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Abstract Low energy linear seesaw mechanism responsible for the generation of the tiny
active neutrino masses is implemented in the extended 3-3-1 model with two scalar triplets and
right-handed Majorana neutrinos where the gauge symmetry is supplemented by the A4 flavor
discrete group and other auxiliary cyclic symmetries, whose spontaneous breaking produces
the observed pattern of SM charged fermion masses and fermionic mixing parameters. Our
model is consistent with the low energy SM fermion flavor data as well as with the constraints
arising from meson oscillations. Some phenomenological aspects, such as the Z’ production
at proton—proton collider and the lepton flavor violating decay of the SM-like Higgs boson
are discussed. The scalar potential of the model is analyzed in detail and the SM-like Higgs
boson is identified.

1 Introduction

It is well-known, that there are various experimental and theoretical observations indicating
that the Standard Model (SM) must be extended. Among the theories beyond the SM, the
models based on the gauge group SU (3)¢c x SU (3)1, x U (1) x (called 3-3-1 for short) [1-49]
have some intriguing features allowing them to explain the number of SM fermion families,
the electric charge quantization [50,51], etc. In the ordinary 3-3-1 models, the Higgs sector
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contains at least three scalar triplets significantly extending their scalar spectrum. Attempts
aimed to reduce the Higgs sector of the 3-3-1 models have been undertaken in the literature.
A model with the parameter = —\%, defined in (3) and characterizing the embedding of

the electric charge generator into SU (3) 1, has been proposed in Refs. [47,52-57]. Due to its
restricted scalar sector it is called the economical 3-3-1 model. However, this and other similar
versions of the 3-3-1 model with the reduced scalar content failed to reproduce the neutrino
oscillation data. In a view of these difficulties a 3-3-1 model with g = % and containing

just two Higgs triplets has been studied in Ref. [41]. In this model the masses of light active
neutrinos and charged fermions are generated via Type-I Seesaw and the Universal Seesaw
mechanisms, respectively. However, the fermion mixing was not addressed in Ref. [41].

In the present paper, we propose a multiscalar singlet extension of the 3-3-1 model with
two SU(3)p scalar triplets and three right-handed Majorana neutrinos. The gauge group
of the model is extended with the A4 group and some other cyclic symmetries in order
to implement the linear seesaw mechanism responsible for the tiny masses of the active
neutrinos. A well-known advantage of the linear seesaw mechanism [58—62,62-67] is its
testability at the LHC, since it implies sterile neutrinos with TeV-scale masses. Our model
also successfully addresses the observed pattern of the SM fermion masses and mixings, as
a result of the spontaneous breaking of the above-mentioned discrete group factors, in an
analogous way to the Froggatt—Nielsen mechanism [68], which has also been implemented
in 3-3-1 models through the breaking of a U(1) global symmetry in Refs. [69-71]. We
choose A4 as the smallest discrete group having one three-dimensional and three distinct
one-dimensional irreducible representations allowing us to naturally accommodate the three
families of the SM. The A4 discrete flavor group has received a lot interest by the model
building community due to its remarkable ability to elucidate the observed pattern of SM
fermion masses and mixing angles [31,39,62,72-112].

Comparing our model with others, we note, in particular, that our U (1) x-charge assign-
ments of the left-handed quark SU (3) . -triplets are different from those in the model of Ref.
[41]. Due to this difference we have two exotic down type quarks and one exotic up type
quarks, whereas in the model of Ref. [41] there are two exotic up type quarks and one exotic
down type quark. In addition, whereas in our model the small masses for the active neutrinos
are produced from a linear seesaw mechanism, in the model of Ref. [41] they are generated
from a type-I seesaw mechanism. In Ref. [41], the extra fermion lying in the bottom of the
lepton triplet is a charged lepton instead of the right-handed neutrino, which is the field of
the third component of SU (3), leptonic triplet in our model.

Let us also note that our model is more predictive and significantly more economical in
its particle content than the 3-3-1 model with 7’ and S4 symmetries proposed in [47,48]. For
instance, whereas the scalar sector of the 7" flavored 3-3-1 model [47] includes two SU (3),
scalar triplets and 23 gauge singlet scalar fields, the present model has two SU(3), scalar
triplets and 16 SU (3), singlet scalar fields. As for the scalar sector of the 3-3-1 model with
S4 family symmetry [48], it contains 3 SU (3) scalar triplets and 32 gauge singlet scalar
fields, which is much larger than the number of scalar degrees of freedom of our model. Let
us note, that in the proposed model some quarks and scalar fields carry lepton number, which
leads to flavor lepton number violating decay modes of the SM-like Higgs boson. In what
follows we will study this phenomenological aspect of our model as well as the production of
the extra heavy neutral gauge boson Z’ and its detection in the dimuon channel at the LHC.
However, the emphasis will be made on studying the SM fermion masses and mixings.

The paper is organized as follows. In Sect. 2, we introduce the model setup. Sections 3
and 5 are devoted to the model predictions for the masses and mixings in the quark and lepton
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sectors, respectively. Section 4 discusses the constraints on the Z’ mass arising from meson
oscillations. In Sect. 7, the lepton flavor violating (LFV) decays of the charged leptons and
the Higgs boson are considered. In Sect. 8, we summarize our results and discuss their further
implications. In “Appendix A” we present the discrete group A4 group characters. A detailed
description of the Higgs sector of the model is given in “Appendix B.” The analytic formulas
for one-loop contributions to the LFV decay amplitudes of the SM-like Higgs boson are
collected in “Appendix C.” The couplings of neutral gauge bosons Z and Z’ to fermions are
listed in “Appendix D.”

