κ2

2 )q2θ ′ = C, (7)

where C is the constant of integration. Rearranging Eq. (7), one can obtain

θ ′ = Cq−2

α(κ2
1 + κ2

2 )
+ [ν − 2α(κ1λ1 + κ2λ2)]

2α(κ2
1 + κ2

2 )
. (8)

Substituting Eqs. (8) into (6) gives rise to

q ′′ + A1q + A2q
3 − A3q

−3 = 0. (9)

Multiplying Eq. (9) by q ′ and integrating with respect to ξ , we find

q ′2 + A1q
2 + A2

2
q4 + A3q

−2 + 2A0 = 0, (10)

where A0 is an arbitrary constant of integration and the rest of constants are defined by

A1 = 8C(β1κ1 + β2κ2) − 4α(κ2
1 + κ2

2 )[ω + α(λ2
1 + λ2

2)] + [ν − 2α(κ1λ1 + κ2λ2)]2

4α2(κ2
1 + κ2

2 )2
, (11)

A2 = ν(κ1β1 + κ2β2) + 2α(κ1λ2 − κ2λ1)(κ1β2 − κ2β1)

α2(κ2
1 + κ2

2 )2
, (12)

A3 = C2

α2(κ2
1 + κ2

2 )2
. (13)
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To avoid the complexity caused by the term of negative power in Eq. (10), we make use of the variable transformation given by

q2 = V . (14)

Hence, Eq. (10) reduces to

V ′′ + 4A0 + 4A1V + 3A2V
2 = 0. (15)

The solutions to Eq. (15) along with the relations (2) and (14) construct the general form of exact solutions for Eq. (1) addressed as

Q(x, y, t) = V 1/2ei[λ1x+λ2 y+ωt+θ(ξ)], (16)

where the phase variable θ(ξ) can be turned up through integrating Eq. (8) with respect to ξ as

θ(ξ) = C

α(κ2
1 + κ2

2 )

∫
dξ

V
+ [ν − 2α(κ1λ1 + κ2λ2)]

2α(κ2
1 + κ2

2 )
(κ1x + κ2y − νt) + θ0, (17)

where θ0 is the phase constant.

It can be noted that Eq. (10) is converted to an elliptic type equation given in [32] when C = 0. This equation possesses various
types of exact analytic solutions including Jacobi elliptic function solutions, trigonometric function solutions and hyperbolic function
solutions. In that case, the phase function given by (17) collapses to a linear function.

3 Chiral soliton solutions

In this section, various structures of exact solutions representing W-shaped and other solitons for Eq. (1) are derived through applying
different techniques. These solutions are obtained via solving Eq. (15) and then its solutions are plugged into (2) in company with
(14) and (17).

3.1 Extended auxiliary equation method

Now, our goal is to extract several types of solitary waves solutions of Eq. (1). The analytical solutions are obtained upon the use of
the auxiliary equation method to solve Eq. (15).

We assume that Eq. (15) has a solution expressed as

V (ξ) = C0 + C1F(ξ) + C2F
2(ξ), (18)

where C0,C1 and C2 are constants to be determined whereas F(ξ) satisfies

F ′2(ξ) = 4L0F(ξ) + 4L2F
2(ξ) + 4L4F

3(ξ) + 4L6F
4(ξ), (19)

which is equivalent to

u′2(ξ) = L0 + L2u
2(ξ) + L4u

4(ξ) + L6u
6(ξ), (20)

where F(ξ) ≡ u2(ξ) and Li (i = 0, 2, 4, 6) are constants to be identified. It is well known that Eqs. (19) and (20) admit solutions
in the form

F(ξ) = u2(ξ) = − L4

4L6
(1 ± f (ξ)), (21)

where the function f (ξ) could be expressed in terms of the Jacobi elliptic functions (JEFs) sn(ξ,m), cn(ξ,m), dn(ξ,m) and so on
[33]. The parameter m with 0 < m < 1 represents the modulus of JEFs. Substituting (18) and (19) into Eq. (15), a polynomial in
Fi (ξ), (i = 0, 1, . . . , 6) will be constructed. Equating the coefficients with the same power of Fi (ξ) in this polynomial to zero
leads to a system of algebraic equations. Solving this system gives rise to the following cases of solutions.

