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Abstract In this work, a two-patch model featuring human, aquatic and adult mosquito pop-
ulations to investigate the impact of host migration and vertical transmission in vector popu-
lation on dengue disease transmission between two spatial locations is proposed. The model
incorporates three patch-specific control measures, namely personal protection, larvicide and
adulticide controls to gain insights into the effect of their combined efforts in curtailing the
spatial spread of the disease in the connected locations. The effective reproductive number,
RT , of the model is derived through the next-generation matrix method. Comparison the-
orem is used to prove the global asymptotic stability of the model. Qualitative analysis of
the model reveals that the biologically realistic disease-free equilibrium is both locally and
globally asymptotically stable when RT < 1, and unstable otherwise. The simulated results
indicate that vertical transmission in vector population impacts the dynamics of dengue in
the population. Human movement between patches can also increase or decrease the disease
prevalence in the population, and the disease burden can be reduced significantly, or even
eliminated, in the interacting human and mosquito populations through the implementation
of combined efforts of the three control interventions under consideration.
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Bti Bacillus thuringiensis israelensis
DF Dengue fever
DFE Disease-free equilibrium
DHF Dengue haemorrhagic fever
DSS Dengue shock syndrome
GAS Globally asymptotically stable
ICs Initial conditions
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LAS Locally asymptotically stable
SEIR Susceptible–exposed–infectious–recovered
SIR Susceptible–infectious–recovered
TE Trivial equilibrium

1 Introduction

Dengue fever (DF) is the most widely spread vector-borne viral infection in the world [1,2].
Usually, the disease occurs in tropical and subtropical regions and is predominant in more
than 100 countries [3,4] in Africa, Asia, the Eastern Mediterranean and the Americas [3].
It has become the major cause of deaths and hospitalizations by dengue haemorrhagic fever
(DHF) and dengue shock syndrome (DSS) [5]. DHF is a main cause of morbidity and death
among children in South-East Asia [1,5]. Annually, about 50 million people are affected
worldwide, particularly in urban and semi-urban areas [1,5]. According to the World Health
Organization, about 40% of the world’s population is at the risk of dengue infection [6].

DF is transmitted via bites by infected female Aedes aegypti and Aedes albopictus
mosquitoes. The disease is caused by four serologically distinct viruses identified as DEN-1-
DEN-4 [4,7,8]. Recovery from an infection by one virus serotype confers lifelong immunity
to the strain, and temporary cross-immunity to the rest. However, it increases the susceptibility
of the recovered person to the other three serotypes [4].

Presently, there is no perfect vaccine for dengue, although a number of vaccines are under
way. The live attenuated tetravalent Dengvaxia (CYD-TDV) was licensed in 2015 [9], but
the efficacy of the vaccine is yet to be properly established. Hence, dengue control measures
still rely on the strategies that focus on the reduction of vector population and host–vector
contacts. These include applying larvicide to mosquito breeding sites, open space spraying
of insecticide, destroying artificial mosquito breeding sites, and individual protection against
mosquito bites [3,9,10].

Over the last few years, a number of factors have contributed to the significant increase in
the incidence of dengue globally. These factors include human movement, vertical transmis-
sion and changes in local weather and habitat conditions [11]. Taghikhani and Gumel [11]
reported that vertical (transovarial) transmission in vector population has marginal impact
on the dynamics of dengue. Also, human movement is known to be one of the major factors
responsible for the re-emergence of infectious diseases [4,12]. It contributes to the expansion
of the geographic range of the diseases [4].

A mathematical modelling approach is one of the tools that are helpful in studying the
dynamical behaviour and developing some useful strategies for possible control and eradica-
tion of infectious diseases. In many previous works [13–21], several nonlinear mathematical
models have been developed to study the transmission dynamics and control of vector-borne
diseases, particularly dengue in a homogeneous environment. Alade et al. [22] studied a
nonlinear mathematical model with multi-target cells to describe the within-host transmis-
sion dynamics of viral infections. In a similar study [23], global asymptotic behaviour of
generalized within-host Chikungunya virus models around the steady states was investi-
gated. Furthermore, several studies have been conducted based on the use of autonomous
mathematical model to facilitate the understanding of the transmission dynamics of vector-
borne diseases involving human movement in a patchy environment [4,7,24–31] and non-
autonomous model to gain epidemiological insights into the optimal strategy needed to
minimize the spread of the diseases in a coupling environments at minimum costs [10,32–
34]. There are two approaches for modelling the effect of dispersal, namely metapopulation

123



Eur. Phys. J. Plus        (2021) 136:1192 Page 3 of 32  1192 

(Eulerian approach) and Lagrangian approach [7,35]. The two concepts have been applied
to explore the role of human movement in the context of dengue. For instance, [4] developed
a multi-patch dengue model by using the Eulerian approach to investigate the roles of human
movement and temperature on the dynamics of dengue disease transmission in a patchy envi-
ronment. The model follows the SEIR (susceptible–exposed–infectious–recovered) and SIR
(susceptible–infectious–recovered) structures for human and mosquito populations, respec-
tively. Moreover, [24] constructed a two-patch SIR + SI model to study the transmission
dynamics of dengue in two interconnected patches with coexistence of two virus serotypes.
In [7], a two-patch SEIR+SEI dengue model, using the Lagrangian approach, is developed to
investigate the impact of host mobility on dengue disease spread in two connected patches.

In Bock and Jayathunga [10], a multi-patch dengue model was based on the SIR+SI
structure to examine the optimal strategy for controlling the transmission and spread of
dengue in n-connected patches using patch-specific personal protection control measure. The
control model was analysed using optimal control theory. In similar studies [32,34], a two-
patch SEIR+SEI model was used to estimate the impact of patch-specific optimal personal
protection control on the dynamics of dengue disease transmission in the populations of the
connected patches. More recently, Kim et al. [33] developed a two-patch dengue model with
temperature-dependent parameters, in which patch 1 is assumed to be a park area where
mosquitoes prevail, while patch 2 is considered as a residential area where people live. The
model was used to assess the impacts of inter-patch travel blockage, vector control and virus
transmission control on the dynamics of dengue spread in the two connected patches. The
study suggested that the combination of the three control measures is the most effective.
Later, the authors extended the model to a non-autonomous system incorporating two time-
dependent control strategies, namely preventive measure and adult mosquito reduction effort,
to describe the transmission dynamics and optimal control of dengue influenced by climate
change in two coupling patches. The authors explicitly proved the existence result for the
optimal control couple, which minimizes dengue infections and implementation costs in the
two patches using optimal control theory.

However, despite the fact that the efficacy of combined effort of aquatic stage mosquitoes
control (either ecological control, chemical control or both) with other dengue control inter-
ventions such as preventive measure, case management (including detection, diagnosis and
treatment) and insecticide control of adult mosquito population has been demonstrated in
several studies on single-patch dengue models [14,18,19], none of the previous studies on
multi-patch dengue model (to the best of our knowledge) have evaluated the impact of inte-
grated dengue control strategy involving the aquatic stage mosquito control on the spread of
dengue in interconnected patches. To fill this gap, our interest in this work is to propose and
analyse a two-patch model that is more adapted to the reality of dengue disease which does
not only capture both the aquatic (immature) and adult stage (female) mosquitoes, but also
incorporates three patch-specific control parameters representing human personal protection,
larvicide and adulticide controls in order to investigate the impacts of host migration and dif-
ferent strategies for implementing the combined efforts of the three control interventions on
dengue disease transmission dynamics in two interconnected patches. In order to examine
the effect of vertical transmission, the model also incorporates the vertical transmission in
the vector population.

The rest of this paper is organized as follows: In Sect. 2, a two-patch dengue model is
designed. Also, the qualitative analysis of the basic properties of solutions the model and its
global asymptotic behaviour around the disease-free equilibrium are discussed in Sect. 3. In
Sect. 4, numerical simulation of the model is carried out. Section 5 presents the simulated
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results of the two-patch model with their discussions. This is followed up by a concluding
remark in Sect. 6.

