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Abstract In this paper, we consider a metallic coaxial waveguide with Piet Hein cross section
filled by cold unmagnetized homogenous plasma. First by introducing a Piet Hein waveguide
and considering a suitable approximation, wave equation as two differential equations is
presented. Then, electromagnetic fields associated with a transverse magnetic wave (TM)
and a transverse electric wave (TE) propagating inside the Piet Hein coaxial waveguide-
filled plasma are obtained and plotted. Using the boundary conditions in the Piet Hein coaxial
waveguide containing cold plasma, the dispersion relations for TM and TE modes are derived
and plotted. The energy and dynamic of an injected external electron with initial energy using
radiation of an electromagnetic source in the Piet Hein, plasma coaxial waveguides for TM
and TE modes are investigated. The obtained differential equations related to electron motion
and energy are numerically solved by the fourth-order Runge–Kutta method. Numerical
computations are made and the motion path and kinetic energy of electron injected into the
purposed Piet Hein plasma coaxial waveguides for two considered modes are graphically
presented.

1 Introduction

The Piet Hein coaxial waveguide consists of an internal solid metallic rod cylinder with a Piet
Hein curve cross section surrounded by a hollow cylindrical metal shell having a Piet Hein
curve cross section. The space between two conductors can be filled with vacuum, dielectric,
plasma, etc.

Various waveguides have cross sections with different shapes such as rectangular, circu-
lar, elliptical, triangular, annular, Piet Hein, cardiodic and other cross sections [1–14]. Since
rectangular and circular waveguides are necessary for different systems, a waveguide with a
cross-sectional located in the middle between the circle and the rectangle will be very attrac-
tive. A waveguide with the cross section of the Piet Hein curve only satisfies these conditions
and offers interesting results. The special feature of such a structure is that it basically has
the properties of the circular waveguide and elliptical waveguide. These waveguides will be
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very useful, because due to the special structure of such waveguides, adverse effects such as
wave scattering, etc., are not expected to happen. These effects may be present in rectangular
waveguides due to the sharp corners, which have some effect on the wave propagation. Of
course, a new cross section is not chosen arbitrarily for the waveguide, but it is a systematic
choice. Some geometries are modified or distorted cross sections of circles and rectangles.
The geometry of Piet Hein is in the middle of the two. Configurations are determined so
that mathematical analysis is possible. The main issue is to understand how distorting the
cross section of a waveguide or introducing a new substance can change modal behavior.
A comparative study has been conducted on the subject of modal properties and scattering
of optical waveguides with Piet Hein section [12]. For a structure consisting of an annular
optical Piet Hein waveguide, theoretical analysis and scattering curves are investigated [13].
The dispersion properties of an optical Piet Hein waveguide that has a conductive sheath
helical have been investigated [14]. On the other hand, plasma can be used to support very
high electric fields. Therefore, to accelerate the charged particles, waveguides containing
plasma can be used. One of the interesting applications of plasma waveguides is their use in
charged particle accelerators. It is clear that the type of waveguide cross section can play an
important role in this goal. Much research has been done by researchers on the acceleration
and dynamics of charged particles in waveguides with rectangular, triangular, circular and
elliptical cross sections [15–30].

However, the coaxial waveguide consists of a hollow conductive shell and a solid conductor
rod that is coaxial with the shell. The cross section of the shell and rod can be designed in
circular, elliptical, Piet Hein curve shapes, etc. The coaxial devices are capable of generating
higher power than conventional cylindrical devices. Recently, a method has been proposed to
achieve high power at a given wavelength with lower beam energy. In this method, a free laser
electron can be used using an annular electron beam in a coaxial waveguide [31–33]. Coaxial
waveguides have many applications and many studies have been done about them [34–37].
The high-frequency eigenmodes of a coaxial waveguide including a magnetized annular
plasma have been analyzed [34]. Propagation of electromagnetic waves in a magnetized
plasma coaxial waveguide has been studied [35]. Electron energy gain in the transverse
electric mode of a coaxial plasma waveguide has been studied [36]. Furthermore, propagation
of space-charge waves through a coaxial waveguide with circular cross section and containing
an annular magnetized plasma has been investigated [37].

It is mentioned that Piet Hein waveguide has already been studied in the field of optical
works, but the main and novel idea of our work is to use these types of waveguides containing
plasma and in the microwave range.