2 The model

We propose a 3-3-1 model where the scalar sector is composed of two SU (3) , scalar triplets
and seven SU (3); scalar singlets and the fermion sector corresponds to one of the 3-3-1
models with three right-handed Majorana neutrinos. In our model the SU (3)¢ x SU(3)1 %
U(1)x gauge symmetry is supplemented with the A4 X Zg x Z14 x Z3> discrete group, so
that the full symmetry G exhibits the following three-step spontaneous breaking:

g = SU(3)C X SU(3)L X U(I)X X A4 X Zg X Z14 X Zzz
“Aint

SUB)c x SUB)L x U(1)x
4 vy

SUB) e ®SUQR)L x U(l)y
U vy

SUB)c®U)g (1)
where the different symmetry breaking scales satisfy the following hierarchy
vy = v =246GeV < vy, ~ O(10)TeV. 2)

In the 3-3-1 model under consideration, the electric charge is defined in terms of the SU (3)
generators and the identity by:

1
Q=NG+p+X=T3 - 7=+ X, 3
V3
where we have chosen 8 = —% (without non-SM electric charges), which implies that

bottom component of the lepton SU (3) -triplet is a neutral field vg thus allowing to build
the Dirac matrix with the usual field vz in the top component of the lepton triplet. Adding
gauge singlet right-handed Majorana neutrinos N;g (i = 1, 2, 3) will allow us to implement
a low scale seesaw mechanism, which could be inverse or linear, to generate the masses
for the light active neutrinos. These low scale seesaw mechanisms offer attractive expla-
nations for the smallest of neutrino masses, because they can be tested at the LHC via the
production and decay of sterile neutrinos. It is worth mentioning that the sterile neutrinos
can be produced at the LHC in association with a SM charged lepton and in pairs, via quark—
antiquark annihilation mediated by a W and heavy W’ and Z’ gauge bosons, respectively.
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In our model the sterile neutrinos have the following two body decay modes: N¥ — ll.i wF
and N f — v;Z (where a,i = 1,2, 3), which are suppressed by the small active-sterile
neutrino mixing angle. Furthermore, the heavy sterile neutrinos N ai can decay via off-shell
gauge bosons via the following modes: N — ;17 v, Nf — 17 ujdy, Nf — bbvy (where
a,i, j,k = 1,2,3 are flavor indices). Thus, the heavy sterile neutrinos can be detected at
the LHC from the observation of an excess of events with respect to the SM background in
a final state composed of a pair of opposite sign charged leptons plus two jets. Studies of
inverse seesaw neutrino signatures at colliders as well as the production of heavy neutrinos
at the LHC are carried out in [113-129]. A detailed study of the sterile neutrino production
at the LHC and the sterile neutrino modes goes beyond the scope of this work and will be
done elsewhere.

The cancellation of chiral anomalies implies that the number of triplets equals that of
antitriplets, so that quarks are unified in the following SU (3)¢c x SU(3)r x U (1)x left- and
right-handed representations [2,7,9,130]:

Our = (Dy, —Uy , J)T ~ (3,3%,0),

1
Q31 = (Us, D3, T){~<3,3,§), n=1,2,

DiRN(3»17_l>a UiRN(3vla%>v
3 3

1 2 .
JnR~<3,1,—§>, TRN<3,1,§>, i=12.3.

Furthermore, the requirement of chiral anomaly cancellation constrains the leptons to the
following SU(3)¢c x SU(3)r x U(1)x left- and right-handed representations [2,7,130] :

1
Lip = (vi. e, Vf)f ~ (1,3, —5), eig~(,1,=-1), i=1,2,3, )

In the present model, the fermion sector is extended by introducing three right-handed
Majorana neutrinos, singlets under the 3-3-1 group, so that they have the following
SU@B3)c x SU@3) x U(1)x assignments:

Nig ~(1,1,0), i=1,2,3.

Note that in Ref. [41], where § = +%, the third component of lepton triplet is an extra
charged leptons.
We assign the scalar fields to the following SU (3)¢ x SU(3)1 x U(1)x representations:

1 1
X = X2 “’(1»3,—5),
T3y 8 £ ily)
75y + & £igy) .
77= n% ~ <1737_§>9
3
o~ (1,1,0),
g~ (1,1,0), &~ (1,1,0), i=1273.
pi~ (1,10, ¢ ~(1,1,0), ¢~ (1, 10). Q)

Here vy, v, are the vev’s setting symmetry breaking scales in (1), (2).
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Table 1 Scalar assignments under Agq x Zg X Z14 X Z22

X n o & ¢ P ¢ @
As 1 1 i 3 3 3 3 3
Z3 0 -1 0 1 -7 -1 -1 4
Z14 0 -1 0 1 -7 1 1 1
Z 0 -2 -1 2 -1 2 2 2

The scalar assignments under the As x Zg X Z14 X Zy, discrete group are summarized
in Table 1.

In our model, this discrete global symmetry group is not only spontaneously broken, it is
softly broken as well. Let us note that the gauge singlet scalars of our models are complex,
which implies that in order to provide masses for the CP odd parts of these scalars, one has
toinclude A4 X Zg X Z14 X Z», soft breaking bilinear terms in the scalar potential involving
a pair of these scalar singlets. These soft breaking scalar mass terms will also be useful for
resolving the domain wall problem, arising from the spontaneous breaking the global discrete
symmetries.

In “Appendix B” we present more details about the scalar sector of our model.

In what follows we briefly describe the gauge sector of our model. Here, we have 8
electroweak SU (3)1 gauge bosons, W, and a U(1)x gauge boson, Eu-

From the scalar kinetic term one finds the interactions:

(D*H)'D,H > 9" R}, P, Iy — RTPFa, Iy, H =1, x, (6)

The covariant derivative is defined as

Dy =8, —iT,Wa, —igxToXB, =9, —ill, (7
with:
W3M+%W3M+th§,t V2wt VX
_8 - 1 2v 7 q _8x
Mu=3 V2w, —W3M+73W8M+t\/;XB,L V2v P L 1=
—q —q 2 2R
V2x, 1 V2v, —ﬁW3M+t\/;XBM
where

1 1 1
Wy=—WFiW), XI=—Wi—iWs), YP=—Ws—iWy).

I ﬁ + I3 ﬁ I \/i
®)

Then, in the gauge sector we have three electrically neutral ¢ = 0 gauge fields, which
combine to form the photon and Z, Z’-bosons, two fields W* with ¢ = +1 and XZ', Y, 32
with electrical charges

q1 = s Q2 =—= 9

1
2 2 27

N =
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1

Physical neutral gauge bosons for § = — 5 are given by:
\/’ 4sW -
=cw twWsy + ———B,, | +swWs3,,
Ay " fCW n ®
V3 - 4sW 3
Z, =cwWsy, —sw 3twwglu—|— ch B, |,
/ 2
1 ~ 3 —dsy,
Z =—=twB, — +——Ws
3 123 «/?:CW I3
1 - 1
0 . 0 .