Case I. If L0 = L3
4(m2−1)

32L2
6m

2 , L2 = L2
4(5m2−1)

16L6m2 , then this brings about

C0 = L2
4(1 − 2m2) − 4A1L6m2

6A2L6m2 ,C1 = −4L4

A2
,C2 = −8L6

A2
, A0 = 16A2

1L
2
6m

4 − L4
4(m

4 − m2 + 1)

48A2L2
6m

4
. (22)

Substituting (22) in conjunction with (21) into (18) and using (2) with (14), one can obtain JEF solutions to Eq. (1) in the form

Q(x, y, t) =
⎧
⎨
⎩

−4A1L6m2 + L2
4

[
1 + m2 − 3m2 sn2

(
L4

2m
√
L6

ξ
)]

6A2L6m2

⎫
⎬
⎭

1
2

eiφ(x,y,t), (23)

123
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(a) (b)

Fig. 1 W-shaped soliton solution given by (25) with α = 1, β1 = β2 = κ2 = λ1 = 0.5, ν = ω = λ2 = −0.5, κ1 = 0.8, C = 0.3, L4 = L6 = 4

(a) (b)

Fig. 2 Bright soliton solution given by (25) with α = β1 = β2 = κ2 = λ1 = λ2 = ν = ω = 0.5, κ1 = 0.8, C = −0.3, L4 = L6 = 4

Q(x, y, t) =
⎧⎨
⎩

−4A1L6m2 + L2
4

[
1 + m2 − 3 ns2

(
L4

2m
√
L6

ξ
)]

6A2L6m2

⎫⎬
⎭

1
2

eiφ(x,y,t), (24)

where L6 > 0. As m → 1, solutions (23) and (24) reduce to the soliton solution presented as

Q(x, y, t) =
⎧
⎨
⎩

−4A1L6 + L2
4

[
2 − 3 tanh2

(
L4

2
√
L6

ξ
)]

6A2L6

⎫
⎬
⎭

1
2

eiφ(x,y,t), (25)

and the singular soliton solution introduced as

Q(x, y, t) =
⎧⎨
⎩

−4A1L6 + L2
4

[
2 − 3 coth2

(
L4

2
√
L6

ξ
)]

6A2L6

⎫⎬
⎭

1
2

eiφ(x,y,t), (26)

under the constraint

A0 = 16A2
1L

2
6 − L4

4

48A2L2
6

. (27)

Figures 1, 2 and 3 describe the evolution of solution (25) which embodies three types of solitons under specific limits. As one
can see from Fig. 1, the plots present soliton waves of W shape. The graph is depicted for the parameters given as α = 1,
β1 = β2 = κ2 = λ1 = 0.5, ν = ω = λ2 = −0.5, κ1 = 0.8, C = 0.3, L4 = L6 = 4. Then, Fig. 2 illustrates the behaviour of
bright soliton with the parameter values α = β1 = β2 = κ2 = λ1 = λ2 = ν = ω = 0.5, κ1 = 0.8, C = −0.3, L4 = L6 = 4. The
emergence of the bright soliton is subject to the condition A2 > 0, 4A1L6/L2

4 ≤ −1. Under the restriction A2 < 0, 4A1L6/L2
4 ≥ 2,

it is clear that Fig. 3 shows dark soliton which is depicted with the values α = β1 = β2 = κ2 = λ1 = λ2 = 0.5, ν = ω = −0.5,
κ1 = 0.8, C = 0.1, L4 = L6 = 4.

Case II. If L0 = L3
4(1−m2)

32L2
6

, L2 = L2
4(5−m2)

16L6
, then this results in

C0 = L2
4(m

2 − 2) − 4A1L6

6A2L6
,C1 = −4L4

A2
,C2 = −8L6

A2
, A0 = 16A2

1L
2
6 − L4

4(m
4 − m2 + 1)

48A2L62 . (28)

Inserting (28) along with (21) into (18) and using (2) with (14), we reach JEF solutions to Eq. (1) as

Q(x, y, t) =
⎧
⎨
⎩

−4A1L6 + L2
4

[
1 + m2 − 3m2 sn2

(
L4

2
√
L6

ξ
)]

6A2L6

⎫
⎬
⎭

1
2

eiφ(x,y,t), (29)

123
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(a) (b)