In this work, we consider a metallic Piet Hein coaxial waveguide that it is contained
cold unmagnetized plasma. The basic equations and the wave equation are presented in this
structure and its solutions are expressed, approximately. Here, the propagating waves can be
divided into two basic sets of modes. For transverse magnetic modes (TM), the magnetic
field component along the propagation direction is equal to zero. For the transverse electric
field modes (TE), the electric field has a zero component along the propagation direction.
The dispersion relation and fields for TM and TE modes are obtained in the considered
structure and plotted. The motion of an electron injected into the structure was investigated
and analyzed numerically and graphically. In the paper, Introduction is presented as Sect. 1.
In Sect. 2, basic equations in the Piet Hein waveguide and wave equation in this geometry
considering a suitable approximation are presented. In Sect. 3, the electromagnetic field for
TM mode and dispersion relation in the Piet Hein plasma coaxial waveguide are obtained and
plotted. Electron movement injected into the considered coaxial waveguide was investigated
and analyzed for TM mode numerically and graphically. In Sect. 4, the electromagnetic
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field for TE mode and dispersion relation in the structure are obtained and plotted. Electron
movement injected into the Piet Hein waveguide was investigated and analyzed for TE mode
numerically and graphically. Conclusion is expressed in Sect. 5.

2 Basic equations in the Piet Hein waveguide

We consider a Piet Hein waveguide and the following equation is defined as:(
x

a0

)n

+
(

y

b0

)n

= 1, (1)

a0 and b0 introduce as the semi diameters of the curve and we have considered n = 4 , a0 =
b0 = a . The Piet Hein curve as the shape of the cross section of the considered waveguide
is presented by the relation:

x4 + y4 = a4, (2)

We introduce a suitable coordinate (ρ, ξ, z) for the study of the considered cross section.
Furthermore, we introduce the curves as follow:

x4 + y4 = ρ4, (3)

and the curves perpendicular to above curves as:

1

x2 − 1

y2 = 1

ξ2 , (4)

Therefore, ρ = constant shows a Piet Hein curve. Figure 1 shows curves of, ρ =
constant and, ξ = constant for different values of, ρ and, ξ . The scale factors hρ, hξ

and hz can be calculated as follows:

hρ = ρ3√
A[ξ2 + ρ2 − ξ2

√
ξ2 + ρ2]

, (5)

Fig. 1 Geometry of cross-sectional of Piet Hein coaxial waveguide
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hξ =
√

ξ2 + ρ2 − ξ2√
A(ξ2 + ρ2)

, (6)

hz = 1, (7)

where we introduce parameter A as:

A =
√[√

ξ2 + ρ2 + ξ2
]2 − 4ξ4, (8)

Using the Maxwell equations and considering the time dependence as eiωt , one can
obtain the longitudinal component of electric or magnetic fields by solving the Helmholtz
wave equation inside the waveguide [12,13,38]:

[
∇2 + ω2

c2 ε

](
Ez(ρ, ξ, z)
Bz(ρ, ξ, z)

)
= 0, (9)

where ω is the angular frequency, and ε is the dielectric constant of the waveguide region.
When the medium inside the waveguide is filled with a homogeneous cold plasma, the

dielectric constant of cold plasma is defined as: ε = (1− ω2
p

ω2 ) where ωp = (n0e2/meε0)
1
2 is

the plasma frequency and n0 is the density of electrons in the plasma and ε0 is the
electric permittivity in free space and for free space ε = 1 . It is assumed that Ez =
Ez(ρ, ξ)ei(ωt−βz) and Bz = Bz(ρ, ξ)ei(ωt−βz), therefore:

Fig. 2 Dispersion curves for electromagnetic waves of purposed TM mode in the plasma Piet Hein coaxial
waveguide
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Fig. 3 Electric and magnetic fields for purposed TM mode in the plasma Piet Hein coaxial waveguide as
function of ρ and ξ = const., for first solution of Eq. (14)

3A
√

ξ4 + ρ4

ρ7

[√
ξ4 + ρ4 − ξ2

] ∂Ez(Bz)

∂ρ
+ Aξ2

ρ6

[√
ξ4 + ρ4 − ξ2

] ∂2Ez(Bz)

∂ρ2

+ 3Aξ[√
ξ4 + ρ4 − ξ2

] ∂Ez(Bz)

