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Abstract We consider dynamics of a symmetron-like field to investigate dark matter effects
on galaxy scales. For this purpose, we propose a model for the metric components of a
spherically symmetric space–time in regions of galactic halos where the rotation curves are
flat. Then, we show that the mass corresponding to the effects of the symmetron scalar field
obtained from modified Einstein field equations is responsible for the flat rotation curves
in a galactic halo so that the motion of test particles in such a region can be explained
without the need to introduce dark matter. In addition, the light deflection angle for this
model is investigated in a galactic halo as a possible physical test for comparison purposes.
The results show compatibility with previous models such as generalized pseudo-isothermal
dark matter with exponential matter density, brane F(R) or F(R, T ) gravity.

1 Introduction

The issue of dark matter is one of the important problems in modern cosmology and galactic
astronomy. Two very well-known observations, namely galactic rotation curves and mass
discrepancy in galactic clusters, suggest the existence of dark matter [1,2]. The observations
show that the velocity of a star or an interstellar cloud rotating in the disk of a spiral galaxy
increases linearly with distance from the centre of the galaxy and attains approximately
constant values in the outer range of the baryonic matter disk. This is in contrast to Newtonian
gravity where it predicts the reduction of velocity in the halo region, assuming a centrally
dominated mass associated with the observed luminous matter. Such behaviour of galactic
rotation curves is explained by the existence of some mysterious invisible matter distribution,
known as dark matter [3,4].

The mass difference of clusters is another evidence for the existence of dark matter which
can be understood by measuring the mass of a cluster in two different ways: either measuring
the total mass obtained from the sum of all observable mass members within the cluster or
by using the virial theorem, which provides an estimated mass of the cluster called the virial
mass. The comparison between the virial mass and total baryonic mass shows that the former
is almost 20–30 times greater than the latter. This fact is known as the virial mass discrepancy
and is explained by postulating the existence of dark matter in clusters [1,5].
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The most acceptable model to describe evolution of the universe, known as �CDM ,
proposes cold dark matter (CDM) to explain rotational velocity of spiral galaxies, virial mass
discrepancy, observed CMB anisotropies, large-scale structure, galactic formation processes
and gravitational lensing of distant objects [6–8]. Despite the simplicity, beauty and efficiency
of �CDM in describing the large-scale evolution of the universe, the theory faces serious
challenges at small scales such as the Cusp-core problem, fewer observed massive satellites
around Milky Way (MW)-like galaxies than what the theory predicts, reproducing the phase-
space distribution of satellites around MW and Andromeda galaxies and early formation of
large galaxies at high redshifts [6]. Hence other alternatives to CDM have been proposed
and attracted considerable attention, among which one comes across warm dark matter, self-
interacting dark matter, brane world models, modified gravity (MG) [9–22] and scalar field
dark matter (SFDM) [6]. Of such models, we focus on SFDM which assumes dark matter
as an ultra-light scalar field. The scalar field in SFDM can form Bose–Einstein condensates
(BEC) at cosmological scales and behaves like CDM at large scales. Contrary to �CDM ,
fewer satellite halos were predicted in SFDM and formation of massive galaxies would occur
at high redshifts [6]. Scalar fields with positive quadratic [23–25] or quartic self-interacting
potential have been studied before [26]. In this work we consider a symmetron-like model of
SFDM as an alternative to CDM. Similar to other screening mechanisms such as Chameleon,
dilaton and Vainshtein scenario; in this model, there exists an interaction between matter
content and the scalar field due to a conformal factor so that the effective potential of the
scalar field depends on the matter density of the environment. The model is consistent with
results from GR in local experiments, while significantly deviates from GR in cosmological
scale [27–29]. The screening mechanism is proposed in order to modify GR at cosmological
scales, while the effects of extra degrees of freedom are screened from local gravitational
experiments. For symmetron, the modification of GR occurs when the matter content inside
the system becomes smaller than a critical density. In this case the shape of the effective
potential changes, figuratively speaking, from U to the W at cosmic scales. Since in a static
system, the scalar field takes values which minimize the effective potential, under proper
conditions the system undergoes a transition and the scalar field leaves the unstable position
to settle in a true stable vacuum. Assuming that matter content inside the Milky Way to
be larger than the critical density, one may use symmetron mechanism to explain late time
cosmic acceleration [27,29].