Fig. 3 Dark soliton solution given by (25) with α = β1 = β2 = κ2 = λ1 = λ2 = 0.5, ν = ω = −0.5, κ1 = 0.8, C = 0.1, L4 = L6 = 4

(a) (b)

Fig. 4 W-shaped soliton solution given by (33) with the same parameter values given in Fig. 1 except that L6 = −4

Q(x, y, t) =
⎧
⎨
⎩

−4A1L6 + L2
4

[
1 + m2 − 3 ns2

(
L4

2
√
L6

ξ
)]

6A2L6

⎫
⎬
⎭

1
2

eiφ(x,y,t), (30)

where L6 > 0. As m → 1, solutions (29) and (30) degenerate to the soliton solutions (25) and (26) under the same constraint
conditions given in (27).

Case III. If L0 = L3
4

32L2
6m

2 , L2 = L2
4(4m2+1)

16L6m2 , then this contributes to

C0 = − L2
4(m

2 + 1) + 4A1L6m2

6A2L6m2 ,C1 = −4L4

A2
,C2 = −8L6

A2
, A0 = 16A2

1L
2
6m

4 − L4
4(m

4 − m2 + 1)

48A2L2
6m

4
. (31)

Plugging (31) in company with (21) into (18) and using (2) with (14), we secure JEF solution to Eq. (1) in the form

Q(x, y, t) =
⎧⎨
⎩

−4A1L6m2 − L2
4

[
1 + m2 − 3m2 sn2

(
L4

2m
√−L6

ξ
)]

6A2L6m2

⎫⎬
⎭

1
2

eiφ(x,y,t), (32)

where L6 < 0. As m → 1, solution (32) changes into the soliton solution written as

Q(x, y, t) =
⎧⎨
⎩

−4A1L6 − L2
4

[
2 − 3 tanh2

(
L4

2
√−L6

ξ
)]

6A2L6

⎫⎬
⎭

1
2

eiφ(x,y,t), (33)

under the same constraint condition given in (27).
Figures 4, 5 and 6 show the dynamic behaviours of solution (33) which yields three shapes of solitons demonstrated as follows.

Figure 4 represents the profile of W-shaped soliton where it is plotted with the same parameter values given in Fig. 1 except that
L6 = −4. Following the condition A2 > 0, 4A1L6/L2

4 ≥ 1, the bright soliton is exhibited in Fig. 5 with the same values of parameters
as in Fig. 2 but with L6 = −4. Figure 6 depicts the dark soliton which comes into view under the condition A2 < 0, 4A1L6/L2

4 ≤ −2.
The graphs are plotted with the same parameter values given in Fig. 3 except that L6 = −4.

Case IV. If L0 = L3
4m

2

32L2
6
, L2 = L2

4(m2+4)

16L6
, then this generates

C0 = − L2
4(m

2 + 1) + 4A1L6

6A2L6
,C1 = −4L4

A2
,C2 = −8L6

A2
, A0 = 16A2

1L
2
6 − L4

4(m
4 − m2 + 1)

48A2L62 . (34)

123
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(a) (b)

Fig. 5 Bright soliton solution given by (33) with the same values of parameters as in Fig. 2 but with L6 = −4

(a) (b)

Fig. 6 Dark soliton solution given by (33) with the same parameter values given in Fig. 3 except that L6 = −4

Inserting (34) along with (21) into (18) and using (2) with (14), we arrive at JEF solution to Eq. (1) as

Q(x, y, t) =
⎧⎨
⎩

−4A1L6m2 − L2
4

[
1 + m2 − 3m2 sn2

(
L4

2
√−L6

ξ
)]

6A2L6

⎫⎬
⎭

1
2

eiφ(x,y,t), (35)

where L6 < 0. As m → 1, solution (35) degenerates to the soliton solution (33) with the same constraint condition given in (27).