2 Formulation of model

Considering the single-patch dengue model proposed and studied in a previous work [16]
and the multi-patch models presented in [4,28,30,36], we formulate a mathematical model
capturing the effect of human migration between two patches. The patches are considered
to be an urban centre (large city) and a satellite city. The model also incorporates vertical
transmission in the vector population. The total human population in the urban centre (city 1)
and satellite city (city 2), denoted as Nh1(t) and Nh2(t), respectively, are stratified into four
mutually exclusive epidemiological states: Shi (t)—susceptible individuals who can contract
the disease at time t , Ehi (t)—exposed individuals at time t , Ihi (t)—infectious individuals
at time t and Rhi (t)−—recovered individuals at time t , for i = 1, 2. Furthermore, in each
city, the aquatic phase mosquito subpopulation (including the egg, larva and pupa stages)
at any time t is described by an epidemiological state Avi (t), while the total adult (female)
mosquito subpopulation, denoted as Nvi (t), is stratified into susceptible mosquitoes at time
t (Svi (t)), exposed mosquitoes at time t (Evi (t)) and infectious mosquitoes at time t (Ivi (t)).
Thus, the total human and adult mosquito populations in each city are given as:

Nhi (t) = Shi (t) + Ehi (t) + Ihi (t) + Rhi (t) (1)

and

Nvi (t) = Svi (t) + Evi (t) + Ivi (t), (2)

where i = 1, 2. Then, the total human and mosquito populations after the coupling of the
two cities are obtained from Eqs. (1) and (2) as

Nh(t) =
2∑

i=1

Nhi (t) =
2∑

i=1

(Shi (t) + Ehi (t) + Ihi (t) + Rhi (t)) (3)

and

Nv(t) =
2∑

i=1

Nvi (t) =
2∑

i=1

(Svi (t) + Evi (t) + Ivi (t)) . (4)

We let m1 and m2 be the respective migration rates of individuals from city 1 to city 2 and
from city 2 to city 1 with the assumption that the symptomatic infectious individuals in both
cities (those who are in class Ihi ) do not migrate as a result of dengue-induced weakness.
Also, it is assumed that the migration of mosquitoes between patches is negligible since
Aedes mosquitoes have short distance travel coverage over their lifetime [7]. Consequently,
mosquito’s dispersal is neglected in the formulation of our model.

Since the urban centre is much larger than the satellite city, there is difference in the
nature of contacts in the cities. We then make similar assumptions in [29], that a standard (or
proportional) form of incidence term is appropriate for larger communities, while a bilinear
mass-action incidence function better fits smaller communities. On the one hand, it is quite
conceivable that people in the smaller community can easily meet each other, which is better
described by a bilinear mass-action incidence function. On the other hand, there are numerous
main shopping areas, several neighbourhoods and so on in a large urban centre. Many people
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in the urban centre spend their days in a small number of neighbourhoods, and they rarely or
do not even visit others. A proportional form of incidence term is appropriate to describe this
situation. So, the incidence rates for human and mosquito populations in city 1 are modelled
as: bv1βh1

Iv1
Nh1

Sh1 and bv1βv1
Ih1
Nh1

Sh1, respectively, while for those of city 2 are formulated
as bv2βh2 Iv2Sh2 and bv2βv2 Ih2Sv2, where bvi is the mosquitoes biting rate, and βvi and
βhi denote the transmission probability in humans and mosquitoes, respectively, in city i
(i = 1, 2). This is unlike in the previous study [36], where the incidence rates for human
and mosquito populations of the two connected patches were formulated under a standard
(proportional) form of incidence terms.

Further, the effect of the implemented proportions of human personal protection, larvicide
and adulticide control interventions in city i (i = 1, 2) is accounted for by three patch-specific
control parameters, namely cPi , cLi and cAi , respectively. The control cPi is introduced in
order to reduce the vector–human contacts in city i , thereby reducing the effective contact
rate in city i by a factor (1 − cPi ). Thus, the human and mosquito incidence rates of city 1
and city 2 are modified as:

(1 − cP1)bv1βh1
Iv1

Nh1
Sh1, (1 − cP1)bv1βv1

Ih1

Nh1
Sh1, (for city 1)

and

(1 − cP2)bv2βhi Iv2Sh2, (1 − cP2)bv2βv2 Ih2Sv2 (for city 2),

where cPi ∈ [0, 1] is the control parameter for personal protection in city i (i = 1, 2). Vector
larvae can be effectively controlled through larvicide treatment and mechanical control,
which is related to public enlightenment on removal of still water from domestic recipients
and elimination of possible mosquito breeding sites. Here, larvicide treatment is considered
so that control cLi is incorporated. It primarily focuses on the use of appropriate chemicals
such as Bacillus thuringiensis israelensis (Bti) insecticide to outdoor mosquito breeding sites
in order to reduce the number of immature mosquitoes living in water. Hence, the natural
mortality rate of aquatic mosquitoes of city i , represented by μai , is increased as μai + cLi ,
where cLi ∈ [0, 1] is the level of larviciding in city i . Also, the natural mortality rate of
adult mosquitoes of city i , denoted by μvi , is increased by cAi so that the mortality rate of
mosquitoes in city i becomes μvi + cAi , where cAi ∈ [0, 1] is the proportion of open spray
of insecticide (adulticide) control administration in city i .

Hence, the model governing the dynamics of dengue population in the urban centre (city
1) is given as in Eq. (5) as

dSh1

dt
= Qh1 − (1 − cP1)bv1βh1 Iv1Sh1

Nh1
+ m2Sh2 − m1Sh1 − μh Sh1, (5a)

dEh1

dt
= (1 − cP1)bv1βh1 Iv1Sh1

Nh1
+ m2Eh2 − m1Eh1 − (γh1 + μh)Eh1, (5b)

dIh1

dt
= γh1Eh1 − (θh1 + μh)Ih1, (5c)

dRh1

dt
= θh1 Ih1 + m2Rh2 − m1Rh1 − μh Rh1, (5d)

dAv1

dt
= μe1

(
1 − Av1

KL1

)
(Sv1 + Ev1 + (1 − τ)Iv1) − (γa1 + μa1 + cL1)Av1, (5e)

dSv1

dt
= γa1Av1 − (1 − cP1)bv1βv1 Ih1Sv1

Nh1
− (μv + cA1)Sv1, (5f)
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dEv1

dt
= (1 − cP1)bv1βv1 Ih1Sv1

Nh1
− (γv1 + μv + cA1)Ev1, (5g)

dIv1

dt
= γv1Ev1 − (μv + cA1)Iv1. (5h)

Similarly, the dynamics of dengue population in the satellite city (city 2) is described as:

dSh2

dt
= Qh2 − (1 − cP2)bv2βh2 Iv2Sh2 + m1Sh1 − m2Sh2 − μh Sh2, (5i)

dEh2

dt
= (1 − cP2)bv2βh2 Iv2Sh2 + m1Eh1 − m2Eh2 − (γh2 + μh)Eh2, (5j)

dIh2

dt
= γh2Eh2 − (θh2 + μh)Ih2, (5k)

dRh2

dt
= θh2 Ih2 + m1Rh1 − m2Rh2 − μh Rh2, (5l)

dAv2

dt
= μe2

(
1 − Av2

KL2

)
(Sv2 + Ev2 + (1 − τ)Iv2) − (γa2 + μa2 + cL2)Av2, (5m)

dSv2

dt
= γa2Av2 − (1 − cP2)bv2βv2 Ih2Sv2 − (μv + cA2)Sv2, (5n)

dEv2

dt
= (1 − cP2)bv2βv2 Ih2Sv2 − (γv2 + μv + cA2)Ev2, (5o)

dIv2

dt
= γv2Ev2 − (μv + cA2)Iv2, (5p)

subject to the initial conditions (ICs) expressed by Eq. (6) as

Shi (0) > 0, Ehi (0), Ihi (0), Rhi (0) ≥ 0,

2∑

i=1

Ehi (0) + Ihi (0) > 0,

Avi (0) > 0, Svi (0) > 0, Evi (0), Ivi (0) ≥ 0,

2∑

i=1

Evi (0) + Ivi (0) > 0,

(6)

where i = 1, 2. Figure 1 presents the schematic diagram showing the population dynamics
of dengue in two connected patches. Table 1 provides the definitions of parameters of the
two-patch dengue model (5).

3 Analysis of the model

3.1 Positivity of solutions

Lemma 1 Let the initial conditions of model (5) be Shi ≥ 0, Ehi ≥ 0, Ihi ≥ 0, Rhi ≥ 0,
Avi ≥ 0, Svi ≥ 0, Evi ≥ 0 and Ivi ≥ 0 for i = 1, 2. Then, the solutions of the two-patch
dengue model (5) are non-negative for all t > 0.