∂ξ

+ A
√

ξ4 + ρ4[√
ξ4 + ρ4 − ξ2

] ∂2Ez(Bz)

∂ξ2 +
(

ω2

c2 ε − β2
)
Ez(Bz)z = 0, (10)

By applying the approximation ρ � ξ and using the technique of separation of variables
and considering Ez(Bz) = F(ρ)G(ξ), the above equation is converted to two following
equations as:

ρ6

√
2

1

F(ρ)

∂2F(ρ)

∂ρ2 + 3ρ5

√
2

1

F(ρ)

∂F(ρ)

∂ρ
+ (

ω2

c2 ε − β2)F(ρ) = α, (11)

4
√

2ξ6 1

G(ξ)

∂2G(ξ)

∂ξ2 + 12
√

2ξ5 1

G(ξ)

∂G(ξ)

∂ξ
= −α, (12)
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Fig. 4 Electric and magnetic fields for purposed TM mode in the plasma Piet Hein coaxial waveguide as
function of ρ and ξ = const., for second solution of Eq. (14)

where α is separation constant. Here, we consider the simplest solution with α = 0, and
considering this assumption, two differential equations are obtained as follows:

∂2F(ρ)

∂ρ2 + 3

ρ

∂F(ρ)

∂ρ
+ √

2(
ω2

c2 ε − β2)F(ρ) = 0, (13)
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Fig. 5 Electric and magnetic fields for purposed TM mode in the plasma Piet Hein coaxial waveguide as
functions of ρ and z and ξ = const., for first solution of Eq. (14)

∂2G(ξ)

∂ξ2 + 3

ξ

∂G(ξ)

∂ξ
= 0, (14)

The second-order differential Eq. (14) has two solutions. The first solution is equivalent to a
constant amount and the second solution is a function of ξ .

3 Electromagnetic fields in the Piet Hein coaxial waveguide containing plasma for TM
mode

Now we consider a Piet Hein coaxial waveguide [13] filled by cold unmagnetized homo-
geneous plasma with inner Piet Hein metallic boundary ρ = a and outer Piet Hein
metallic boundary ρ = b. We assume an electromagnetic radiation for excitation of the
T M mode in the direction of the z-axis. We use Maxwell’s equation, boundary conditions
Ez |ρ=a = 0 , Ez |ρ=b = 0 , considered approximation in Sect. 2, ρ � ξ , and Eqs. (13, 14).
Then, we calculate the electromagnetic field components of the TM mode as follows:

Ez = A

Y1(ka)

1

ρ
[Y1(ka)J1(kρ) − J1(ka)Y1(kρ)]G(ξ)exp(i(ωt − βz + δ)), (15)

Eρ = − iβ

hρ(ω2

c2 ε − β2)

A

Y1(ka)

[
− 1

ρ2 [Y1(ka)J1(kρ) − J1(ka)Y1(kρ)

]
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Fig. 6 Electric and magnetic fields for purposed TM mode in the plasma Piet Hein coaxial waveguide as
functions of ρ and z and ξ = const., for second solution of Eq. (14)

+ 1

ρ
[Y1(ka)J ′

1(kρ) − J1(ka)Y ′
1(kρ)]]G(ξ)exp(i(ωt − βz + δ)), (16)

Eξ = − iβ

hξ (
ω2

c2 ε − β2)

A

Y1(ka)

1

ρ
[Y1(ka)J1(kρ) − J1(ka)Y1(kρ)]

×G ′(ξ)exp(i(ωt − βz + δ)), (17)

Bρ = iωε0μ0ε

hξ (
ω2

c2 ε − β2)

A

Y1(ka)

1

ρ
[Y1(ka)J1(kρ) − J1(ka)Y1(kρ)]
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Fig. 7 Trajectory of electron in the plasma Piet Hein coaxial waveguide for purposed TM mode

Fig. 8 Changes of kinetic energy of electron in the plasma Piet Hein coaxial waveguide with for purposed
TM mode

×G ′(ξ)exp(i(ωt − βz + δ)), (18)

Bξ = − iωε0μ0ε

hρ(ω2

c2 ε − β2)

A

Y1(ka)

[
− 1

ρ2 [Y1(ka)J1(kρ) − J1(ka)Y1(kρ)]

+ 1

ρ

[
Y1(ka)J ′

1(kρ) − J1(ka)Y ′
1(kρ)