Xu=75 (Wia = iWys) - Xpy = 5 (Wt + W) (10)
where cy = cos HW, sw = cosfOwy and ty = tan Oy, being Oy the weak mixing angle. In
addition, for 8 = _7 which corresponds to our model, we find the relations:

- ) 3— 4s%v
B, = twZ, + cwA, —swZy),
n 3 1% \/§CW ( H H)
\F 3—4s3, /
Wg, = — =tw (cwA, —swZ,) — ———Z', (11)
“w 3 ( I3 #) x/gc‘w "
372
t = 8x — ﬂ (12)
§ 3 - 4s€v

The electrically charged gauge bosons are given by:

1 . 1 .
Wy = 7 (Apt Fidw) . Yi=—(AuwsEiAw) (13)

V2

where Y* and X© are bilepton gauge bosons. With the above-discussed structure of the scalar
sector of the model, the massive gauge bosons acquire the following masses [131]:

2 2 2 g 2 2 2 g 2 2
mW:mZCW:Zvn’ MX():M)—(O:Z(vX—i—vn) ,

2,2

8 o 2 8 Vx
My =°-v;, My~ = (14)

4 33—ty

where v, = v = 246 GeV. From (14), we find the mass splitting

M3y — My = mj,. (15)

In Ref. [132] it was shown that the contributions of the bilepton gauge boson Y+, X0 to
the oblique S and 7 parameters are constrained to be in the ranges —0.085 < § < 0.05,
—0.001 < T < 0.08, respectively. In the scenario where the mixing angles between the exotic
and the SM quarks are small, which is the case of our model, the exotic quark contributions
to these oblique parameters are very subleading since they are suppressed by the square of
the small mixing angles. Consequently, the dominant contributions to the oblique S and T
parameters are the ones arising from the bilepton gauge bosons Y+ and X°. Notice that the
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Table 2 Fermion assignments under Aq4 x Zg X Z14 X Z2)

Q1L Q21 Q3. Uig Usgp Usg Tp Dig Dar D3gp Jir Jor LL Nr elr er e3r

A 17 T 1 1 v 1 11 1 1 11 3 3 1 ¥V

Zg 0 0 0 -3 -1 1 0 2 4 -1 0 0 0 O 0O 3 0

Zy 0 0 0 5 -1 1 0 2 4 -1 0 0 -4 -4 -6 -6 —6
Zyy =5 -4 0 -8 -6 2 0 -4 -9 -1 -5 —4 -7 -8 -5 -9 —I1

aforementioned range of values for the S and T parameters allow one to have a region of the
model parameter space where the obtained values for these oblique parameters are inside the
experimentally allowed region of Ref. [133] enclosed by the ellipses in the S — T plane.
The fermion assignments under the A4 x Zg X Z14 X Z3> discrete group are summarized
in Table 2.
We assume the following VEV pattern for the A4 triplet SM singlet scalars &, ¢, p, ¢ and

Ve Vp
1,1,1 =—(1,0,1), =—(,1,1),
( ). () ﬁ( ), (p) ﬁ( )

(cosa +eVsina, w (cosa + we'¥ sin a) 0> (cosot + w?e'V sin a)) ,
(cosa — e Vsina, w? (cosa — w?e WV gin a) LW (cosa — we ¥ sin a)) ,

w=e3, (16)

which are consistent with the scalar potential minimization equations for a large region of
parameter space, as shown in detail in Refs. [39,134].

With the above particle content, the relevant Yukawa terms for the quark and lepton sectors
invariant under the group G are:

_ e
— £ =y DGy xTr + v 03 1nUsk

3
(EE)I + yl(llj)gach(lanchUlR (%- ;)1

U —ua
+y§2 )Sabc QZLanCUZ

A5
+y{J)§1LX*J1R +y§ Q2LX Jor
(D) —a #«\b (1 x\C D)~ (524)1
+y33 Sach3L (77 ) (X ) D3R A2 +y22 Q2L77 D2R A3
g £20), 0
+yﬁ))Q1L77 7( A5) (D)Q 11" D> Ri( All
5
+n3Quan +h¥QunDM4*+HC (17)
- 6
ﬁ([) (L)Sahc (L(z (U*)b (X*)c '0)1 E]R%
(L) —a ; 4\b [ x\C o? y(L) —a ; 4\b ; sx\C
38 eae (7. ()" (1) ¢) 2 g + Zeane (L1 ()" ()" 0) e3r
L —a | b : A —a | b >
2P e (L1 (1) (7)), etns + yeane (L1 (1) (7)), esn
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fo
+y,gL)Sabc<9dec< ( ) > d ¢ A13
+

+y{e) (LLuNg),

*

o @)
33 A2 Yoy (LLﬂNR)kF

— o'*
+3 (LLxNR)y - + Hee., (18)

where the dimensionless couplings y, z in Egs. (17) and (18) are O(1) parameters. In addition
to these terms, the symmetries unavoidably allow the following terms:

@*25)1 — (&%)
Y0 xUsk =5 ¥ QanTr=5
_ (E26%) 107 — b (E*2E) o™
y(JzD3)Q2LX*D3RT, Y P Rewpe 05y ()" (x*)° Dar R g

These terms will generate very small mixing angles of the third generation SM up and
down type quarks with the exotic quarks. Such mixing angles are of the order of A3 and A!!
(being A = 0.225), for the up and down type quarks, respectively, thus allowing us to safely
neglect these strongly suppressed corrections, which will not be considered in our analysis.
Furthermore, as it will shown in Sect. 3, the quark assignments under the different group
factors of our model will give rise to SM quark mass textures where the CKM quark mixing
angles only arise from the down type quark sector. As indicated by the current low energy
quark flavor data encoded in the standard parametrization of the quark mixing matrix, the
complex phase responsible for CP violation in the quark sector is associated with the quark
mixing angle in the 1-3 plane. Thus, the Yukawa coupling y{?) in Eq. (17) is required to
be complex in order to successfully reproduce the experimental values of the quark mixing
angles and CP violating phase.