Proof Let t1 = sup {t>0 : Shi >0, Ehi >0, Ihi >0, Rhi >0, Avi > 0, Svi > 0, Evi > 0,

Ivi > 0 ∈ [0, t], i = 1, 2}. Thus, t1 > 0. It follows from (5a) that

dSh1

dt
= Qh1 + m2Sh2 − λh1(t)Sh1 − m1Sh1 − μh Sh1, where λh1(t) = (1 − cP1 )bv1βh1 Iv1

Nh1
. (7)
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Fig. 1 Schematic diagram of the two-patch dengue model (5), where λh1 = (1−cP1 )bv1βh1 Iv1
Nh1

, λv1 =
(1−cP1 )bv1βv1 Ih1

Nh1
, λh2 = (1 − cP2 )bv2βh2 Iv2, and λv2 = (1 − cP2 )bv2βv2 Ih2

Table 1 Description of the used parameters for the two-patch dengue model, Eq. (5)

Parameter Description

Qhi Human recruitment rate in patch i

βhi Transmission probability of dengue virus from infectious mosquito to sus-
ceptible humans in patch i (per bite)

μh Death rate of humans in both patches 1 and 2 (per day)

γhi Incubation rate of human in patch i (per day)

θhi Recovery rate of human in patch i (per day)

m1 Rate of migration from patch 1 to patch 2 (per day)

m2 Rate of migration from patch 2 to patch 1 (per day)

bvi Biting rate of mosquito in patch i (per day)

βvi Transmission probability of dengue virus from infectious human to suscep-
tible mosquitoes in patch i (per bite)

μei Per capita oviposition rate of mosquito in patch i (per day)

τ (0 ≤ τ < 1) Proportion of infected eggs laid by infected female Aedes mosquitoes owing
to vertical transmission in both patches 1 and 2

γai Development rate of larva to female mosquito (per day) in patch i (per day)

μai Natural mortality rate of larva in patch i (per day)

μv Natural mortality rate of mosquito in both patches 1 and 2 (per day)

γvi Incubation rate of mosquito in patch i (per day)

KLi Maxima capacity of larvae in patch i
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Using integrating factor method, Eq. (7) can be written as:

d

dt

{
Sh1(t) exp

{
m1t + μht +

∫ t

0
λh1(s)ds

}}

= (Qh1 + m2Sh2) exp

{
m1t + μht +

∫ t

0
λh1(s)ds

}
.

Hence,

Sh1(t1) exp

{
m1t1 + μht1 +

∫ t1

0
λh1(s)ds

}
− Sh1(0)

=
∫ t1

0
(Qh1 + m2Sh2(u)) exp

{
m1u + μhu +

∫ u

0
λh1(s)ds

}
du,

implying that

Sh1 (t1) = Sh1(0) exp

{
−m1t1 − μh t1 −

∫ t1

0
λh1(s)ds

}
+ exp

{
−m1t1 − μht1 −

∫ t1

0
λh1(s)ds

}

∫ t1

0
(Qh1 + m2Sh2(u)) × exp

{
m1u + μhu +

∫ u

0
λh1(s)ds

}
du

> 0.

In the same approach, it is easy to show that all the other state variables (Sh2, Ehi , Ihi , Rhi ,
Avi , Svi , Evi and Ivi , where i = 1, 2) are non-negative for all t > 0. ��
3.2 Region of positive invariant

In order to show that the two-patch dengue model, Eq. (5), is biologically well posed, then
the dynamics of the system, Eq. (5), is studied in the feasible region, �, presented in Lemma
2.

Lemma 2 The closed set

� =
{
(Sh1, Eh1, Ih1, Rh1, Av1, Sv1, Ev1, Iv1, Sh2, Eh2, Ih2, Rh2, Av2, Sv2, Ev2, Iv2) ∈ R16+ :

Nh ≤ Qh1 + Qh2

μh
, Av1 ≤ KL1, Av2 ≤ KL2, Nv ≤ γa1KL1 + γa2KL2

μv

}

(8)

is positively invariant for the two-patch dengue model (5).

Proof Let Nh(t) be the total human population of the coupled cities 1 and 2 as defined in
Eq. (3). Also, let Nv(t) accounts for the total mosquito population in the connected cities as
given in Eq. (4). Then, it follows from adding the dynamics of host population in model (5)
that

dNh(t)

dt
= Qh1 + Qh2 − μh Nh,

where the rates of human death in both cities are assumed to be equal (i.e. μh1 = μh2 = μh)
for simplicity. Unless otherwise stated, this assumption is retained throughout the remainder
of this paper. So,

0 ≤ Nh(t) ≤ Qh1 + Qh2

μh
+

(
Nh(0) − Qh1 + Qh2

μh

)
e−μh t .
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Thus, 0 ≤ Nh(t) ≤ Qh1+Qh2
μh

as t → ∞.
Again, adding Eqs. (5f)–(5h) and Eqs. (5n)–(5p) related to vector dynamics yields

dNv(t)

dt
= γa1Av1 + γa2Av2 − μvNv − cANv ≤ γa1Av1 + γa2Av2 − μvNv,

where it is assumed that the natural mortality rates of mosquitoes in both cities are equal (i.e.
μv1 = μv2 = μv) and cA1 = cA2 = cA. So,

0 ≤ Nv(t) ≤ γa1Av1 + γa2Av2

μv

+
(
Nv(0) − γa1Av1 + γa2Av2

μv

)
e−μv t .

Consequently, 0 ≤ Nv(t) ≤ γa1KL1+γa2KL2
μv

as t → ∞ since Avi ≤ KLi , i = 1, 2. Hence,
all the solutions of model (5) converge towards the closed set � given in (8). ��

Lemma 2 suggests that model (5) has solutions that are all non-negative and bounded.
Therefore, model (5) is well-posed mathematically and biologically.

3.3 Equilibrium points, reproductive number and stability analysis

Proposition 1 Let Ni = μeiγai
(μv+cAi )(γai+μai+cLi )

, for i = 1, 2. Then, the two-patch dengue

model (5) admits at most two disease-free equilibrium (DFE) points stated as follows:

1. If Ni ≤ 1, then there is a trivial equilibrium (TE) (i.e. a mosquito and dengue-free
equilibrium) given by

E1 = (
S∗
h1, 0, 0, 0, 0, 0, 0, 0, S∗

h2, 0, 0, 0, 0, 0, 0, 0
)
, (9)

2. If Ni > 1, then there exists a non-trivial biologically realistic DFE (BRDFE), which is
a mosquito-present and dengue-free equilibrium, given by

E2 = (
S∗
h1, 0, 0, 0, A∗

v1, S
∗
v1, 0, 0, S∗

h2, 0, 0, 0, A∗
v2, S

∗
v2, 0, 0

)
, (10)

with the components given as

S∗
h1 = Qh1(m2 + μh) + Qh2m2

μh(μh + m1 + m2)
, S∗

h2 = Qh1m1 + Qh2(m1 + μh)

μh(μh + m1 + m2)
,

A∗
vi =

(
1 − 1

Ni

)
KLi , S∗

vi = γai

(μv + cAi )

(
1 − 1

Ni

)
KLi ,

Ni = μeiγai

(μv + cAi )(γai + μai + cLi )
, (i = 1, 2).

Proof Details of the proof can be found in “Appendix A”. ��
The TE (E1) and the BRDFE (E2) given in Eqs. (9) and (10), respectively, represent the

steady-state solutions of the two-patch dengue model, Eq. (5), when there is no disease in the
population and no mosquito, and when there exists no disease in the population with the coex-
istence of humans and mosquitoes. However, it is more realistic that humans and mosquitoes
may coexist without dengue disease in the community. Hence, the local asymptotic behaviour
of the model is later investigated at BRDFE, E2. In Proposition 1, it is established that the
threshold Ni (i = 1, 2), which is the effective offspring of the mosquito population in patch
i , regulates the existence of mosquitoes in the coupling patches.

It is necessary to derive the effective (or control) reproductive number, denoted as RT ,
of the two-patch dengue model (5). The dimensionless threshold can be used to forecast
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the potential of dengue disease either to invade or eradicate from a completely susceptible
population. Next, we present RT associated with the two-patch dengue model (5). The result
is summarized in Proposition 2.

Proposition 2 If Ni is as defined in Proposition 1 and satisfies the inequality Ni > 1 (for
i = 1, 2), then the control reproductive number related to the two-patch dengue model (5) is
given as:

R2
T = 1

2
a1

(R2
T,1 + R2

T,2

) + 1

2

√
a2

1

(
R2

T,1 + R2
T,2

)2 − 4a2R2
T,1R2

T,2, (11)

where

RT,1 =
√

(1 − cP1)b
2
v1βh1βv1γh1γv1

(m1 + γh1 + μh)(θh1 + μh)(μv + cA1)(γv1 + μv + cA1)

S∗
h1

N∗
h1

S∗
v1

N∗
h1

, (12)

RT,2 =
√

(1 − cP2)b
2
v2βh2βv2γh2γv2

(m2 + γh2 + μh)(θh2 + μh)(μv + cA2)(γv2 + μv + cA2)
S∗
h2S

∗
v2, (13)

a1 = b1b2

b1b2 − m1m2
, a2 = b1c1b2c2

(γh1μh + γh1θh2 + c2μh)(m2γh1 + b3μh + b3γh2 + b2μh)
,

b1 = m1 + γh1 + μh, b2 = m2 + γh2 + μh, b3 = m1 + γh1,

c1 = θh1 + μh, c2 = θh2 + μh,

and the components of the BRDFE, E2, are as given in Proposition 1.