Moreover, the curvature of space–time near any mass, including dark matter, deflects the
passing photons and distorts the images of the background galaxies which means that gravity
acts as a lens around the massive object. Accordingly, the lensing of light by galaxies in a
halo where galaxy rotation curves are constant is an important observational test showing
the effects of dark matter. This effect was first observed during a solar eclipse in front of the
Hyades star cluster, where stars appeared to move as they passed behind the sun [30]. The
impression was then improved by Zwicky when he suggested that the ultimate measurement
of cluster masses would be accomplished from gravitational lensing [31]. Hence investigating
the light deflection angle shows whether or not any proposed model can be a proper alternative
to dark energy.

In this work, we use the symmetry breaking mechanism based on symmetron model
and investigate dark matter effects on galaxy scales. Unlike [32] where the modification to
GR occurs in high-density environments trough the symmetron field, we consider a Higgs-
like potential for the scalar field and let the transition occur when the baryonic matter is
subdominant in the halo region. Our results show that rotation curves of a spiral galaxy and
light deflection would be explained by the effect of a symmetron field in the halo region.
The paper is organized as follows: Sect. 2 deals with a review of the symmetron model as an
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example of SFDM models and continues by considering a spherically symmetric space–time.
In Sect. 3 the field equations for the symmetron model are obtained, and then in Sect. 4, the
metric components in the region of the flat rotation curves are derived. The light deflection
angle for this model is investigated in Sect. 5. Finally, conclusions are drawn in the last
section.

2 The symmetron model

In this section, we briefly introduce the symmetron model and derive field equations in a
four-dimensional space–time. The action of the model is in the form

S =
∫

d4x
√−g

[
M2

Pl

2
R − 1

2
gμν∂μφ∂νφ − V (φ)

]
+

∫
d4x

√−g̃Lm
[
g̃μν, ψ

]
, (1)

where MPl ≡ (8πG)−1/2 is the reduced Planck mass, V (φ) is a self-interacting potential, ψ

is the matter field, and Lm is the Lagrangian of the matter. The metric in the Jordan frame,
g̃μν , is conformally related to that of the Einstein frame according to

g̃μν = A2 (φ) gμν. (2)

As an example of the scalar potentials V (φ) and A(φ), which must have Z2 symmetry, one
may consider

V (φ) = −1

2
μ2φ2 + 1

4
λφ4, (3)

and

A (φ) = 1 + φ2

2M2 , (4)

where μ2 and M are mass scales of the model and λ is a positive dimensionless coupling
constant [27]. Variation of action (1) with respect to the metric tensor gμν associated with
the Einstein frame gives the field equations

Gμν ≡ 1

M2
Pl

(
T [m]

μν + T [φ]
μν

)
= 1

M2
Pl

(
A2 (φ) T̃ [m]

μν + T [φ]
μν

)
, (5)

where T̃ [m]
μν is the energy-momentum tensor of the matter which is conserved in the Jordan

frame and defined as

T̃ [m]
μν = − 2√−g̃

(
δ
√−g̃Lm

)

δg̃μν
, (6)

and T [φ]
μν is the energy-momentum tensor of the scalar field, given by

T [φ]
μν = −1

2
gμν∂

αφ∂αφ − gμνV (φ) + ∂μφ∂νφ. (7)

In addition, variation with respect to the scalar field gives the following field equation

�φ = dV (φ)

dφ
− A3 (φ)

d A (φ)

dφ
T̃ [m], (8)
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where T̃ [m] is the trace of energy-momentum tensor (6) and turns to

T̃ [m] = g̃μν T̃ [m]
μν = −ρ̃[m], (9)

in the case of nonrelativistic matter.1 The relation of the matter density in the Einstein frame
to that of the Jordan frame is given by

ρ[m] = A4 (φ) ρ̃[m]. (10)

Note that ρ[m] = −T [m] = −gμνT [m]
μν where T [m]

μν is the Einstein frame energy-momentum
tensor which is not covariantly conserved (i.e. ∇μT [m]

μν �= 0 ) because matter moves on
geodesics in the Jordan frame that satisfies ∇̃μT̃ [m]

μν = 0. By defining ρ ≡ A3 (φ) ρ̃[m] =
A−1 (φ)ρ[m] as an independent quantity of the symmetron scalar field, which is conserved
in the Einstein frame, and substituting this definition in (8) one can see that the dynamics of
the scalar field is actually governed by an effective potential, i.e.