In a generic scenario the Yukawa couplings are complex. However, not all of them are
physical. Some phases can be rotated away by the phase rotation of the quark and lepton
fields. The conditions for the rotation away of the Yukawa phases in the quark sector by the
redefinition of the phases a  of the quark fields are:

D

e
(
arg (y%)) —ag, t+ap,, =0, arg (yi )) —ag; +ap;, =0,
arg (yl(J)) —ag,, +aj, =0, arg (yéj)) — g, +an, =0,
arg (yﬁ/)) —ag, oy, =0, arg (yéé”) — g, +ay,, =0,
arg (y%/)) ap, +oy,, =0, arg (y(T)) — g, +arg =0,

(19)

Consequently all the Yukawa phases in the quark sector can be rotated away, unless one
considers phases of the scalar fields. Therefore, without considering phase rotation of the
scalar fields, all the Yukawa couplings of the quark sector can be set real. Thus, in view of
the above, the observed CP violation in the quark sector will arise from complex vacuum
expectation values of the gauge singlet scalars charged under the discrete symmetries of the
model. Therefore, the spontaneous breaking of the discrete symmetries of our model gives
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rise to the observed CP violation in the quark sector. This mechanism of generating CP
violation in the fermion sector from the spontaneous breaking of the discrete groups is called
Geometrical CP violation and has been implemented in other models. A concise review of
group theoretical origin of CP violation is provided in Ref. [135]

Next, we explain the reason for introducing the discrete group factors in our model. We
introduce the A4 and Zj4 discrete groups with the aim of reducing the number of model
parameters, thus making our model more predictive. In addition, these discrete groups allow
us to get predictive and viable textures for the fermion sector capable of successfully explain-
ing the observed pattern of fermion masses and mixing angles, as will be shown in Sects. 3
and 5. The A4 and Zj4 discrete groups select the allowed entries of the mass matrices for
SM quarks.

The Zg discrete symmetry separates the A4 scalar triplet & participating in the charged
lepton Yukawa interactions from the remaining A4 scalar triplets. The Z4 discrete symmetry
separates the A4 scalar triplet ¢ participating in the Dirac neutrino Yukawa interactions from
the A4 scalar triplet & appearing in some of the neutrino Yukawa interactions involving
the right-handed Majorana neutrinos N;z (i = 1, 2, 3). Let us note that the different A4 x
Z14 X Zyy charge assignments for the quark fields shown in Table 2 give rise to a CKM
quark mixing matrix solely emerging from the down type quark sector. The spontaneous
breaking of the Z14 x Z»; discrete group yields the hierarchical structure of the SM charged
fermion mass matrix and quark mixing angles. Furthermore, the Z>> symmetry is the smallest
cyclic symmetry allowing one to construct a Dirac Yukawa term (Z‘;‘ (Lf)b>3a n?xe if—ll; of

. . . I, . —a c\b d
dimension thirteen from an % insertion on the (L I (L L) )3a n%x¢ % operator, necessary

for obtaining the required A'° suppression (where A = 0.225 is one of the Wolfenstein
parameters) crucial for natural explanation of the smallness of the Dirac neutrino mass matrix
and thus of the light active neutrino masses, as it will be explained in more detail in Sect.
5. Thus, in view of the above, the hierarchy among charged fermion masses and quark
mixing angles is caused by the spontaneous breaking of the A4 X Z14 X Z discrete group.
Consequently, the quark masses are related with the quark mixing angles and we therefore
set the VEVs of the scalar fields n, x, 0 , &, ¢; (j = 1, 2, 3) with respect to the Wolfenstein
parameter A and the model cutoff A, as follows:

v,,~)»4A<U;~k3A<vX~A2A<v5~vg~vp~v¢~v¢~)\A. (20)

It is worth mentioning, as follows from Eqs. (17) and (18) that the Yukawa interactions have
a total of 21 parameters from which 18 are assumed to be real and 3 are taken to be complex.
However, not all of these parameters enter in the physical observables of the quark and lepton
sectors. Such physical observables are determined by the resulting low energy SM fermion
mass matrices which do depend on effective parameters which contain some of the Yukawa
couplings as well as the VEVs of the scalar fields of the model. After the assumption shown in
Eq. (20) is made and the benchmarks described in Sects. 3 and 4 are considered, the number
of effective parameters can be reduced.

Furthermore, the VEV hierarchy v, < v, ~ vy < vg ~ vy ~ v, ~ v, ~ vy is followed
from the SSB chain of Eq. (1) and it also follows from gauge boson mass expressions: for
example, masses of the SM gauge bosons depend on v, while masses of new gauge bosons
(X,Y) and Z’ depend on vy . In addition, the VEV hierarchy v, < ve ~ vy ~ v, ~
vy ~ vy can be explained by appropriate relations between the different mass coefficients
of the bilinear terms of the scalar potential and the VEVs of such scalar fields. This can be
explicitly shown by considering the simplified scenario of two singlet scalar fields S; and
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S>, whose VEVs satisfy the hierarchy vg, < vs,. The scalar potential for such singlet fields
is:

Vo= =3 15117 = 15, 1917 + 21 1811 + 22 1821t + A3 18117 1821 1)
Its minimization implies:
13, =205, + 2305, 3, = 20005, + A3vs,. (22)

Thus, the VEV hierarchy vg, <« wvs,, can be justified by requiring ;L%z ~ 2[1,%-]
and considering the case where the quartic scalar couplings satisfy A, ~ A (i =
1,2,3). A straightforward but tedious extension of the aforementioned argument will
yield to a large set of relationships between the different mass coefficients of the bilin-
ear terms of the scalar potential and the VEVs of the large number of gauge sin-
glet scalar fields of our model that will generate the VEV hierarchy shown in Eq.
(20).