Proof See “Appendix B” for the proof in detail. ��
By Theorem 2 in [37], the local asymptotic stability of the BRDFE, E2, in the region � is

established by the following result in Lemma 3.

Lemma 3 The BRDFE, E2, of the two-patch dengue model, Eq. (5), is locally asymptotically
stable (LAS) whenever RT < 1, and unstable whenever RT > 1.

Remark 1 The expression RT in Eq. (11) represents the effective reproductive number for
the coupled two patches, while RT,1 and RT,2 given in Eqs. (12) and (13) are the effective
reproductive numbers related to patches 1 and 2, respectively, in the presence of human
movement between the patches.

Remark 2 The basic reproductive number (denoted asR0) of model (5), which corresponds to
the scenario when no control interventions are implemented in both patches, can be obtained
by setting the control parameters cPi = cLi = CAi = 0 (for i = 1, 2). Thus, R0 is obtained
from the expression RT in (11) as

R0 = RT |cPi =cLi =cAi =0 (i=1,2)

=
√

1

2
a1

(
R2

0,1 + R2
0,2

)
+ 1

2

√
a2

1

(
R2

0,1 + R2
0,2

)2 − 4a2R2
0,1R2

0,2, (14)
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where

R0,1 =
√

b2
v1βh1βv1γh1γv1

(m1 + γh1 + μh)(θh1 + μh)μv(γv1 + μv)

S∗
h1

N∗
h1

S∗
v1

N∗
h1

, (15)

R0,2 =
√

b2
v2βh2βv2γh2γv2

(m2 + γh2 + μh)(θh2 + μh)μv(γv2 + μv)
S∗
h2S

∗
v2, (16)

a1 = b1b2

b1b2 − m1m2
, a2 = b1c1b2c2

(γh1μh + γh1θh2 + c2μh)(m2γh1 + b3μh + b3γh2 + b2μh)
,

b1 = m1 + γh1 + μh, b2 = m2 + γh2 + μh, b3 = m1 + γh1,

c1 = θh1 + μh, c2 = θh2 + μh,

with Mi = μeiγai
μv(γai+μai )

, S∗
vi = γai

μv

(
1 − 1

Mi

)
KLi and S∗

hi is as given in the components of

E2 in Eq. (10).

3.4 Global asymptotic stability of the biologically realistic disease-free equilibrium, E2

Following [38], we examine the global asymptotic stability of the system, Eq. (5). Suppose
Z =(Sh1, Rh1, Av1, Sv1, Sh2, Rh2, Av2, Sv2) and I =(Eh1, Ih1, Ev1, Iv1, Eh2, Ih2, Ev2, Iv2),
and group the dynamical system, Eq. (5), into subsystems presented by Eq. (17) as

dZ

dt
= F(Z , 0), (17a)

dI

dt
= G(Z , I ), G(Z , I ) = 0, (17b)

where F(Z , 0) is the right-hand side of dSh1
dt , dRh1

dt , dAv1
dt , dSv1

dt , dSh2
dt , dRh2

dt , dAv2
dt , dSv2

dt with
Eh1 = Ih1 = Ev1 = Iv1 = Eh2 = Ih2 = Ev2 = Iv2 = 0 and G(Z , I ) is the right-hand side

of dEh1
dt , dIh1

dt , dEv1
dt , dIv1

dt , dEh2
dt , dIh2

dt , dEv2
dt , dIv2

dt . Suppose further that G(Z , I ) satisfies the
following two conditions expressed by Eq. (18) as

C1: G(Z , 0) = 0, and

C2: G(Z , I ) = DIG(Z∗, 0)I − Ĝ(Z , I ), Ĝ(Z , I ) ≥ 0, (Z , I ) ∈ �,
(18)

where

(Z∗, 0) = E2 = (
S∗
h1, 0, A∗

v1, S
∗
v1, S

∗
h2, 0, A∗

v2, S
∗
v2

)
,

with

S∗
h1 = Qh1(m2 + μh) + Qh2m2

μh(μh + m1 + m2)
, S∗

h2 = Qh2(m1 + μh) + Qh1m1

μh(μh + m1 + m2)
,

A∗
vi =

(
1 − 1

Ni

)
KLi , S∗

vi = γai

(μv + cAi )

(
1 − 1

Ni

)
KLi ,

Ni = μeiγai

(μv + cAi )(γai + μai + cLi )
, (for i = 1, 2)

DIG(Z∗, 0), a M-matrix having non-negative off-diagonals, is the Jacobian of G(Z , I )
derived with respect to (Eh1, Ih1, Ev1, Iv1, Eh2, Ih2, Ev2, Iv2) and evaluated at (Z∗, 0), and
� is the region where the two-patch dengue model, Eq. (5), biologically makes sense. If the
reduced systems, Eqs. (17a)–(17b), satisfy the two conditions in Eq. (18), then the global
asymptotic stability of the BRDFE, E2, is summarized in the following result.

123



 1192 Page 12 of 32 Eur. Phys. J. Plus        (2021) 136:1192 

Theorem 1 The BRDFE, E2, of the two-patch dengue model (5) is globally asymptotically
stable (GAS) in � whenever RT < 1. Otherwise, it is unstable.

Proof Note from the two-patch dengue model, Eq. (5), that

F(Z , 0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qh1 + m2Sh2 − (m1 + μh)Sh1

m2Rh2 − (m1 + μh)Rh1

μe1

(
1 − Av1

KL1

)
Sv1 − (γa1 + μa1 + cL1)Av1

γa1Av1 − (μv + cA1)Sv1

Qh2 + m1Sh1 − (m2 + μh)Sh2

m1Rh1 − (m2 + μh)Rh2

μe2

(
1 − Av2

KL2

)
Sv2 − (γa2 + μa2 + cL2)Av2

γa2Av2 − (μv + cA2)Sv2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

DIG(Z∗, 0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ1 0 0 κ9 m2 0 0 0
γh1 −κ2 0 0 0 0 0 0
0 κ10 −κ3 0 0 0 0 0
0 0 γv1 −κ4 0 0 0 0
m1 0 0 0 −κ5 0 0 κ11

0 0 0 0 γh2 −κ6 0 0
0 0 0 0 0 κ12 −κ7 0
0 0 0 0 0 0 γv2 −κ8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with κ1 = (m1 + γh1 + μh), κ2 = (thetah1 + μh), κ3 = (γv1 +μv +cA1), κ4 = (μv +cA1),
κ5 = (m2 + γh2 + μh), κ6 = (θh2 + μh), κ7 = (γv2 + μv + cA2), κ8 = (μv + cA2),

κ9 = (1 − cP1)bv1βh1
S∗
h1

N∗
h1

, κ10 = (1 − cP1)bv1βv1
S∗
v1

N∗
h1

, κ11 = (1 − cP2)bv2βh2S∗
h2, and

κ12 = (1 − cP2)bv2βv2S∗
v2.

Using the relation of condition C2 in Eq. (18), we have

Ĝ(Z , I ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĝ1(Z , I )
Ĝ2(Z , I )
Ĝ3(Z , I )
Ĝ4(Z , I )
Ĝ5(Z , I )
Ĝ6(Z , I )
Ĝ7(Z , I )
Ĝ8(Z , I )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − cP1)bv1βh1
S∗
h1

N∗
h1
Iv1

(
1 − Sh1

Nh1

N∗
h1

S∗
h1

)

0

(1 − cP1)bv1βv1
S∗
v1

N∗
h1
Ih1

(
1 − Sv1

Nh1

N∗
h1

S∗
v1

)

0

(1 − cP2)bv2βh2S∗
h2 Iv2

(
1 − Sh2

S∗
h2

)

0

(1 − cP2)bv2βv2S∗
v2 Ih2

(
1 − Sv2

S∗
v2

)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Since S∗
h1 = Qh1(m2+μh )+Qh2m2

μh (μh+m1+m2)
, S∗

h2 = Qh2(m1+μh )+Qh1m1
μh(μh+m1+m2)

, N∗
h1 = S∗

h1, S∗
vi =

γai
(μv+cAi )

(
1 − 1

Ni

)
KLi ,

Ni = μeiγai
(μv+cAi )(γai+μai+cLi )

(for i = 1, 2), and we have that Sh1 ≤ Nh1, Sv1 ≤ Nv1,

Sh2 ≤ Nh2, Sv2 ≤ Nv2 in �, then the inequalities
(

1 − Sh1
Nh1

N∗
h1

S∗
h1

)
> 0,

(
1 − Sv1

Nh1

N∗
h1

S∗
v1

)
> 0,

(
1 − Sh2

S∗
h2

)
> 0, and

(
1 − Sv2

S∗
v2

)
> 0 in Eq. (19) must be satisfied if the human and

mosquito populations are at the equilibrium state. Thus, Ĝ(Z , I ) ≥ 0. Also, the BRDFE

123



Eur. Phys. J. Plus        (2021) 136:1192 Page 13 of 32  1192 

Z∗ = (
S∗
h1, 0, A∗

v1, S
∗
v1, S

∗
h2, 0, A∗

v2, S
∗
v2

)
is clearly a GAS equilibrium point of the reduced

system, Eq. (18). Consequently, we have from Theorem 1 that the BRDFE, E2 = (Z∗, 0), is
GAS. Hence, the proof. ��

The epidemiological indication of Theorem 1 is that dengue disease will die out in the
community wheneverRT < 1 regardless of the initial sizes of infectious human and mosquito
subpopulations in the interacting human and mosquito populations of the two patches.