3.2 Functional variable approach

Here, we derive the soliton solutions of Eq. (1) with the aid of functional variable technique. To start with, we introduce the
transformation

V (ξ) = a + b W (ζ ), ζ = �ξ, (36)

where a, b and � are constants to be identified. Substituting (36) into Eq. (15), we arrive at

b�2W ′′ + (3A2a
2 + 4A1a + 4A0) + (6A2ab + 4A1b)W + (3A2b

2)W 2 = 0, (37)

where the prime stands for the derivative with respect to ζ . According to functional variable method [34], Eq. (37) satisfies

Wζ = Y (W ),

Wζ ζ = 1

2
(Y 2)′,

Wζ ζ ζ = 1

2
(Y 2)′′

√
Y 2,

Wζ ζ ζ ζ = 1

2

[
(Y 2)′′′Y 2 + (Y 2)′′(Y 2)′

]
,

(38)

and so on, where the prime indicates the derivative with respect to W . Substituting (38) into Eq. (37), one can reach

b�2(Y 2)′

2
+ (3A2a

2 + 4A1a + 4A0) + (6A2ab + 4A1b)W + (3A2b
2)W 2 = 0. (39)

Rearranging Eq. (39) and integrating with respect to W , we acquire

Y (W ) = 1

�

√
B1W + B2W 2 + B3W 3, (40)

123
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(a) (b)

Fig. 7 W-shaped soliton solution given by (43) with α = β1 = β2 = κ2 = λ1 = 0.5, ν = ω = λ2 = −0.5, κ1 = 0.8, C = 0.3, A0 = 1

(a) (b)

Fig. 8 Bright soliton solution given by (43) with α = β1 = β2 = κ2 = λ1 = λ2 = ν = ω = 0.5, κ1 = 0.8, C = −0.3, A0 = 1

where the constants B1, B2 and B3 are defined as

B1 = −6A2a2 + 8A1a + 8A0

b
, B2 = −(6A2a + 4A1), B3 = −2A2b. (41)

Taking into account Wζ = Y (W ) and making use of the technique given in [35], the following cases of solutions are extracted.

Case I. If a = − 2
3A2

[
A1 + (2m2 − 1)

√
A2

1−3A0A2

m4−m2+1

]
, b = 2m2

A2

√
A2

1−3A0A2

m4−m2+1
,� =

(
A2

1−3A0A2

m4−m2+1

) 1
4

, then W (ζ ) = cn2(ζ ). Employing

(16) and (36), we come by JEF solution to Eq. (1) as

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

m4 − m2 + 1

[
A1

√
m4 − m2 + 1

A2
1 − 3A0A2

+ (2m2 − 1) − 3m2 cn2(�ξ)

]⎫
⎬
⎭

1
2

eiφ(x,y,t). (42)

As m → 1, solution (42) converts to soliton solution having the form

Q(x, y, t) =
⎧⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

⎡
⎣ A1√

A2
1 − 3A0A2

+ 1 − 3 sech2(�ξ)

⎤
⎦
⎫⎬
⎭

1
2

eiφ(x,y,t), (43)

provided A2
1 − 3A0A2 > 0.

Figures 7, 8 and 9 show the dynamic behaviours of solution (43) which constructs three types of soliton structures according to
specific conditions. As we can see that Fig. 7 illustrates W-shaped soliton where the graph is plotted by selecting appropriate values
for the parameters given as α = β1 = β2 = κ2 = λ1 = 0.5, ν = ω = λ2 = −0.5, κ1 = 0.8, C = 0.3, A0 = 1. However, as long as
the condition A1 < 0, 4A0A2 > 3A0A2 > 0 takes place, the bright soliton wave will emerge in the medium as displayed in Fig. 8
with the parameter values α = β1 = β2 = κ2 = λ1 = λ2 = ν = ω = 0.5, κ1 = 0.8, C = −0.3, A0 = 1. Further to this, Fig. 9
demonstrates the dark soliton structure which exists in the limit A2 < 0, 4A0A2 ≥ A2

1 > 3A0A2, where the plot is depicted with
the values α = ω = 1, β1 = β2 = κ2 = λ1 = λ2 = 0.5, ν = −0.5, κ1 = 0.8, C = 1.01, A0 = −0.7.

Case II. If a = − 2
3A2

[
A1 − (m2 + 1)

√
A2

1−3A0A2

m4−m2+1

]
, b = − 2m2

A2

√
A2

1−3A0A2

m4−m2+1
,� =

(
A2

1−3A0A2

m4−m2+1

) 1
4

, then W (ζ ) = sn2(ζ ). From

(16) and (36), Eq. (1) has JEF solution in the form

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

m4 − m2 + 1

[
A1

√
m4 − m2 + 1

A2
1 − 3A0A2

− (m2 + 1) + 3m2 sn2(�ξ)

]⎫
⎬
⎭

1
2

eiφ(x,y,t). (44)