�φ = dVeff (φ)

dφ
, (11)

where

Veff (φ) ≡ V (φ) + A(φ)ρ. (12)

Keep in mind that ρ is not a physical matter density, but it is used for more conveniences and
mathematical facilities. We therefore have

Veff (φ) = 1

2

( ρ

M2 − μ2
)

φ2 + 1

4
λφ4, (13)

obviating the name screening mechanism embodied in effective potential (13). According to
this relation the effective massm2

eff = ρ

M2 − μ2 depends on local density of the environment.

Hence in regions of high density where ρ � M2μ2, the effective potential is U-shaped and the
system settles in the vacuum expectation value (VEV) �V EV = 0, while in regions where
ρ � M2μ2 and environment is rare, the effective potential is W-shaped. Figure 1 shows
behaviour of the effective potential schematically; the left plot refers to the region of high
density, while the right plot shows the effective potential where density of the environment
is rare. Starting from a region where ρ � M2μ2 and assuming the scalar field settles in the
minimum of the effective potential, that is having φV EV = 0 as the initial condition, then
in the case of density reduction the shape of the effective potential will undergo a change
to become W-shaped. So as the result of quantum fluctuations the system may leave the
unstable initial point and tends to the true vacuum �V EV = μ√

λ
. In other words, symmetry

is spontaneously broken where density of the environment is less than a critical density
ρcri t = M2μ2. The authors in [27] used this simple and beautiful mechanism to answer why
the symmetron field can be effective at cosmic scales and play the role of dark energy while
being screened in local experiments and remain undetectable.

In the rest of the paper we try to use the same mechanism for a different purpose; we
consider galactic scales where the baryonic density diminishes as one moves from the centre
of a typical spiral galaxy to the galactic halo and investigate the effects of the scalar field on
galactic rotation curves and deflection of light.

1 In our case the index m stands for the baryonic matter.
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Fig. 1 Schematic behaviour of the effective potential as a function of scalar field φ, left: for regions where
the matter density is dominant, right: for regions where the matter density is subdominant

3 Equations of motion for a static, spherically symmetric space–time

In the following, we derive the field equations for a static spherically symmetric space–time
and obtain the metric components for the model under consideration. Note that, the static
spherically symmetric space–time is produced by a spherically symmetric body at rest. The
static coordinate system means that the metric is independent of the time, and the spherically
symmetric means that the metric components are a function of radius only. Hence, we assume
that the scalar field inherits the space–time symmetry and depends only on radial coordinate,
i.e. φ = φ(r). Let us now consider an isolated system described by a static and spherically
symmetric metric given by

ds2 = −ea(r)dt2 + eb(r)dr2 + r2dθ2 + r2sin2θdϕ2, (14)

wherein a and b as a function of r must be chosen to satisfy the Einstein equations. Now,
inserting metric (14) into Eq. (5) gives the field equations as

Gt
t = − 1

r2 + 1

r2eb
− b′

reb
= − 1

M2
Pl

(
ρ[m] + ρ[φ]) , (15)

Gr
r = − 1

r2 + 1

r2eb
+ a′

reb
= p[φ]

r

M2
Pl

, (16)

and

Gθ
θ = Gϕ

ϕ = 1

4eb

(
2a′′ + a′2 − a′b′) + a′ − b′

2reb
= p[φ]

⊥
M2

Pl

, (17)

where a prime represents derivative with respect to the radial coordinate r . In the above

relations, T ν[φ]
μ = diag

(
−ρ[φ], p[φ]

r , p[φ]
⊥ , p[φ]

⊥
)

where p[φ]
r and p[φ]

⊥ correspond to the

radial and tangential pressure components of the energy-momentum tensor of the scalar
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field, respectively. From relation (7), one finds

ρ[φ] = −T t[φ]
t = φ′2

2eb(r)
+ V (φ) , (18)

p[φ]
r = T r [φ]

r = φ′2

2eb(r)
− V (φ) , (19)

p[φ]
⊥ = T θ [φ]