In what follows, we carry out numerical experimentations on the proposed two-patch
dengue model, Eq. (5), to illustrate the role of human movements on the transmission dynam-
ics of dengue between two patches. The impacts of patch-specific controls cPi , cLi and cAi

(i = 1, 2) on putting the sizes of subpopulations of infectious individual and mosquito in a
patchy environment near the BRDFE, E2, are also explored.

4 Numerical simulations

In this section, we carry out the numerical simulations on the dengue model, Eq. (5), in order
to predict the impacts of host mobility on the dynamics of dengue disease transmission in
two connected patches. Further, the model is simulated to investigate an effective strategy
for applying controls cPi , cAi and cLi (for i = 1, 2) in curtailing the disease transmission in
two interconnected patches. The simulations are in two folds. In the first part, we examine
the effects of unidirectional and bidirectional human movements on the dynamics of dengue
disease transmission across two connected patches in the absence of any control interven-
tions. The simulations of different strategies for the implementation of combined control in
two connected patches for the cases of unidirectional and bidirectional host mobilities are
discussed in the second part.

We consider patch as city and assume the following initial data values for the human and
mosquito populations of city 1: Nh1(0) = 663617, Eh1(0) = 2500, Ih1(0) = 150, Rh1(0) =
0, Sh1(0) = Nh1(0) − Eh1(0) − Ih1(0) − Rh1(0), Av1(0) = 3 × Nh1(0), Ev1(0) = 10,000,
Iv1(0) = 100, so that Sv1(0) = 3×Nh1(0)− Ev1(0)− Iv1(0). Also, the initial conditions for
the ODEs describing the host–vector interactions for dengue disease transmission in city 2 are
taken as: Nh2(0) = 9834, Eh2(0) = 1500, Ih2(0) = 50, Rh2(0) = 0, Av2(0) = 3 × Nh2(0),
Ev2(0) = 1000, Iv2(0) = 100, so that Sv2(0) = 3 × Nh2(0) − Ev2(0) − Iv2(0). The
parameter values of the models used to study the disease outbreak in the two cities are
obtained from the literature [7,39,40] as follows: bv1βh1 = 0.375 day−1, bv1βv1 = 0.375
day−1, 1

μh
= 60 × 365 days, γh1 = 0.25 day−1, θh1 = 1

3 day−1, γv1 = 1
11 day−1, 1

μv
= 11

days, μe1 = 6 day−1, 1
μa1

= 4 days, γa1 = 0.08 day−1, bv2βh2 = 0.000025 day−1,

bv2βv2 = 0.000025 day−1, 1
μh2

= 60 × 365 days, γh2 = 0.25 day−1, θh2 = 1
3 day−1,

γv2 = 1
11 day−1, μe2 = 6 day−1, μa2 = 0.2363 day−1, γa2 = 0.08 day−1. We take

data for the rates of migration m1 and m2 as m1 = m2 = 0.1, implying that about 10%
of susceptible, exposed and recovered individuals leave each city per day. In addition, the
patch-specific control parameters cPi , cLi , and cAi (for i = 1, 2) are considered as bounded
variable parameters (i.e. cPi , cLi , cAi ∈ [0, 1]). Notably, the initial data and parameter values
are chosen for the numerical illustrations of dengue transmission and spread between the
connected urban centre (city 1) and satellite city (city 2) where the disease is endemic in
both.
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(a) (b)

Fig. 2 Dynamics of infectious mosquitoes of cities 1 and 2 for uncoupled system (5)

5 Results and discussion

5.1 Effect of vertical transmission in mosquito population on the spread of dengue

Figure 2 shows that, with increasing proportion of infected eggs of mosquitoes, the size of
infected mosquito subpopulation significantly increases. This suggests that vertical transmis-
sion in the mosquito population significantly affects the number of infected mosquitoes. This
result is in agreement with the results reported in [11].

5.2 Effect of human travel on dengue disease spread between two connected cities

Setting human migration rates m1 and m2 to zero in Eqs. (15) and (16), respectively, the basic
reproductive numbers of the isolated city 1 (denoted as R0,1) and that of city 2 (represented
by R0,2) for this outbreak are approximately R0,1 = 2.396 and R0,2 = 1.573 when no
control intervention is administered in either city. These results epidemiologically imply that
dengue disease is present in the two cities. Also, the basic reproductive number for the com-
plete system (5) using the expression for R0 in Eq. (14) when no control interventions are
implemented in both cities (that is, cPi = cLi = cAi = 0) with the presence of bidirectional
host mobility between the patches, is obtained as R0 = 1.891. Hence, the disease persists
in the two cities as the inequality R2

0 < 1, which guarantees the stability of BRDFE, E2,
is violated as illustrated in Fig. 5 as well as Figs. 12, 13 and 14 when there is no control
implementation in both cities. The estimated value R0 = 1.891 suggests that bidirectional
host migration from high dengue-endemic city 1 to low dengue-endemic city 2 and vice
versa leads to a decrease and an increase in dengue prevalence in city 1 and city 2, respec-
tively, which consequently result into a reduction and an increment in R0,1 and R0,2 values,
respectively, as R0,1 = 2.396 > R0 = 1.891 > R0,2 = 1.573. This is justified in Fig. 5
as the numbers of infectious individuals and mosquitoes decrease in city 1 and increase in
city 2. The effect of human travels on spatial dissemination of dengue disease is graphically
demonstrated in Figs. 3, 4 and 5.

Figure 3 illustrates the effects of human unidirectional migration from city 1 to city
2 on the dynamics of infectious human and mosquito subpopulations of the two cities in
the absence of any control intervention. It is shown that the subpopulations of infectious
human and mosquito of city 1 with human movement decrease more rapidly to zero than the
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(a) (b)

(c) (d)

Fig. 3 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 1 to city 2 in the absence of any control measure

subpopulations without human travel (see Fig. 3a, b). Also, Fig. 3c, d depicts that the numbers
of infectious individuals and mosquitoes of city 2 are increased with human movement when
compared with the case of no movement. Thus, the unidirectional host migration from city 1 to
city 2 can greatly impact the disease burden of the two connected cities. As the population size
of city 1 (urban centre and high-dengue endemic) decreases, the number of dengue infections
decreases in both the human and mosquito population of the city, while the number of dengue
infections increases in city 2 (satellite city and low dengue-endemic) as the population size
of the city increases. Our result is in agreement with the results in [4], where the authors
used a two-patch nonlinear mathematical model with temperature-dependent parameters to
analyse the effect of human travel on dengue disease transmission between two connected
patches without any consideration for the aquatic phase mosquito.

The impact of unidirectional human movement from city 2 to city 1 on the dynamics of
the sub-populations of infectious human and mosquito of cities 1 and 2 when there is no
control intervention implementation in both cities is shown in Fig. 4. It can be seen from
Fig. 4a, b, respectively, that the numbers of infectious individuals and mosquitoes of city 1
first increased with human movement until the epidemic peaks before dropping below the
sizes of the sub-populations of infectious human and mosquito with no movement throughout
the remaining simulation period. In city 2, the disease prevalence is considerably decreased
in both the human and mosquito populations as shown in Fig. 4c, d, respectively. These
results are in agreement with those reported earlier in [4]. Unlike the previous case when
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(a) (b)

(c) (d)

Fig. 4 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 2 to city 1 in the absence of any control measure

human movement from city 2 is restricted in city 1 where the dengue prevalence considerably
increases with human movement in city 2, the disease prevalence slightly increased in city
1 and significantly reduced in city 2 when human movement from city 1 is restricted in city
2. This implies that the blockage of human travel from city 1 (high dengue-endemic and
population density city) to city 2 (low dengue-endemic city) may be helpful in reducing
dengue disease transmission. This result is in line with the results obtained in [33], where the
authors used a two-patch model describing the transmission dynamics between the coupled
park area where mosquitoes prevail (patch 1) and residential area where people live (patch 2)
to investigate the effect of short-term and long-term blockage between the two patches. The
study revealed that long-term blockage of the park area is effective to curtail the transmission
dynamics of dengue.