123
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(a) (b)

Fig. 9 Dark soliton solution given by (43) with α = ω = 1, β1 = β2 = κ2 = λ1 = λ2 = 0.5, ν = −0.5, κ1 = 0.8, C = 1.01, A0 = −0.7

As m → 1, solution (44) degenerates to soliton solution given by

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

⎡
⎣ A1√

A2
1 − 3A0A2

− 2 + 3 tanh2(�ξ)

⎤
⎦
⎫
⎬
⎭

1
2

eiφ(x,y,t), (45)

provided A2
1 − 3A0A2 > 0. According to the relation tanh2(�ξ) = 1 − sech2(�ξ), solution (45) turns to solution (43). Hence, this

solution generates W-shaped, bright and dark solitons which are exactly exhibited in Figs. 7, 8 and 9.

Case III. If a = − 2
3A2

[
A1 − (m2 + 1)

√
A2

1−3A0A2

m4−m2+1

]
, b = − 2

A2

√
A2

1−3A0A2

m4−m2+1
,� =

(
A2

1−3A0A2

m4−m2+1

) 1
4

, then W (ζ ) = ns2(ζ ). Utilizing

(16) and (36), we secure JEF solution to Eq. (1) as

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

m4 − m2 + 1

[
A1

√
m4 − m2 + 1

A2
1 − 3A0A2

− (m2 + 1) + 3 ns2(�ξ)

]⎫
⎬
⎭

1
2

eiφ(x,y,t). (46)

As m → 1, solution (46) changes to singular soliton solution presented as

Q(x, y, t) =
⎧⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

⎡
⎣ A1√

A2
1 − 3A0A2

− 2 + 3 coth2(�ξ)

⎤
⎦
⎫⎬
⎭

1
2

eiφ(x,y,t), (47)

provided A2
1 − 3A0A2 > 0.

Case IV. If a = − 2
3A2

[
A1 − (m2 − 2)

√
A2

1−3A0A2

m4−m2+1

]
, b = − 2

A2

√
A2

1−3A0A2

m4−m2+1
,� =

(
A2

1−3A0A2

m4−m2+1

) 1
4

, then W (ζ ) = cs2(ζ ). Using

(16) and (36), we recover JEF solution to Eq. (1) as

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

m4 − m2 + 1

[
A1

√
m4 − m2 + 1

A2
1 − 3A0A2

− (m2 − 2) + 3 cs2(�ξ)

]⎫
⎬
⎭

1
2

eiφ(x,y,t). (48)

As m → 1, solution (48) decays to singular soliton solution addressed as

Q(x, y, t) =
⎧⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

⎡
⎣ A1√

A2
1 − 3A0A2

+ 1 + 3 csch2(�ξ)

⎤
⎦
⎫⎬
⎭

1
2

eiφ(x,y,t), (49)

provided A2
1 − 3A0A2 > 0.

Case V. If a = − 2
3A2

[
A1 − 2(2m2 − 1)

√
A2

1−3A0A2

16m4−16m2+1

]
, b = − 2

A2

√
A2

1−3A0A2

16m4−16m2+1
,
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(a) (b)

Fig. 10 W-shaped soliton solution given by (51) with the same values of parameters as in Fig. 7

(a) (b)

Fig. 11 Bright soliton solution given by (51) with the same values of parameters as in Fig. 8

(a) (b)

Fig. 12 Dark soliton solution given by (51) with the same values of parameters taken in Fig. 9

� = 2

(
A2

1−3A0A2

16m4−16m2+1

) 1
4

, then W (ζ ) = sn2(ζ )

(1+cn(ζ ))2 . Exploiting (16) and (36), we obtain JEF solution to Eq. (1) as

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

16m4 − 16m2 + 1

[
A1

√
16m4 − 16m2 + 1

A2
1 − 3A0A2

−2(2m2 − 1) + 3
sn2(�ξ)

(1 + cn(�ξ))2

]} 1
2

eiφ(x,y,t).

(50)

As m → 1, solution (50) collapses to soliton solution of the form

Q(x, y, t) =
⎧
⎨
⎩− 2

3A2

√
A2

1 − 3A0A2

⎡
⎣ A1√

A2
1 − 3A0A2

+ 1 − 6 sech(�ξ)

1 + sech(�ξ)

⎤
⎦
⎫
⎬
⎭

1
2

eiφ(x,y,t), (51)

provided A2
1 − 3A0A2 > 0.