θ = T ϕ[φ]
ϕ = −

(
φ′2

2eb(r)
+ V (φ)

)
. (20)

Manipulation of Eqs. (15)–(17) leads to

M2
Pl

eb(r)

(
a′′ + a′2

2
− a′b′

2
+ 2a′

r

)
= ρ[m] + ρ[φ] + p[φ]

r + 2p[φ]
⊥ . (21)

To move on, we assume that a′ and b′ are slowly varying functions of the radial coordinate
so that the first three terms in (21) can be neglected. Moreover, we define ρ̄[φ] ≡ ρ[φ] +
p[φ]
r + 2p[φ]

⊥ as purely the effect of the scalar field which we call the effective scalar field
density [20,21]. Thus relation (21) changes to

M2
Pl

eb(r)

(
2a′

r

)
= ρ[m] + ρ̄[φ], (22)

where using relations (18)–(20) leads to ρ̄[φ] = −2V (φ). Furthermore, using metric (14),
the right-hand side of (11) becomes

�φ = 1

eb(r)

[(
a′ − b′

2
+ 2

r

)
φ′ + φ′′

]
, (23)

so that (11) turns to
(
a′ − b′

2
+ 2

r

)
φ′ + φ′′ = eb(r)

dVeff (φ)

dφ
. (24)

As was mentioned above, we focus on deriving the metric components for this model
which slightly differs from that of the GR. Hence, we choose ea(r)eb(r) = F(r), where the
function F(r) would be a slightly different from 1. For instance, if one considers

F (r) =
(r
s

)α ⇒ a′ + b′ = α

r
, (25)

where s is the length scale of the system and α is a dimensionless parameter, then the
model will remain in the vicinity of GR [22,33]. In this relation if α � 1, we have F(r) ≈
1+α ln (r/s) and the above assumption would be satisfied. Since in the inner parts of galaxies
the baryonic matter is dominant, it is reasonable to take the length scale of the system to be
the radius of the baryonic in the galaxy, i.e. s = rB , hence we have

ea(r) =
(

r

rB

)α

e−b(r). (26)

In the next section, we propose to determine the metric components in this model using
flat rotation curves of galactic halos.
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4 Galactic rotation curves

The observational data show that as one moves away from the core of a galaxy up to several
luminous radii, the rotational velocity increases linearly within the bulge and approaches a
constant value of about vtg ≈ 200–500 km/s [1,3]. In this section, we consider a test particle
which moves in a timelike geodesic in a static and spherically symmetric system in the
Einstein frame. The Newtonian limit of the geodesic equation is [34]

d2xμ

dτ 2 + �μ
νσ

dxν

dτ

dxσ

dτ
= −d ln A

dφ
∇μφ, (27)

wherein τ is an affine parameter along the geodesics of gμν . This equation illustrates that
there is a fifth force proportional to the gradient of φ that couples to any massive test particle.
Hence, the corresponding geodesic equation for the r–coordinate in the Einstein frame will
be

d2r

dτ 2 + �r
tt = −d ln A

dφ
grr∇rφ, (28)

where the Christoffel symbol �r
tt contains the Newtonian force that interpreted as the fifth

force [34–36]. For the stable circular orbits, i.e. dr/dτ = 0, inserting metric (14) into Eq.
(28) gives the following relation

eaa′ = − 2

A

(
d A

dφ

)
φ′, (29)

therefore, we have

ea(r) = ln

(
C0

A2

)
, (30)

where C0 is a constant of integration. Moreover, in the Newtonian limit the gtt component
of the metric is given by gtt = −ea ≈ −1 − 2ψN where ψN is the Newtonian potential. By
regarding the Poisson equation, the force in this region is equal to v2/r , which respective
the Newtonian potential will be as ψN (r) ∝ v2 ln r [37]. Also, as mentioned before, the α

parameter in (25) must be much smaller than 1 in order to have the theory close to GR in the
constant velocity dark matter-dominated region. We consider that α is approximately equal
to the second power of tangential velocity, i.e. α ≈ v2 = v2

tg/c
2 ≈ O(10−6) [22,33], which

is compatible with our requirement. For this purpose, in the galactic halo where the dark
matter dominated, we assume the metric components as the following

ea(r) = C

(
r

rB

)2v2

, (31)

and

eb(r) = 1

C

(
r

rB

)−v2

, (32)

where C is a constant. Now, using (31) we have

ea ≈
(

r

rB

)2v2

= exp

{
ln

(
r

rB

)2v2}
≈ 1 + 2v2 ln

(
r

rB

)
= 1 + 2ψN (r) . (33)
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Therefore our model has a well-defined Newtonian limit, and metric components (31) and
(32) can describe the geometry of the space–time in the region of the flat rotation curves.
Furthermore, metric component (31) should be equal to relation (30) in the radius of the
galactic halo. Hence, by using relation (4) we can obtain A|r=rB = 1, which leads to have
C0 = eC as a constraint.