Figure 5 presents the effects of bidirectional host movement between city 1 and city 2 on the
dynamics of the subpopulations of infectious individual and mosquito in the absence of any
control measures. Figure 5a–c shows that there are two epidemic peaks, one corresponding to
the presence of human migration between the connected cities while the other associates with
the case of no migration. It is observed that the disease epidemic peak earlier at a considerably
reduced value in city 1, while the epidemic is slightly delayed to peak at increased value in city
2 (as shown in Fig. 5c, d, respectively). The results indicate that bidirectional host migration
between a high endemic city and a low endemic city may cause the two cities to become
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(a) (b)

(c) (d)

Fig. 5 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with bidirectional host mobility
between the cities in the absence of any control measure

low and high dengue prevalent, respectively. These results agree with the results obtained in
other studies on dengue [4].

5.3 Effect of patch-specific personal protection, larvicide and adulticide controls on dengue
disease transmission dynamics in a patchy environment

The implementation of patch-specific control parameters cPi , cLi and cAi (for i = 1, 2) affects
the dynamics of the two-patch dengue model, Eq. (5), and the associated basic reproductive
number defined by Eq. (11). For instance, fixing all the control parameters cPi , cLi and cAi

(where i = 1, 2) at 0.1, the R0 value for the system, Eq. (5), in the case of bidirectional
human movement reduces to R0 = 0.461. Hence, the choice of these controls may help
to diminish the number of infectious individuals and mosquitoes in both cities near zero
and consequently leads to the stability of BRDFE, E2, as the inequality R2

0 < 1 is satisfied.
The effects of combined efforts of patch-specific personal protection, larvicide and adulticide
controls under various scenarios on the transmission dynamics of dengue disease with human
movement are represented by Figs. 6, 7, 8, 9, 10, 11, 12, 13 and 14.

Figure 6 illustrates the impacts of the application of combined control only in city 1 on
the dynamics of the numbers of infectious humans and mosquitoes of city 1 and city 2 with
unidirectional human movement from city 1 to city 2. It can be observed in Fig. 6a, b that
the application of 50% of combined control causes the populations of infectious human and
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(a) (b)

(c) (d)

Fig. 6 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 1 to city 2 at different levels of implementation of combined control in city 1 (i.e. cP1 = cL1 =
cA1 = 0, 0.25, 0.50)

mosquito of city 1 to remain at zero from 25th day and 15th day till the end of the intervention
period, respectively. However, this control strategy is insignificant to decrease the number of
infectious individuals and mosquitoes of city 2 over the intervention period (see Fig. 6c, d).

The effects of the application of combined control only in city 2 on the dynamics of
the subpopulations of infectious individual and mosquito of city 1 and city 2 when there is
unidirectional host mobility from city 1 to city 2 is represented in Fig. 7. Figure 7d shows a
high impact of applying about 50% of combined control on the dynamics of the numbers of
infectious mosquitoes of city 2. However, this control intervention strategy has no significant
impact on the dynamics of the subpopulations of infectious individual and mosquito of city
1 (as shown in Fig. 7a, b, respectively) as well as the number of infectious humans in city 2
(as shown in Fig. 7c). These results suggest that implementing control interventions only in
a less dengue-endemic city when only human migration from high dengue-endemic city to
less dengue-endemic city is possible is not effective, implying that human migration reduces
the efficacy of the implemented control interventions in the less dengue-endemic city.

Figure 8 shows the impacts of combined control applied simultaneously in city 1 and city
2 on the dynamics of the numbers of infectious individuals and mosquitoes in the presence of
the host mobility between the two cities. The numbers of infectious humans and mosquitoes
in city 1 drastically reduce to zero using about 50% each of control interventions as seen in
Fig. 8a, b. By implementing the control interventions, the number of infectious mosquitoes
in city 2 is sufficiently diminished to zero after 20th day from the commencement of the
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(a) (b)

(c) (d)

Fig. 7 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 1 to city 2 at different levels of combined control implementation in city 2 (i.e. cP2 = cL2 = cA2 =
0, 0.25, 0.50)

interventions, whereas the number of infectious individuals in city 2 does not reduce using
this control efforts (as shown in Fig. 8c).

Hence, the simulated results reveal that, in the presence of unidirectional human movement
from city 1 to city 2, the application of combined efforts of the three control interventions is
sufficient to diminish the number of infections in the population of city 1 to zero when the
city is a control-target, while there is also a significant impact of the implemented control,
particularly on the infected mosquito subpopulation, when city 2 becomes the only control-
target city. In [10,34], the simulated results of the effect of patch-specific optimal personal
protection control on the dynamics of the infectious individual and mosquito subpopulations
with unidirectional human movement between patches reveal that the separate use of the
control simultaneously implemented in the connected patches is not enough to diminish the
numbers of infectious humans and mosquitoes of both patches to zero. Hence, our results
indicate the efficacy of the application of combined efforts of different control measures
over a single intervention. In Kim et al. [33], the authors also demonstrated the efficacy of
joint application of transmission control (preventive measure), vector (adulticide) control and
travel blockage control over their separate use as a fight against dengue in two connected
patches.

Furthermore, Fig. 9 presents the dynamics of the infectious individual and mosquito
subpopulations of city 1 and city 2 under the influence of various levels of combined control
efforts applied only in city 1 and unidirectional host mobility from city 2 to city 1. As shown in
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(a) (b)

(c) (d)

Fig. 8 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 1 to city 2 at different levels of simultaneous implementation of combined control in cities 1 and 2
(i.e. control = 0, 0.25, 0.50)

Fig. 9a, b, the size of subpopulations of infectious human and mosquito of city 1 drastically
reduces to zero by applying about 50% of combined control effort. However, the control
strategy has no significant impact on the dynamics of the numbers of infectious individuals
and mosquitoes of city 2 as depicted in Fig. 9c, d, respectively.

In Fig. 10, the impacts of applying combined control at various levels only in city 2 on the
dynamics of infectious humans and mosquitoes when there is unidirectional host mobility
from city 2 to city 1 are illustrated. Using about 50% of combined control sharply reduces
the number of infectious mosquitoes in city 2 to zero and remain there from the 20th day till
the end of the control intervention as shown in Fig. 10d. However, Fig. 10a–c reveals that the
effect of unidirectional movement drastically reduces the efficacious of this control strategy
to the extent of not having any impact on the infected human and mosquito subpopulations.

Figure 11 presents the effects of simultaneous application of combined control efforts at
different levels in city 1 and city 2 on the dynamics of the subpopulations of infectious human
and mosquito with bidirectional human movement between the cities. It can be observed
that this control strategy is sufficient to diminish the numbers of infectious individuals and
mosquitoes of city 1 to zero at about 50% level of the control application in the two intercon-
nected cities (see Fig. 11a, b). Also, the subpopulation of infectious mosquito with control
decreases rapidly to zero when compared with the case of no intervention; however, there is
no significant impact of using the control efforts on the number of infectious individuals in
city 2 (as illustrated in Fig. 11c).
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(a) (b)

(c) (d)

Fig. 9 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 2 to city 1 at different levels of combined control implementation only in city 1 (i.e. cP1 = cL1 =
cA1 = 0, 0.25, 0.50)

Also, Fig. 12 illustrates the impacts of combined control applied at various levels only in
city 1 on the dynamics of the subpopulations of infectious individual and mosquito in city 1
and city 2 when there is bidirectional human movement between the cities. The use of about
50% level of combined control significantly reduces the number of infectious individuals and
mosquitoes more rapidly to zero when compared with the case of no control administration
in city 1 as shown in Fig. 12a, b. In addition, the implementation of the control increases
dengue disease burden in human population from 25th day to 70th day with no significant
impact on the number of infectious mosquitoes in city 2 (see Fig. 12c, d). Hence, the strategy
is not enough to decrease both the subpopulations of infectious individual and mosquito of
city 1 and city 2 to zero.

Figure 13 demonstrates the effects of different levels of the application of combined control
only in city 2 on the dynamics of the numbers of infectious individuals and mosquitoes of
city 1 and city 2 in the presence of bidirectional host mobility between the two connected
cities. It is observed that the dynamical behaviours of the infected human and mosquito
subpopulations in both cities are similar to those presented in Fig. 10. Hence, discussions
of the results obtained under this control implementation are similar to those given for the
results in Fig. 10.