It is worth mentioning that there are several operators invariant under the SU (3)¢ x
SU (3);, x U (1) x gauge symmetry that can generate flavor and/or baryon number violation.
Following [136], we find that these operators are given by:

ziLLJCLLkLLrCU LirejrOnrUk:  Qnr Q4 Q3L Q0w LG URDijr.
Lizejr Q31 Dir. anLQ’gijRelng 5iRUjCRUkRerCR’ anLQgLUfRD./CR’
Lin Q5,05 LS, 030050305, 0urQprQprQ5, 03105, 03005, (23)

where all subindices go from 1 to 3 excepting n, m, s and p, which take the values of

1 and 2. However, all these operators, excepting Qs Q3CL (0kY3 Q3CL, are forbidden by the
Ay X Zg x Z14 X Zy discrete symmetry. Despite this operator contributes to proton decay,
it is phenomenologically innocent, since its contribution is suppressed by the eight power of
the very small 91(2) ~ A% (n = 0.225) quark mixing angle.

3 Quark masses and mixings

From the quark Yukawa interactions given by Eq. (17) we find the following expressions for
the non-vanishing elements of the SM up and down quark mass matrices

3
) v ((E7¢),) v W Ve (EE1) v W v
My = ——, Myxn = , Mysz = )
SNV TXI V.7 SV
4 2 6
(m((é §)1> v (D) v”<(é é‘)1> v (D) Vg ¥
Mpii = —. Mpn=y) N Mpiz =y - —,
D11 = Yy AS ﬁ D12 = Y1p A4 ﬁ D13 = Y3 Aﬁﬁ
2 5
o l(E%5)y) v (D) VgV (D) UxVo U
Mpy = —, Mpr = , Mp33=— .
Y2 T3 /2 Y23 NG V33 N NG

(24)

where v = 246 GeV is the scale of electroweak symmetry breaking and (....) stands for the
vacuum expectation value of the product of the singlet scalar fields. For the VEV pattern of
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Table 3 Model benchmark scenarios S-4, S-3, S-2 with four, three and two free parameters, respectively, as
well as experimental values of the quark sector observables from Ref. [137,138]

Observable S-4 S-3 S-2a S-2b Experimental value
my (MeV) 1.12 1.12 1.12 1.12 1.244+0.22
me(GeV) 0.617 0.617 0.617 0.617 0.63 + 0.02

ms (GeV) 174 174 174 174 1729+ 0.4
mg(MeV) 264 223 2.24 2.34 2.6940.19
ms(MeV) 54.7 46.4 46.4 48.5 53.5+4.6
mp,(GeV) 2.76 2.76 2.76 2.76 2.86 4 0.03
sin6% 0.220 0.220 0.220 0.220 0.2245 + 0.00044
sin 037 0.0506 0.0506 0.0506 0.0506 0.0421 + 0.00076
sin6\% 0.00354 0.00370 0.00370 0.00387 0.00365 =+ 0.00012
Jg 335x 1070 3.50x 1070 347x 1070 297x 1070 (3.18£0.15) x 1073

We use the experimental values of the quark masses at the Mz scale from Ref. [137]

our model (20) we find for the SM quark mass matrices:

a3 00\ a7 a8 aP30\
My = 0 aéU))f‘ 0 7 Mp = O azz))»5 a23)A5 7 (25)
w) (D) 3
0 0 a 0 0 A
where aiU), (?), ... are O(1) dimensionless parameters being products of the dimensionless

couplings y¥) in Eq. (17).
Note that due to different A4 X Z14 X Z» charge assignments of the quark fields, the
exotic and the SM quarks do not mix with each other. Thus, the exotic quark masses are:

T = B = = —mmr, J2 =
Y JRERVARETE 2 a Ty

As seen from Eq. (25), the model has ten physical parameters, allowing one reproduce
any value of ten observables: six quark masses, three mixing angles and one Jarlskog CP
invariant shown in Table 3. The corresponding values of the model parameters are:

(
(1) Ux_ DHVx N ) Yy _ yz (26)

al” ~1.085, a ~1.391, a{ ~0.99%4,
a§?> ~0.527, a$ ~0491, aly ~1.438, 27)

a® ~0.501, ‘a13)‘~0467 arg(aly)) ~ —60.96°, a3y ~1.210.

An important feature of the above result is that the absolute values of all a-parameters are
of the order of unity. Thus, the symmetries of our model allow us to naturally explain the
hierarchy of quark mass spectrum without appreciable tuning of these effective parameters.

Another observation about the set of values given in Eq. (27) is that it shows rather
particular pattern: some of them are practically equal between each other. This fact suggests
to consider the following simplified benchmark scenarios with a limited number of the free
parameters:

S-4 (4 free parameters): aﬁ)) = ag) = aé?), a{U) = agy) =1, a§3D) = aé?) = aéU).
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Fig. 1 Correlation of the quark 0.0040] - - 0

mixing parameter sin Q(q) with

the Jarlskog invariant
0.0038

0.0036

sine(,“;

0.0034

2.8 3.0 3.2 3.4 3.6
Jgx107°

Best-fit values: aéU) =~ 1.40, ailD) ~ (.53, )aB)‘ ~ (.43,

arg(a\y)) ~ —60.86° (28)
S-3 (3 free parameters): a ﬁ)) = ag)) = agzD) a{?) , = agU) =1,
a'P) (D) _ (U )
dp3” = d33 :
Best-fit values: a{”) =~ 1.40, aﬁ’) ~ 0.45, arg(a§D)) ~ —60.9° (29)
S-2a (2 free parameters): a ﬁ)) = a{zD) agzD) ‘af? ) , ( = agU) =1,

(D) (D) U)
Gyy” =dzz =da; °,

Best-fit values: a(U) ~ 1.40, a%?) ~ (.45, arg(a%))) = —60°.

S-2b (2 free parameters): a le) = (D) = (D) = ‘ Do) = agU) =1,

(D) (D) ()
dyz~ = d33 —“2 ,

Best-fit values: aéU) ~ 1.40, ai?) ~ 047, arg(ai?)) = —45°, (30)

As seen from Table 3, all the quark observables are reproduced with a reasonable precision
even in the 2-parameter scenarios S-2a and S-2b. This result hints that the model framework
allows introduction of certain extra symmetries significantly reducing the number of free
parameters. This possibility will be studied elsewhere.