Now, we want to investigate the flat rotation curve in the halo of galaxies by using metric
components (31) and (32). Considering the fact that the density of baryonic matter in a
galactic halo rapidly decreases with radius, we argue that the mass assigned to the effects of
the symmetron field density can explain the flat rotation curves without resorting to a dark
matter. Since in this region, the baryonic matter is subdominant, we consider ρ[m] � ρ̄[φ]

which is equivalent to ρ � μ2M2. In the region of our consideration, i.e. rB < r < rD ,
where the baryonic density is subdominant, one can use (22) to obtain the effect of the scalar
field density as

ρ̄[φ]  4M2
PlCv2

rv2

B

rv2−2. (34)

This relation clearly shows that ρ̄[φ] ∝ r−2, which means that the effect of the symmetron
mass varies linearly with r , i.e.

M
[φ] =

rD∫

0

4πr2ρ[φ]dr, (35)

so the symmetron mass can be held responsible for flat rotation curves in the halo of galaxies
and plays the role of dark matter.2

At the end of this section, we investigate the symmetron profile for rB < r < rD and show
that the field starts from an initial zero value at rB and, as a result of baryonic density reduction,
tends to a final nonzero value which is the true minimum of the effective potential. To do so,
using metric components (31) we rewrite Eq. (24) in terms of dimensionless variables

φ̃ = φ

φV EV
= φ

√
λ

μ
, r̃ = r

rB
, μ̃ = μrB , (36)

giving

d2φ̃

dr̃2 + 2

r̃

dφ̃

dr̃
= μ̃2

C
r̃−v2

(−φ̃ + φ̃3). (37)

By numerically integrating Eq. (37), the behaviour of the symmetron field in a galaxy halo
is revealed. Figure 2 shows the behaviour of the symmetron profile as a function of dimen-
sionless variable r̃ . As can be seen, the scalar moves from the initial value φ0 = 0 at rB
to the final value φV EV = μ√

λ
at rD which, according to Sect. 2, is compatible with the

expected effect of baryonic density reduction on the dynamic of the symmetron field. Thus,
our proposed model for the space–time geometry in the dark matter halo range, i.e. metric
components (31) and (32), is appropriate for describing symmetron field behaviour in the
dark matter-dominated area.

2 According to Newtonian gravity, to have a constant tangential velocity in the halo of galaxies, we should
have M ∝ r [38].
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Fig. 2 Symmetron profile as a function of r̃ = r
rB

in halo region for μ̃2

C = 0.001 , v2 = 10−6 and rD = 10rB .
The plot shows the proper evolution of symmetron field from initial zero value to the true nonzero value which
is the true minimum of the effective potential φV EV

5 Light deflection angle

Let us now concentrate on the deflection angle of light as an effect of dark matter in our
symmetron model. For this purpose, we consider a photon approaching a galaxy from afar.
The gravitational field leads to the bending of light at a deflection angle �ϕ given by

�ϕ = 2 |ϕ (r0) − ϕ (∞)| − π, (38)

where r0 is the radius of the closest approach to the centre of the galaxy and ϕ (∞) is the
incident direction.3 Generally, the geodesic equation for a photon reduces to [38]

ϕ (r0) − ϕ (∞) =
∫ ∞

r0

e
b(r)

2

[
ea(r0)−a(r)

(
r

r0

)2

− 1

]− 1
2 dr

r
. (39)

Considering the metric components in the region of flat rotation curves, i.e. relations (31)
and (32), the above equation leads to