Figure 14 illustrates the effects of combined control administered simultaneously at dif-
ferent levels in city 1 and city 2 on the dynamics of the subpopulations of infectious human
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(a) (b)

(c) (d)

Fig. 10 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 2 to city 1 at different levels of combined control implementation only in city 2 (i.e. cP2 = cL2 =
cA2 = 0, 0.25, 0.50)

and mosquito of cities 1 and 2 in the presence of bidirectional human movement between the
two cities. Figure 14a, b shows that the simultaneous application of about 50% of combined
control in city 1 and city 2 decreases the size of infected human and mosquito subpopula-
tions more rapidly than when the control efforts are not implemented. Furthermore, Fig. 14d
reveals that the use of about 50% of combined control simultaneously in city 1 and city
2 diminishes the number of infectious mosquitoes in city 2 to zero between 20th day and
120th day from the commencement of the control intervention program; however, the number
of infected individuals with control in city 2 increases between the 25th day and 80th day
counting from the beginning of control implementation period (as shown in Fig. 14c). Lee
and Castillo-Chavez [34], in their study on the optimal control strategies for dengue disease
transmission dynamics in a patchy environment, estimated the effect of patch-specific opti-
mal personal protection control simultaneously implemented in the two connected patches
through bidirectional human movement. The results of their numerical simulations show that
the control strategy is not sufficient to reduce the number of infectious individuals of both
patches to zero. In a similar study, Bock and Jayathunga [10] applied optimal control theory
to derive the optimal personal protection control needed for an effective control of dengue
disease spread in a patchy environment. The numerical results obtained revealed that the use
of only personal protection is not enough to reduce the size of infected subpopulation in the
community to zero. Therefore, our results show that the administration of combined efforts
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(a) (b)

(c) (d)

Fig. 11 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with unidirectional host mobility
from city 2 to city 1 at different levels of simultaneous application of combined control in cities 1 and 2 (i.e.
control = 0, 0.25, 0.50)

of several control strategies is more efficacious than their separate use in controlling dengue
disease spread within the populations of two connected patches (or cities).

6 Conclusions

This paper has presented and analysed a two-patch model, which captures both the aquatic
phase and adult mosquitoes, effect of human movement and vertical transmission in vec-
tor population, for dengue disease transmission dynamics. The model incorporates three
patch-specific control parameters accounting for human personal protection, larvicide and
adulticide. The two-patch model has provided a new framework for assessing the role of
human movement, vertical transmission in vector population, as well as gaining insights into
the impacts of combined efforts of patch-specific three control measures (i.e. personal protec-
tion, larvicide and adulticide) on the transmission dynamics of dengue disease between two
interconnected high dengue-endemic city 1 (large urban centre) and low dengue-endemic
city 2 (satellite city). The results observed from our analyses and simulations of the model
are as follows:

i. The two-patch model admits two disease-free equilibria, namely the TE and the BRDFE.
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(a) (b)

(c) (d)

Fig. 12 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with bidirectional host mobility
between the cities at different levels of combined control implementation only in city 1 (i.e. cP1 = cL1 =
cA1 = 0, 0.25, 0.50)

ii. The BRDFE point E2, associated with the model, is LAS if RT < 1, and unstable
otherwise.

iii. It is shown that the BRDFE point E2 of the two-patch dengue model is GAS whenever
RT < 1, and unstable otherwise. The epidemiological insight from this result is that
dengue disease will eventually die out from the population in both cities whenever the
threshold quantity RT is below unity.

iv. Without any control implementation, the basic reproductive number for dengue outbreaks
in isolated city 1 and city 2 is approximately R0,1 = 2.396 and R0,2 = 1.573, respec-
tively, and the basic reproductive number of the two-patch model in the absence of any
control is approximately R0 = 1.891.

v. Assessing the role of vertical transmission in vector population, the simulated results
reveal that vertical transmission has significant influence on the disease dynamic, partic-
ularly in city 2.

vi. In the case of no control, it is observed that with the presence of human movements (either
unidirectional or bidirectional movements) between the large urban centre (city 1) and
satellite city (city 2), the prevalence of dengue disease decreases as the subpopulation
sizes increase. This indicates that the higher the population density of a dengue-endemic
city, the higher the transmission rate of dengue, and vice versa.
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(a) (b)

(c) (d)

Fig. 13 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with bidirectional host mobility
between the cities at different levels of combined control implementation in city 2 (i.e. cP2 = cL2 = cA2 =
0, 0.25, 0.50)

viii. When the efforts of combined control can only be implemented in one city due to limited
resources, it is more effective to control the high dengue-endemic city 1 in the case of
unidirectional human movement between the two connected cities. Also, controlling city
1 gives a better reduction in dengue prevalence in the presence of bidirectional human
movement between cities 1 and 2.

ix. In both cases of unidirectional and bidirectional human movements between the con-
nected cities 1 and 2, applying the combined control in city 1 and city 2 simultaneously
is found to be most effective in eliminating dengue disease from human and mosquito
populations in the two cities. However, the level of implemented combined control effort
should be increased in both city 1 and city 2 as the population size of city 1 increases in
order to achieve a dengue-free population in the two cities.

In this study, we considered the effect of combined efforts of bounded patch-specific
control parameters 0 ≤ cPi ≤ 1, 0 ≤ cLi ≤ 1 and 0 ≤ cAi ≤ 1 (for i = 1, 2) separately
and simultaneously administered in two connected patches on dengue disease transmission
dynamics. However, the implementation of the strategies may be too expensive to apply.
Therefore, in future work, we intend to obtain the optimal control functions cPi (t), cLi (t)
and cAi (t) that optimally curtail the spread of dengue in two connected patches using optimal
control theory.
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(a) (b)

(c) (d)

Fig. 14 Dynamics of infectious individuals and mosquitoes of cities 1 and 2 with bidirectional host mobility
between the cities at different levels of simultaneous implementation of combined control in cities 1 and 2
(i.e. control = 0, 0.25, 0.50)
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A Proof of Proposition 1

Proof Consider the two-patch dengue model (5) at steady state. Then, the following expres-
sions are obtained for Ehi and Rhi (for i = 1, 2) from Eqs. (5c), (5d), (5k) and (5l), respec-
tively:

E∗
hi = (θhi + μh)I ∗

hi

γhi
,

R∗
hi = θhi I ∗

hi + m j R∗
hj

mi + μh
,

for i, j = 1, 2, i 
= j . Also, adding Eqs. (5a) and (5b), and Eqs. (5i) and (5j) and simplifying,
we get

S∗
hi = 1

mi + μh

{
Qhi + m j (θhj + μh)I ∗

hj

γhj
− (θhi + μh)(mi + γhi + μh)I ∗

hi

γhi
+ m j S

∗
hj

}
(20)

for i, j = 1, 2, i 
= j .
Hence,

E∗
hi = (θhi + μh)I ∗

hi

γhi
, (21a)

R∗
hi = θhi I ∗

hi + m j R∗
hj

mi + μh
, (21b)

S∗
hi = 1

mi + μh

{
Qhi + m j (θhj + μh)I ∗

hj

γhj
− (θhi + μh)(mi + γhi + μh)I ∗

hi

γhi
+ m j S

∗
hj

}

(21c)

for i, j = 1, 2, i 
= j .
Equations (5e) and (5m) at steady state are resolved as:

(γai + μai + cLi )A
∗
vi = μei

(
1 − A∗

vi

KLi

)
(S∗

vi + E∗
vi + (1 − τ)I ∗

vi ), where i = 1, 2.(22)

Solving Eqs. (5f) and (5n) for Sv1 and Sv2, respectively, leads to

S∗
v1 = γa1

(μv + cA1) + (1 − cP1)bv1βv1
I ∗
h1

N∗
h1

A∗
v1, (23)

S∗
v2 = γa2

(μv + cA2) + (1 − cP2)bv2βv2 I ∗
h2

A∗
v2. (24)

From Eqs. (5g) and (5o), we obtain

E∗
v1 = (1 − cP1)bv1βv1

(γv1 + μv + cA1)

I ∗
h1

N∗
h1

γa1

(μv + cA1) + (1 − cP1)bv1βv1
I ∗
h1

N∗
h1

A∗
v1, (25)

E∗
v2 = (1 − cP2)bv2βv2 I ∗

h2

(γv2 + μv + cA2)

γa2

(μv + cA2) + (1 − cP2)bv2βv2 I ∗
h2

A∗
v2. (26)
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From Eqs. (5h) and (5p), we find

I ∗
v1 = γv1

(μv + cA1)

(1 − cP1)bv1βv1

(γv1 + μv + cA1)

I ∗
h1

N∗
h1

γa1

(μv + cA1) + (1 − cP1)bv1βv1
I ∗
h1

N∗
h1

A∗
v1, (27)

I ∗
v2 = γv2

(μv + cA2)

(1 − cP2)bv2βv2 I ∗
h2

(γv2 + μv + cA2)

γa2

(μv + cA2) + (1 − cP2)bv2βv2 I ∗
h2

A∗
v2. (28)

Hence,

(γai + μai + cLi )A
∗
vi = μei

(
1 − A∗

vi

KLi

)
(S∗

vi + E∗
vi + (1 − τ)I ∗

vi ), (for i = 1, 2) (29a)

S∗
v1 = γa1

(μv + cA1 ) + (1 − cP1 )bv1βv1
I ∗
h1

N∗
h1

A∗
v1, (29b)