Figure 1 shows the correlation of the quark mixing parameter sin 91('31) with the Jarlskog
invariant. To obtain this figure, the quark sector parameters were randomly generated in a
range of values where the CKM parameters and the quark masses are inside the 30 experi-

mentally allowed range. Such correlation shows that that the quark mixing parameter sin 61(?

and the Jarlskog invariant J, are located in the ranges 0.0033 < sin 9(‘1) < 0.0040 and
27x107° < Jy S 3.65 % 1073, respectively. We also found in th1s numerlcal analysis that

the remaining quark mixing parameters are in the following ranges: 0.223 < sin 91(‘5) <0.226
and 0.040 < sin 632 < 0.045.

Finally, the LHC signature of the exotic 7', J; and J> quarks in our model is defined by the
fact that they will mainly decay into a top quark plus neutral scalar and can be pair produced
at the LHC via Drell-Yan and gluon fusion processes mediated by charged gauge bosons and
gluons, respectively. Consequently, we consider the observation of an excess of events in the

multijet and multilepton final state as the smoking gun of our model at the LHC. A detailed
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study of the collider phenomenology of the model is beyond the scope of this paper and is
left for future studies.

4 Meson oscillations

It is worth mentioning that the non-universal U (1) x charge assignments for the left-handed
quark fields give rise to flavor changing neutral processes (FCNC) mediated by the Z’ gauge
boson. These FCNC interactions contribute to the K° — K©, Bg — Bg and B? — B? mass
differences. It is worth mentioning that the D? — D meson oscillations are absent at tree level
since the symmetries of our model constrain the up type quark mass matrix to be diagonal. In
this section, we discuss the implications of our model in the Flavor Changing Neutral Current
(FCNC) interactions in the down type quark sector. The flavor violating Z’ interactions in the
down type quark sector produce meson oscillations. The K — KO, Bg — 32 and BS — B?
meson mixings are described by the following effective Hamiltonians:

- 4 2
(K'-R%  42Gpcym% v 2 Ok
T2 A2\ .2 VDL) (VDL)31| o , 31
eff (3 — 452 m2, 32
5 4 2
(32_33)—4‘@G”W’"z x 2 (B0 B30
Heff _@_T%/)mzz/ |(VDL)31 (VDL)33’ 0( d d), (32)
5 4 2
(B0-B0)_4V2Greymy 2 ) (B-B)
== |(V Vv O\Ps s) . 33
eff (3—4s%,)m2, |(VhL)s, (VbL)3s) (33)

The K — K, Bg - Bfi) and B? — BSO meson mixings in our model is caused by the tree level
Z' exchange, thus giving generating the following operators:

o (K=K _ (57, PLd) (57" Prd), oBi-B)) — (dyuPLb) (dy"PLb), (34
0B=B) = (sy, PLb) (57" PLb). (35)
Furthermore, the following relations have been taken into account:
My = (M) 0 = VieMsVir:  fam = Vi fwr),
fiL (Mf),-j fir =T (V;L)ki (Mf)ij (VfR),'z fir

= fiL (V;LMfoR)kz fir = frL (Mf)kl fir = mfkkafkRy
k=1,23. (36)

Here, ﬁ( L.Ry and fir gy (k =1, 2, 3) are the SM fermionic fields in the mass and interaction
bases, respectively.

Itis worth mentioning as shown in detail in “Appendix B,” that our model has the alignment
limit for the lightest 126 GeV SM-like Higgs boson given that the remaining scalars are much
heavier than the electroweak symmetry breaking scale 246 GeV. Furthermore, our model at
low energies, below the scale the scale of breaking of the SU (3)¢c x SU(3)r x U(1)x gauge
symmetry, corresponds to a multiscalar singlet extension of the SM. Thus, the light 126 GeV
Higgs boson will not induce tree-level FCNC. This phenomenologically dangerous effect can
happen in the presence of at least two SM doublet scalars before the electroweak symmetry
breaking. To avoid this trouble, one can resort to the Glashow—Weinberg—Paschos theorem
[139,140] stating that there will be no tree-level FCNC coming from the scalar sector, if all
right-handed fermions of a given electric charge couple to only one of the doublets.
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Besides that, the contributions to FCNC arising from the heavier scalars are strongly
suppressed by their large mass scale and the very small mixings of the scalar singlets and the
CP even neutral component of x with the CP even electrically neutral component of 1 (which
is mostly composed of the 126 GeV SM-like Higgs boson). Because of this reason the FCNC
interactions in our model mainly arise from the tree-level exchange of the Z' gauge boson.
This situation is different than the one presented in 3-3-1 models with three scalar triplets
like the ones considered in [69-71], where two of the three scalar triplets do acquire VEVs
at the electroweak symmetry breaking scale thus implying that at low energies below the
TeV scale, the theory corresponds to a 2HDM where tree-level neutral scalar contributions
to FCNC do exist. This problem was elegantly solved in Refs. [69—71] by implementing the
Froggatt—Nielsen mechanism in this version of the 3-3-1 model.

On the other hand, the K — K, Bg — Bg and BA? - E‘? mass splittings are given by:

NP NP
Amg = (Amg)sy + Am(l( ), Amp, = (Ade)SM + Amgd )
AmBS = (AmBS)SM —+ Amgjp), (37)
where (Amk) sy, (Amp,),, and (Amp,),, are the SM contributions, whereas Am(lévp),

Amgp) and (Amp,),, are new physics contributions.

In our model, the new physics contributions to the meson differences are given by:

(NP) . 4\/§GFCZ‘1}VI’I’ZZZ

Amy = m 7% (VDL)31|2 f&Bknkmk, (38)
w) Mz
442G et m2

Amgp) = G- 4:2 ;szz |(V5L)31 (VDL)33’2 fédBBd NB,MBy, (39)
w) Mz
426G pctm?

Ay = (- 452‘;}22 |(VBL)52 Vo)l 15, Bs,nsms,. (40)
w) Mz

Using the following parameters [141-147]:

Amg = (3.484 4 0.006) x 10712 MeV, (Amg)gy = 3.483 x 10712 MeV
fx =160MeV, Bk =0.85, ng =0.57, mg =497.614MeV.
(Amp, )., = (3.337£0.033) x 107'°MeV,  (Amp,)g,, = 3.582 x 107" MeV,
fp, = 188MeV, Bg, =1.26, np, =0.55, mp, = 5279.5MeV.
(Amp,), = (10419 £0.8) x 107'"MeV, (Amp,),, = 121.103 x 107" MeV,

exp

fB, =225MeV, Bp, =126, np, =0.55 mp, =5366.3MeV.