] ]
G(ξ)exp(i(ωt − βz + δ)), (19)

where

k =
√

√
2(

ω2

c2 ε − β2) , ε = 1 − ω2
p

ω2 , (20)

ωP =
√

ne2

ε0me
is plasma frequency, n is electrons density, −e is the charge of electron, me is

the electron mass, and β is wavenumber.
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Fig. 9 Changes of angle θ versus z in the plasma Piet Hein coaxial waveguide with for purposed TM mode

Fig. 10 Dispersion curves for electromagnetic waves of purposed TE mode in the plasma Piet Hein coaxial
waveguide

The dispersion function in the supposed plasma Piet Hein coaxial waveguide is obtained
by applying the mentioned suitable boundary conditions in the boundaries ρ = a ρ = b.
Then, the dispersion equation is calculated as:

J1(ka)Y1(kb) − J1(kb)Y1(ka) = 0 (21)

We plotted the dispersion relation related to these waves in Fig. 2.
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(a) Bz versus ρ

(b) Eξ versus ρ (c) Bρ versus ρ

Fig. 11 Electric and magnetic fields for purposed TE mode in the plasma Piet Hein coaxial waveguide as
function of ρ and ξ = const., for first solution of Eq. (14)

Figures 3, 4, 5 and 6 show the components of electric and magnetic fields for the considered
TM mode.

3.1 Electron movement in the plasma-containing Piet Hein coaxial waveguide for TM mode

In this subsection, we assume that an electron is injected in the cold plasma Piet Hein coaxial
waveguide and accelerate under the purposed TM mode of electromagnetic wave. We want to
study the variation of energy and the path of an electron in the purposed coaxial waveguide.
The Lorentz and energy equations are written in the purposed coaxial waveguide. To investi-
gate the behavior of electrons inside this coaxial waveguide, we solve the following equations
by the fourth-order Runge–Kutta numerical method. The Lorentz and energy equations for
electrons in Cartesian coordinates are written as follows:

d(γmevx )

dt
= −e[Ex + vy Bz − vz By], (22)

d(γmevy)

dt
= −e[Ey + vz Bx − vx Bz)], (23)

d(γmevz)

dt
= −e[Ez + vx Bu − vy Bx ], (24)
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(a) Bz versus ρ

(b) Eρ versus ρ (c) Eξ

ρ ξ

versus ρ

(d) B versus ρ (e) B versus ρ

Fig. 12 Electric and magnetic fields for purposed TE mode in the plasma Piet Hein coaxial waveguide as
function of ρ and ξ = const., for second solution of Eq. (14)

and:

d(γmec2)

dt
= −e(vx Ex + vy Ey + vz Ez), (25)

It is mentioned that we consider the first solution of Eq. (14). In Fig. 7, we plotted the
path of the electron in the purposed coaxial waveguide. Figure 8 illustrates the kinetic energy
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(a) Bz versus ρ and z

(b) Eξ versus ρ and z (c) Bρ versus ρ and z

Fig. 13 Electric and magnetic fields for purposed TE mode in the plasma Piet Hein coaxial waveguide as
functions of ρ and z and ξ = const., for first solution of Eq. (14)

in the plasma Piet Hein coaxial waveguide for different values of δ. Figure 9 presents the

angle θ = arctan
√
p2
x + p2

y/pz in the plasma Piet Hein waveguide for different values of δ.

4 Electromagnetic fields in the Piet Hein coaxial waveguide containing plasma for TE
mode

Similar to Sect. 3, we consider a Piet Hein coaxial waveguide filled by cold unmagnetized
plasma and an electromagnetic radiation for excitation of the TE mode in the direction
of the z-axis. We use Maxwell’s equation, boundary condition Eξ |ρ=a = 0 , considered
approximation Sect. 2 , ρ � ξ , and Eqs. (13, 14). Then, we calculate the field components
of for TE mode as follows:

Eρ = − iωμ0

hξ (
ω2

c2 ε − β2)

A

α2

1

ρ
[α2 J1(kρ) − α1Y1(kρ)]G ′(ξ)exp(i(ωt − βz + δ)), (26)

Eξ = iωμ0

hρ(ω2

c2 ε − β2)

A

α2
[− 1

ρ2 [α2 J1(kρ) − α1Y1(kρ)] + 1

ρ
[α2 J

′
1(kρ) − α1Y

′
1(kρ)]]