S∗
v2 = γa2

(μv + cA2 ) + (1 − cP2 )bv2βv2 I ∗
h2

A∗
v2, (29c)

E∗
v1 = (1 − cP1 )bv1βv1

(γv1 + μv + cA1 )

I ∗
h1

N∗
h1

γa1

(μv + cA1 ) + (1 − cP1 )bv1βv1
I ∗
h1

N∗
h1

A∗
v1, (29d)

E∗
v2 = (1 − cP2 )bv2βv2 I ∗

h2

(γv2 + μv + cA2 )

γa2

(μv + cA2 ) + (1 − cP2 )bv2βv2 I ∗
h2

A∗
v2, (29e)

I ∗
v1 = γv1

(μv + cA1 )

(1 − cP1 )bv1βv1

(γv1 + μv + cA1 )

I ∗
h1

N∗
h1

γa1

(μv + cA1 ) + (1 − cP1 )bv1βv1
I ∗
h1

N∗
h1

A∗
v1,

(29f)

I ∗
v2 = γv2

(μv + cA2 )

(1 − cP2 )bv2βv2 I ∗
h2

(γv2 + μv + cA2 )

γa2

(μv + cA2 ) + (1 − cP2 )bv2βv2 I ∗
h2

A∗
v2. (29g)

Now, we compute the DFE. In this case, Ehi = Ihi = Evi = Ivi = 0. Thus, Eq. (29a)
reduces to

(γai + μai + cLi )A
∗
vi = μei

(
1 − A∗

vi

KLi

)
S∗
vi ,

(γai + μai + cLi )A
∗
vi = μei

(
1 − A∗

vi

KLi

)
γai

(μv + cAi )
A∗

vi . (30)

Resolving Eq. (30), we get
{
μei

(
1 − A∗

vi

KLi

)
γai

(μv + cAi )
− (γai + μai + cLi )

}
A∗

vi = 0. (31)

Equation (31) has the solution A∗
vi = 0 or

A∗
vi =

(
1 − (μv + cAi )(γai + μai + cLi )

μeiγai

)
KLi =

(
1 − 1

Ni

)
KLi , (32)

where Ni = μeiγai
(μv+cAi )(γai+μai+cLi )

.

Putting Ehi = Ihi = Avi = Evi = Ivi = 0 (where i = 1, 2) in Eqs. (21) and (29), we
obtain the TE, E1, given by

E1 = (
S∗
h1, 0, 0, 0, 0, 0, 0, 0, S∗

h2, 0, 0, 0, 0, 0, 0, 0
)
,

with

S∗
hi = Qhi + m j S∗

hj

mi + μh
, for i, j = 1, 2, i 
= j, (33)

123



Eur. Phys. J. Plus        (2021) 136:1192 Page 29 of 32  1192 

which upon solving the simultaneous equations resulting from Eq. (33) for Sh1 and Sh2 yields

S∗
h1 = Qh1(m2 + μh) + Qh2m2

μh(μh + m1 + m2)
, S∗

h2 = Qh1m1 + Qh2(m1 + μh)

μh(μh + m1 + m2)
. (34)

Furthermore, since Ni > 1 and A∗
vi =

(
1 − 1

Ni

)
KLi , then using Eqs. (21) and (29), we

get

A∗
vi =

(
1 − 1

Ni

)
KLi , (35)

S∗
vi = γai

(μv + cAi )
A∗

vi , (36)

S∗
hi = Qhi (m j + μh) + Qhjm j

μh(μh + mi + m j )
, (37)

with Ni = μeiγai
(μv+cAi )(γai+μai+cLi )

for i, j = 1, 2, i 
= j .

Finally, we obtain the BRDFE, E2, given by

E2 = (
S∗
h1, 0, 0, 0, A∗

v1, S
∗
v1, 0, 0, S∗

h2, 0, 0, 0, A∗
v2, S

∗
v2, 0, 0

)
,

with S∗
h1 and S∗

h2 as defined in Eq. (34),

A∗
vi =

(
1 − 1

Ni

)
KLi , S∗

vi = γai

(μv + cAi )

(
1 − 1

Ni

)
KLi ,

where Ni = μeiγai
(μv+cAi )(γai+μai+cLi )

for i = 1, 2. Hence, the proof. ��

B Proof of Proposition 2

Proof We employ the next-generation matrix method outlined in [37,41] to establish this
theorem. Now, note from the two-patch dengue model, Eq. (5), that

d

dt

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eh1

Ih1

Ev1

Iv1

Eh2

Ih2

Ev2

Iv2

Sh1

Rh1

Av1

Sv1

Sh2

Rh2

Av2

Sv2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − cP1 )bv1βh1
Iv1
Nh1

Sh1

0
(1 − cP1 )bv1βv1

Ih1
Nh1

Sv1

0
(1 − cP2 )bv2βh2 Iv2Sh2

0
(1 − cP2 )bv2βv2 Ih2Sv2

0
0
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γh1 + μh + m1)Eh1 − m2Eh2

(θh1 + μh)Ih1 − γh1Eh1

(γv1 + μv + cA1 )Ev1

(μv + cA1 )Iv1 − γv1Ev1

(γh2 + μh + m2)Eh2 − m1Eh1

(θh2 + μh)Ih2 − γh2Eh2

(γv2 + μv + cA2 )Ev2

(μv + cA2 )Iv2 − γv2Ev2(
(1 − cP1 )bv1βh1

Iv1
Nh1

+ m1 + μh

)
Sh1 − (Qh1 + m2Sh2)

μh Rh1 + m1Rh1 − (θh1 Ih1 + m2Rh2)

(γa1 + μa1 + cL1 )Av1 − μe1

(
1 − Av1

KL1

)
(Sv1 + Ev1 + (1 − τ)Iv1)(

μv + cA1 + (1 − cP1 )bv1βv1
Ih1
Nh1

)
Sv1 − γa1Av1(

(1 − cP2 )bv2βh2 Iv2 + m2 + μh
)
Sh2 − (Qh2 + m1Sh1)

μh Rh2 + m2Rh2 − (θh2 Ih2 + m1Rh1)

(γa2 + μa2 + cL2 )Av2 − μe2

(
1 − Av2

KL2

)
(Sv2 + Ev2 + (1 − τ)Iv2)(

μv + cA2 + bv2βv2 Ih2
)
Sv2 − γa2Av2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)
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So, the infection and transition matrices F and V , respectively, are obtained from Eq. (38)
as

F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 (1 − cP1 )bv1βh1
S∗
h1

N∗
h1

0 0 0 0
0 0 0 0 0 0 0 0

0 (1 − cP1 )bv1βv1
S∗
v1

N∗
h1

0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 (1 − cP2 )bv2βh2S∗

h2
0 0 0 0 0 0 0 0
0 0 0 0 0 (1 − cP2 )bv2βv2S∗

v2 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 + γh1 + μh 0 0 0 −m2 0 0 0
−γh1 θh1 + μh 0 0 0 0 0 0

0 0 γv1 + μv + cA1 0 0 0 0 0
0 0 −γv1 μv + cA1 0 0 0 0

−m1 0 0 0 m2 + γh2 + μh 0 0 0
0 0 0 0 −γh2 θh2 + μh 0 0
0 0 0 0 0 0 γv2 + μv + cA2 0
0 0 0 0 0 0 −γv2 μv + cA2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

Consequently, the control reproductive number of the two-patch dengue model, Eq. (5),
is the spectral radius of the matrix FV−1 (i.e. ρ

(
FV−1

)
) given by

RT =
√

1

2
a1

(
R2

T,1 + R2
T,2

)
+ 1

2

√
a2

1

(
R2

T,1 + R2
T,2

)2 − 4a2R2
T,1R2

T,2, (40)

where

RT,1 =
√

(1 − cP1)b
2
v1βh1βv1γh1γv1

(m1 + γh1 + μh)(θh1 + μh)(μv + cA1)(γv1 + μv + cA1)

S∗
h1

N∗
h1

S∗
v1

N∗
h1

,

RT,2 =
√

(1 − cP2)b
2
v2βh2βv2γh2γv2

(m2 + γh2 + μh)(θh2 + μh)(μv + cA2)(γv2 + μv + cA2)
S∗
h2S

∗
v2,

a1 = b1b2

b1b2 − m1m2
, a2 = b1c1b2c2

(γh1μh + γh1θh2 + c2μh)(m2γh1 + b3μh + b3γh2 + b2μh)
,

b1 = m1 + γh1 + μh, b2 = m2 + γh2 + μh, b3 = m1 + γh1,

c1 = θh1 + μh, c2 = θh2 + μh,

and the components of the BRDFE, E2, are as given in Proposition 1. Therefore, the proof of
Proposition 2 is verified. ��
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