We plot in Fig. 2 the K¢ — K©, Bg — Bg and BS - B? mass splittings as function of
the Z’ mass. As seen from Fig. 2, the K 0_ g0, Bg — Bg and B? — B? oscillations caused
by the flavor changing neutral interactions reach values close to their experimental upper
limits and the constraints arising from these meson oscillations set the Z" mass in the range
TTeVS myz < 8 TeV.
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Fig. 2 The K0 — KO, Bg — E‘g and Bg - E‘? mass splittings as function of the Z’ mass

5 Lepton masses and mixings

From the charged lepton Yukawa terms, we find the charged lepton mass matrix in the form:

a12®+b12° (cos(a)—e ™"V sin(w)) by23 (cos(a)+e'V sin(ar)) a313+b323 (cos(a)—e ™V sin(ar))
M = |a12?+b12°0? os(@)—e~V w? sin(@))  baA’w (cos(a)+elV wsin(w) azrd+b3r3w? os(a) —e 'V o sin(ar))
a2 +b12%w (cos(@) —e V wsin(a)) brr’w? (cos(@)+e'V o’ sin(@))  azi+b3ra3w (cos(a) —e TV wsin(a)

Un

x 2. (4D
where ay, a3, b; (i = 1,2, 3) are O(1) parameters constructed of the parameters yl.(L) , 7D,
Note that the charged lepton masses are linked to the scale of the electroweak symmetry
breaking through their power dependence on the Wolfenstein parameter A, with O(1) coef-
ficients. Furthermore, from the lepton Yukawa terms given in Eq. (18) it follows that our
model does not feature flavor changing leptonic neutral Higgs decays at tree level.

For the neutrino sector we find from Eq. (18) the neutrino mass term:

VL
— 2000 = (UL WTR) M, vRCC + H.ec, 42)
NR

where vig = ((v°)7)€ corresponds to the third components of the lepton triplet introduced
in Eq. (4). The A4 family symmetry of the model constrains the neutrino mass matrix to be
of the form:

033 M1 M
M, =| M 033 M3 (43)
M2T MST 033
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with
M, = Unvx¥e (vcr)“ 02 082(1)
= — | — —w )
EEEVCTERN 0 —10
0 1+ x)0* (1 — o
Up. v,
Mz:y;yki ()| a-»ne 0 1ex ).
I+x)o 1-x 0
o 100 yP .
M3:y§L>7X<1) 0w 0 |, x=20 w=e?. (44)
V2 1A 00 w? y%n)

The light active masses arise from linear seesaw mechanism and the physical neutrino
mass matrices are:

-1
M = — |:M2M3_1M1T + M (M3T> MZT} , (45)
1 1 _ _
mP =2 <M3+M3T)+Z[ [ (M3)7' M3 + My (M) ]Ml]v (46)
1 1 _ .
M = 5 (My+m) + 2 [ Ml )™ mas + M)~ (47)

where M, ,51) is the active neutrino mass matrix, whereas M, ,52) and M ,53) are the sterile neutrino
mass matrices. Explicitly we have
2+ D ?*(x =1 2wx

2 — 1) —dox x+1 2

(L) 11
O — Y1y (vg) Uy Vg Vg

v L) \A 3
2y A A dox  x41 20 —1)) V2
2+ D *(x =1 2wx 119y
=| ?x=1) —dwx x+1 My, my,= — . (48)
2wx x+1 —20%x—1) V2

The experimental values of charged lepton masses, the neutrino mass squared splittings, the
leptonic mixing parameters and Dirac CP violating phase can be reproduced for the normal
ordering (NO) of the neutrino mass spectrum with the following values of the model effective
parameters:

a; ~ 0983, a3 ~—0.483, b; =~ —0.755,

by ~ —0.597, bz~ —0.199, x =~ 0.431,

my >~ 16.34 meV, o >~ 122.25°, B~ —42.82°,

y >~ —59.36°, ¢ ~98.44°. (49)

2

¢

[

Using the values of the lepton model effective parameters of Eq. (49), the PMNS leptonic
mixing matrix takes the form:

Upmns = UITUV

—0.818231 — 0.0686404i —0.318382 - 0.449127i 0.148954 + 0.0227392i
0.0515003 +0.373766i —0.379958 — 0.371145i 0.731222 + 0.202101i
—0.180118 — 0.388575i 0.634519 — 0.110392i 0.564605 — 0.288074i

(50)
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Table 4 Model and experimental values of the light active neutrino masses, leptonic mixing angles and CP
violating phase for the scenario of normal (NH) neutrino mass hierarchy

Observable Model bpf +10 [148] bpf 10 [149] 20 range [148] 30 range [148] 3o range [149]

Am3 [107%eV?] 759 7.55704% 7407030 720-7.94 705814 6.80-8.02
Am}, [107%eV2] 253 2504003 24947003 244257 241260 2399-2.593

O] +1.2 +0.78

6,5 () 33.84 34.57]2 36.621078 325368 315380  31.42-36.05
o) 8.67 845010 854+0.15 82-88 8.0-8.9 8.09-8.98
o) 50.12 47.9119 472719 431498 418507  40.3-515
50, ) —85.29 —142738 —108+43 182-315 157-349 144-374

The experimental values are taken from Refs. [148,149]

where:
—0.625827 —0.614417 —0.48045
U; = | —0.406057 — 0.298325i 0.726662 + 0.202306i —0.400359 + 0.129878i |,
0.569876 — 0.172341i —0.112245 — 0.202306i —0.59877 + 0.483205i
0.566967 0.12785 —0.813759
U, = | 0.396158 4+ 0.686167i —0.177447 — 0.307348; 0.248135 + 0.429782i

—0.112675 + 0.195159i —0.463062 + 0.802046i —0.151256 4 0.261983i
(D

As seen from Table 4, the model values are consistent with the experimental ones. Again,
akin to the quark sector, the absolute value of the effective dimensionless parameters a®, x
are of the order of unity. We interpret this fact in a way that the lepton mass hierarchy is
explained on account of the model structure, symmetries and field content, without unnatural
tuning these effective parameters.