The evolution of solution (51) is illustrated in Figs. 10, 11 and 12 which display three shapes of waves including W-shaped,
bright and dark solitons. The behaviour of W-shaped soliton is presented in Fig. 10 with the same values of parameters as in Fig. 7.
Under the condition A1 < 0, 4A0A2 > 3A0A2 > 0, the propagation of bright soliton is shown in Fig. 11 using the same values of
parameters as in Fig. 8. The dark soliton wave which evolves based on the restriction of A2 < 0, 4A0A2 ≥ A2

1 > 3A0A2 is plotted
in Fig. 12 with the same values of parameters taken in Fig. 9.

123



  111 Page 10 of 15 Eur. Phys. J. Plus         (2022) 137:111 

3.3 Kudryashov method

Our purpose herein is to reveal distinct structures of solitons for Eq. (1) using another integration scheme. The Kudryashov method
[36] is the main mathematical tool implemented to seek the exact solution. Let us first rewrite Eq. (15) to take the form

r2P ′′ + 4A0 + 4A1P + 3A2P
2 = 0, (52)

where P(ζ ) = V (ξ), ζ = r ξ and r is a constant to be detected. We assume that the solution of Eq. (52) is introduced as

P(ζ ) = a0 + a1F(ζ ) + a2F
2(ζ ), (53)

where a0, a1 and a2 are constants to be determined whereas F(ζ ) satisfies

F ′(ζ ) = F2(ζ ) − F(ζ ), (54)

which has the solution of the form

F(ζ ) = 1

1 + σeζ
, (55)

where σ is an arbitrary constant.
Substituting (53) together with (54) into Eq. (52), a polynomial of different powers of F j (ζ ), ( j = 0, 1, . . . , 4) will be created.

Equating each coefficient with the same power of F j (ζ ) in this polynomial to zero gives rise to a system of algebraic equations for
a0, a1, a2 and r . The system is given by

F4(ζ ) : 3A2a
2
2 + 6r2a2 = 0,

F3(ζ ) : 6A2a1a2 + 2r2a1 − 10r2a2 = 0,

F2(ζ ) : 6A2a0a2 + 3A2a
2
1 − 3r2a1 + 4r2a2 + 4A1a2 = 0,

F1(ζ ) : 6A2a0a1 + r2a1 + 4A1a1 = 0,

F0(ζ ) : 3A2a
2
0 + 4A1a0 + 4A0 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(56)

Solving this system of equations, one can arrive at the following values of ai and r .

a0 = −
2(A1 +

√
A2

1 − 3A0A2)

3A2
, (57)

a1 =
8
√
A2

1 − 3A0A2

A2
, (58)

a2 = −
8
√
A2

1 − 3A0A2

A2
, (59)

r = 2
(
A2

1 − 3A0A2
)1/4

. (60)

Exploiting these findings, we can obtain an exact soliton solution to Eq. (1) written as

Q(x, y, t) =
⎧⎨
⎩−

2
√
A2

1 − 3A0A2

3A2

⎡
⎣1 + A1√

A2
1 − 3A0A2

− 12

1 + σe(rξ)
+ 12[

1 + σe(rξ)
]2

⎤
⎦
⎫⎬
⎭

1
2

eiφ(x,y,t), (61)

provided that A2
1 − 3A0A2 > 0 for the validity of solitons with real values for the pulse width and amplitude. The solution (61)

leads to formation of W-shaped soliton. Despite its propagation, W-shaped wave is subject to decay to bright or dark solitons
under specific restrictions. For instance, it is found that W-shaped solitons degenerate to bright solitons in case that the parameters
satisfy the condition A1 < 0, 4A0A2 > 3A0A2 > 0. Further to this, W-shaped soliton does not exist in the limit A2 < 0,
4A0A2 ≥ A2

1 > 3A0A2, where the dark soliton wave is exclusively constructed. Afterwards, W-shaped soliton is formed as soon as
A2

1 > 4A0A2 occurs.
Figures 13, 14 and 15 display the behaviours of solitons given in (61) for the same values of parameters as in Figs. 7, 8 and 9.