×G(ξ)exp(i(ωt − βz + δ)), (27)
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(a) Bz versus ρ and z

(b) Eρ versus ρ and z (c) Eξ versus ρ and z

(d) Bρ versus ρ and z (e) Bξ versus ρ and z

Fig. 14 Electric and magnetic fields for purposed TE mode in the plasma Piet Hein coaxial waveguide as
functions of ρ and z and ξ = const., for second solution of Eq. (14)

Bρ = − iβμ0

hρ(ω2

c2 ε − β2)

A

α2
[− 1

ρ2 [α2 J1(kρ) − α1Y1(kρ)] + 1

ρ
[α2 J

′
1(kρ) − α1Y

′
1(kρ)]]

×G(ξ)exp(i(ωt − βz + δ)), (28)

Bξ = − iβμ0

hξ (
ω2

c2 ε − β2)

A

α2

1

ρ
[α2 J1(kρ) − α1Y1(kρ)]G ′(ξ)exp(i(ωt − βz + δ)), (29)
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Fig. 15 Trajectory of electron in the plasma Piet Hein coaxial waveguide for purposed TE mode

(a) Kinetic energy versus z (b) Kinetic energy versus x,y

Fig. 16 Changes of kinetic energy of electron in the plasma Piet Hein coaxial waveguide with for purposed
TE mode

Bz = A

α2
μ0

1

ρ
[α2 J1(kρ) − α1Y1(kρ)]G(ξ)exp(i(ωt − βz + δ)), (30)

where:

α1 = − 1

a
J1(ka) + J ′

1(ka) , α2 = − 1

a
Y1(ka) + Y ′

1(ka), (31)

α3 = −1

b
J1(kb) + J ′

1(kb) , α4 = −1

b
Y1(kb) + Y ′

1(kb),

k =
√

√
2(

ω2

c2 ε − β2) , εp = 1 − ω2
p

ω2 ,
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Fig. 17 Changes of angle θ versus z in the plasma Piet Hein coaxial waveguide with for purposed TE mode

By applying boundary condition, the dispersion equation is calculated as:

α1α4 − α2α3 = 0 (32)

We plotted the dispersion relation related to these waves in Figs. 10, 11, 12, 13 and 14 show
the variations of the real part of electric and magnetic fields components for considered TE
mode.

4.1 Electron movement in the plasma-containing Piet Hein coaxial waveguide for TE mode

Similar to Subsect. 3.1, we examine the electron movement in the cold plasma Piet Hein
waveguide that accelerates under the purposed TE mode of electromagnetic wave. Here
again, we choose the first solution of Eq. (14). In Fig. 15 we plotted the path of the electron
in the purposed waveguide. Figure 16 illustrates the kinetic energy in the plasma Piet Hein

waveguide for different values of δ . Figure 17 presents the angle θ = arctan
√
p2
x + p2

y/pz in

the plasma Piet Hein waveguide for different values of δ.

5 Conclusions

In this work, solutions of wave equation a metallic Piet Hein coaxial waveguide contain-
ing cold unmagnetized plasma were approximately presented. The components of elec-
tromagnetic field for TM and TE modes in the plasma coaxial waveguide with Piet Hein
cross section were obtained and fields are plotted for different cases. Using the boundary
conditions in the considered coaxial waveguide, the dispersion relations for two consid-
ered modes were derived. Dispersion relation and obtained fields were plotted. The motion
of an electron injected in the metallic Piet Hein coaxial waveguide including cold homo-
geneous unmagnetized plasma in the presence of TM and TE modes excited by electro-
magnetic radiation wave graphically investigated. The differential equations appeared to
be solved using the Runge–Kutta numerical method. Numerical calculations were done,
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and the results were plotted. It is mentioned that we consider a suitable approximation and
ignored from different effects. We used the special modes. It is possible excitation of sur-
face wave modes at the boundaries of structures, but in this investigation, we ignored the
effect of surface waves and so on. Here, we assume that the nonlinear effects to be neg-
ligible in this work. We have assumed the different approximates and neglected the dif-
ferent effects and so the results in these structures are investigated approximately. Regard-
less of their approximation, the results presented in this paper are still useful for problem
analysis.

Data Availability Statement The author confirms that the data supporting the findings of this study are
available within the article and its supplementary materials.
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