ϕ (r0) − ϕ (∞) =
√
rv2

B

C

∫ rD

r0

[(r0

r

)2v2−2 − 1

]− 1
2 dr

r1+ v2
2

+
∫ ∞

rD

1√
1 − M

4πM2
Plr

⎡
⎣1 − M

4πM2
Plr0

1 − M
4πM2

Plr

(
r

r0

)2

− 1

⎤
⎦

− 1
2
dr

r
, (40)

where, in the first integral, we have considered r0 to be in the region of flat rotation curves, i.e.
rB � r0 < rD . Now, one can exactly integrate the first term in Eq. (40) which corresponds to
the dark matter-dominated region where flat rotation curves are under consideration. Also, the
second integral in Eq. (40) relates to the exterior region of dark matter halo whose integration

3 Note that, when r decreases from infinity to its minimum value r0 and increases again to become infinite, the
total change in ϕ becomes just twice the change from ∞ to r0, that is 2 |ϕ (r0) − ϕ (∞)|. But if the trajectory
was a straight line, it would only equal to π [38].
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Fig. 3 Light deflection angle as a function of r0/rD for the galaxies NGC 5533 (dash), NGC 4138 (dot),
UGC 6818 (solid) and C = 1012

with Schwarzschild metric using Robertson expansion [38] results in

�ϕ = 2

∣∣∣∣∣∣
1√

C
(
1 − v2

)
(
rB
r0

) v2
2

arctan

⎛
⎝

√(
r0

rD

)2v2−2

− 1

⎞
⎠

+ arcsin

(
r0

rD

)
+ M

8πM2
Plr0

⎡
⎣2 −

√
1 −

(
r0

rD

)2

−
√
rD − r0

rD + r0

⎤
⎦

∣∣∣∣∣∣ − π. (41)

Variation of the light deflection angle, as a function of r0/rD in a galactic halo by using the
data from Ref. [33], is plotted in Fig. 3 with the NGC 5533 galaxy with vtg = 250 km/s, the
NGC 4138 galaxy with vtg = 147 km/s and the UGC 6818 galaxy with vtg = 73 km/s, and all
withC = 1012. Moreover, we assume that the halo cut-off, i.e. rD to be at rD = 10rB , which is
consistent with observation. Also, in the second and third terms of Eq. (41), obtained from the
second integral of Eq. (40), when r0 = rD , Eq. (41) yields �ϕ = M/2πM2

PlrD = 4GM/rD
as in GR, see e.g. [33].

The comparison of the result of this diagram with other dark matter models such as
generalized pseudo-isothermal dark matter [39,40], brane F(R) gravity [21] or F(R, T )

gravity [22], demonstrates that all such models have similar behaviour in general in the sense
that the deflection angle reduces in the halo of dark matter with radius.

6 Conclusions

In this work, we have considered the symmetron model to describe dark matter effects on
galaxies as inferred from flat rotation curves. We have shown that our suggested model for
the metric components has a well-defined Newtonian limit in the halo of the galaxies. In
addition, the comparison between our model and the metric component obtained from the
geodesic equation in the Einstein frame causes to appearing a constraint on the constant of
integration. Also, the effective scalar field density ρ̄[φ], as a pure effect of the symmetron
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scalar field in the model presented here, can be considered as an alternative for dark matter
effects in galaxies. Taking into account that the density of the baryonic matter in a galaxy’s
halo is feeble, we have shown that the assumption ρ[m] � ρ̄[φ] can lead to a symmetron mass
term in modified Einstein field equations which varies linearly with radius, hence resulting
in flat rotation curves in a galactic halo. Note that the special feature of the effective potential
of the symmetron field leads to spontaneous symmetry breaking in the halo region, so the
flatness of rotation curves of galaxies can be explained without the need of the mysterious
dark matter.

Furthermore, to investigate another effect of dark matter on galaxies we studied the prop-
agation of light in our model. For this purpose, we obtained the light deflection angle in
galactic halos by using metric components proposed for the space–time geometry in this
range. The diagram indicates that the angle representing the deflection of light reduces in
the halo of a galaxy with radius, showing that its behaviour in our model is generally similar
to a number of other models, namely the generalized pseudo-isothermal dark matter model
with exponential matter density, brane F(R) gravity and F(R, T ) gravity. It is, therefore,
reasonable to consider the symmetron field as an alternative to dark matter by using our
proposed model for the metric components in galactic halos.
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