The value of parameter σ is set to be 1. It is clear that Fig. 13 shows the 2D and 3D plots for the evolution of W-shaped soliton.
The propagation of bright soliton is described in Fig. 14 where the appearance of this pulse is dominated by the constraint A1 < 0,
4A0A2 > 3A0A2 > 0. Figure 15 demonstrates the behaviour of dark soliton which is purely created under the condition A2 < 0,
4A0A2 ≥ A2

1 > 3A0A2.
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(a) (b)

Fig. 13 W-shaped soliton solution given by (61) with the same values of parameters as in Fig. 7

(a) (b)

Fig. 14 Bright soliton solution given by (61) with the same values of parameters as in Fig. 8

(a) (b)

Fig. 15 Dark soliton solution given by (61) with the same values of parameters as in Fig. 9

(a) (b) (c)

Fig. 16 The effect of σ on the propagation of W-shaped soliton given by (61) with the same values of parameters as in Fig. 7

Indeed, the parameter σ has a remarkable influence on the evolution of wave propagation. As displayed in Fig. 16, it plays a
significant role on handling the horizontal shift of the wave graph. For example, when σ > 1 the wave is shifted to the left direction
while for 0 < σ < 1 the graph of wave is shifted to the right direction. The graph shows the 2D plots for the situation of shifting
W-shaped soliton (61) due to the variations of the parameter σ . The plots are depicted for the same values of parameters taken in
Fig. 7. On the contrary, the negative value of the parameter σ leads to the emergence of a singular soliton wave.

4 Results and remarks

We have seen that the utilized methods provide soliton solutions having a variety of structures classified into W-shaped, bright, dark
and singular solitons. Solutions (25), (33), (43), (45), (51), (61) which generate W-shaped solitons are also found to yield bright
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(a) (b)

Fig. 17 W-shaped and bright soliton solutions given by (62) and (63) with the parameter values β1 = κ2 = λ1 = λ2 = ω = ν = 0.5, κ1 = 0.8; for a
α = β2 = 0.5 and for b α = 1, β2 = 0.3

(a) (b)

Fig. 18 W-shaped and bright soliton solutions given by (64) and (65) with the same parameter values as in Fig. 17

and dark solitons under some restrictions. Further to this fascinating outcome, in case that A0 = 0 each of those solutions reduces
to two separate expressions characterizing W-type and bright solitons under specific conditions as follows.

Solutions(25), (33), (43), (45) turn into solution representing W-shaped solitons given by

Q(x, y, t) =
{
−4A1

3A2

[
1 − 3

2
sech2

(√
A1ξ

)]} 1
2

eiφ(x,y,t), (62)

when A1 > 0, A2 < 0 and they collapse to solution describing bright solitons in the form

Q(x, y, t) =
√

−2A1

A2
sech

(√−A1ξ
)
eiφ(x,y,t), (63)

if A1 < 0, A2 > 0. Figure 17 exhibits W-shaped and bright solitons given by (62) and (63).
Similarly, as A0 = 0, solution (51) generates solitons with shape of W and is written as

Q(x, y, t) =
{

−4A1

3A2

[
1 − 3 sech

(
2
√
A1ξ

)

1 + sech
(
2
√
A1ξ

)
]} 1

2

eiφ(x,y,t), (64)

provided A1 > 0, A2 < 0 and it is converted to bright solitons of the form

Q(x, y, t) =
{

−4A1

3A2

sech
(
2
√−A1ξ

)

1 + sech
(
2
√−A1ξ

)
} 1

2

eiφ(x,y,t), (65)

when A1 < 0, A2 > 0. Figure 18 represents W-shaped and bright solitons given by (64) and (65).
Likewise, once A0 = 0 solution (61) changes to W-shaped solitons given by

Q(x, y, t) =

⎧
⎪⎨
⎪⎩

−4A1

3A2

⎡
⎢⎣1 − 6

1 + σe(2
√
A1)ξ)

+ 6[
1 + σe(2

√
A1ξ)

]2

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

1
2

eiφ(x,y,t), (66)

provided A1 > 0 and A2 < 0. On the other hand, if A1 < 0 and A2 > 0, it is transformed into bright solitons introduced as

Q(x, y, t) =

⎧
⎪⎨
⎪⎩

−8A1

A2

⎡
⎢⎣ 1

1 + σe(2
√−A1ξ)

− 1[
1 + σe(2

√−A1ξ)
]2

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

1
2

eiφ(x,y,t). (67)
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(a) (b)

Fig. 19 W-shaped and bright soliton solutions given by (66) and (67) with the same parameter values as in Fig. 17

Figure 19 demonstrates W-shaped and bright solitons given by (66) and (67).
In addition to W-shaped, bright, dark and singular solitons, the obtained JEFs solutions can degenerate to periodic-type solutions

in terms of trigonometric functions as the modulus of JEFs approaches zero. However, these periodic function solutions are omitted
in this work since we only focus on soliton type solutions.

The various structures of chiral solitons constructed in the present study are completely different in comparison with those
reported in the previous studies in literature.

5 Stability analysis

In this section, the stability of the obtained solutions is examined by means of the standard linear stability analysis. Accordingly,
we introduce the perturbed solution of the form

Q(x, y, t) =
[√

P +U (x, y, t)
]
ei Pt , (68)

where P is the incident power at the point of t = 0 while U (x, y, t) is a small perturbation and U (x, y, t) 	 P .
Substituting Eqs. (68) into (1) and linearizing, we arrive at

i
∂U

∂t
− PU + α

(
∂2U

∂x2 + ∂2U

∂y2

)
− i Pβ1

(
∂U

∂x
− ∂U∗

∂x

)
− i Pβ2

(
∂U

∂y
− ∂U∗

∂y

)
= 0, (69)

where ∗ denotes the conjugate of the complex function U (x, y, t). Assuming that the solution of Eq. (69) is given as

U (x, y, t) = γ1e
i(K1x+K2 y−�t) + γ2e

−i(K1x+K2 y−�t), (70)

where � and K1, K2 are the frequency of perturbation and normalized wave numbers. Inserting ansatz (70) into Eq. (69), we find
two equations in γ1 and γ2 upon separating the coefficients of exp{i(K1x + K2y −�t)} and exp{−i(K1x + K2y −�t)} defined as

[
(β1K1 + β2K2)(γ1 − γ2) − γ2

]
P − [

α(K 2
1 + K 2

2 ) + �
]
γ2 = 0,[

(β1K1 + β2K2)(γ1 − γ2) − γ1
]
P − [

α(K 2
1 + K 2

2 ) − �
]
γ1 = 0.

(71)

The system of Eq. (71) yields the coefficient matrix of γ1 and γ2 in the form
⎡
⎢⎢⎢⎢⎣

(β1K1 + β2K2)P −(β1K1 + β2K2 + 1)P
−α(K 2

1 + K 2
2 ) − �

(β1K1 + β2K2 − 1)P −(β1K1 + β2K2)P
−α(K 2

1 + K 2
2 ) + �

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

γ1

γ2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0

0

⎤
⎥⎥⎥⎥⎦

. (72)

In order to extract nontrivial solution for the coefficient matrix, the determinant has to be vanished. From this determinant, we obtain
the dispersion relation as

�2 + 2�P(β1K1 + β2K2) − (
P + α(K 2

1 + K 2
2 )

)2 = 0. (73)

The solution of the dispersion relation (73) for � is presented by

� = −(β1K1 + β2K2)P ±
√

(β1K1 + β2K2)2P2 + (
P + α(K 2

1 + K 2
2 )

)2
. (74)

This expression diagnoses the steady-state stability that depends on the dispersion, self-steepening effect and wave numbers. It is

obviously noticed that (β1K1 + β2K2)
2P2 + (

P + α(K 2
1 + K 2

2 )
)2

is always ≥ 0. This means that � is real for all values of wave
numbers K1, K2. Hence, the steady state is stable against wave number perturbations.
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6 Conclusion

This paper has concentrated on investigating the behaviours of chiral solitons in (1+2) dimensions. Three efficient approaches are
implemented to secure the soliton solutions of the governing model. All derived solutions are extracted based on nonlinear phase
shift in contrast of all previous studies. The obtained chiral solitons have different profiles including W-shaped, bright, dark and
singular solitons. The graphical representations of W-shaped, bright and dark solitons are presented with distinct values of model
parameters to enable a clear view of wave behaviours. The stability of the retrieved solutions has been investigated by utilizing the
linear stability analysis which shows that all solutions are stable. To the best of our knowledge, the results obtained here are entirely
new and may enhance the understanding of soliton dynamics in nonlinear phenomena that appear in various scientific fields.
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