Figure 3 shows the correlations of the leptonic mixing angles with the leptonic Dirac
CP-violating phase as well as the correlations between the leptonic mixing parameters. To
obtain these Figures, the lepton sector parameters were randomly generated in a range of
values where the neutrino mass squared splittings, leptonic mixing parameters and leptonic
Dirac CP violating phase are consistent with the experimental data. These lepton sector
observables are inside the 1o experimentally allowed range, excepting 92(13) which is inside the
30 range. We found the leptonic Dirac CP violating phase in the range —90° < S(Cl}, < —-25°,
whereas the leptonic mixing angles are obtained to be in the ranges 31.5° < 91([2) < 37.5°,
48.0° < 6 < 51.5°and 8.15° < 68 < 8.9°.

Let us consider the effective Majorana neutrino mass parameter

mpp = |y Ugimu,| - (52)
j

where U, ; and m,, are the PMNS leptonic mixing matrix elements and the neutrino Majorana
masses, respectively. The neutrinoless double beta (OvBf8) decay amplitude is proportional
tompgg.

Figure 4 shows the correlation of the effective Majorana neutrino mass parameter 1., vs
the lightest neutrino mass m.
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Fig. 3 Correlations between the different lepton sector observables

278 280 282 284 286 288 32 33 34 35 36 37

my[meV] iy

48.0 485 490 495 500 505 510 8.2 8.4 8.6 8.8
(1) (1)
623[°1 613[°]

Fig. 4 Correlations of the effective Majorana neutrino mass parameter mgg with the lightest neutrino mass
m1 and with the leptonic mixing parameters
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As canbe seen from Fig. 4, our model predicts the values of the effective Majorana neutrino
mass parameter in the range 24.5 meVS mgg S 27 meV, which is within the declared
reach of the next-generation bolometric CUORE experiment [150] or, more realistically, of
the next-to-next-generation ton-scale OvBB-decay experiments. The current most stringent
experimental upper limit mgg < 160 meV is set by Tovﬂ b (13Xe) > 1.1 x 10%° yr at 90%
C.L. from the KamLAND-Zen experiment [151].

6 Z' gauge boson production at the LHC

Here, we compute the total cross section for the production of the heavy Z’ gauge boson,
defined in Eq. (10), at the LHC via Drell-Yan mechanism. We consider the dominant con-
tribution due to the parton distribution functions of the light up, down and strange quarks,
so that the total cross section for the production of a Z’ via quark antiquark annihilation in
proton—proton collisions with center of mass energy /S takes the form:

(DrellYan)
sz S)

2 /n 5
- 6(3‘%:5 [(g“L (k) / \/T, fp/u (\/7 ,/L2) fp/u( mSZe‘»V,uz) dy
2 mZZ’ v 2
+ [(gdL (ir) /\/7 Sy foa | =& | dy
2
i [(gdL (sar) /\/» Iors (\/76 M ) Sorss (\/?ey )dy , (53)

where g/ (R)® g (r) are the Z' couplings to left (right)-handed up and down type quarks,

respectively. These couplings are given in “Appendix D.” The functions f,/, (x1 , pcz)
(fpa (XZs l/vz)): Sfpra (XI» Mz) (f,,/g (x2! Mz)) and f)/s (xls Mz) (fp/s (x2, Mz)) are the dis-
tributions of the light up, down and strange quarks (antiquarks), respectively, in the proton
which carry momentum fractions xj (x7) of the proton.

The factorization scale is taken to be . = m .

Figure 5 (left panel) displays the Z’ total production cross section at the LHC via the
Drell-Yan mechanism for /S = 13 TeV as a function of the Z’ mass M in the range from
7 TeV up to 8 TeV. We consider Mz > 7 TeV in order to fulfill the bound arising from the
experimental data on K, B; and By meson mixings obtained in Sect. 4.For this region of
Z' masses we find that the total production cross section ranges from 0.11 fb up to 0.01 fb.
The heavy neutral Z’ gauge boson, after being produced, will subsequently decay into the
pair of the SM particles, with the dominant decay mode into quark—antiquark pairs as shown
in Refs. [9,152]. The two body decays of the Z’ gauge boson in 3-3-1 models have been
studied in detail in Ref. [152]. In particular, in Ref. [152] it has been shown that in 3-3-1
models the Z’ decays into a lepton pair have branching ratios of the order of 10~2, which
implies that the total LHC cross section for the pp — Z’ — [~ resonant production at
/S = 13 TeV will be of the order of 1073 fb fora 7 TeV Z’ gauge boson, which is below its
corresponding lower experimental limit from the LHC searches [153]. On the other hand, at
the proposed energy upgrade of the LHC up to 28 TeV center of mass energy, the total cross
section for the Drell-Yan production of a heavy Z’ neutral gauge boson gets significantly
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Fig. 5 Total cross section for the Z’ production via Drell-Yan mechanism at the LHC for /S = 13 TeV (left
plot) and +/S = 28 TeV (right plot) and as a function of the Z’ mass

enhanced reaching values ranging from 82 fb up to 30 fb, as indicated in the right panel of
Fig. 5. Consequently, the LHC cross section for the pp — Z’ — [TI~ resonant production
at /S = 28 TeV will be of the order of 1 fb fora 7 TeV Z’ gauge boson, which is consistent
with its corresponding lower experimental limit arising from the LHC searches [153].

7 Lepton flavor violating decays

Let us analyze the implications of our model for the LFV decays of the SM charged leptons
and Higgs boson.

Given that the SM charged lepton mass matrix (56) cannot be diagonalized analytically
in the practically useful form, in this section, for the sake of simplicity, we restrict ourselves
to a simplified benchmark scenario characterized by the relations:

sz) = ny), vy = ¢ sin Bvy, v, = v, cos P, y§L) = —e_i"yiL) tan S,

2 = ey P cot . (54)
Then, the charged lepton mass matrix takes the form:

M; = Rjrdiag (me, My, m,) ,

111 1 0 0 cosp 0 —sinBe
Ri=—|1 o o? 0 cosa —sinae ¥ 0 1 0 ,
V3 1o » 0 sinae’¥ cos« sinfe’” 0 cospB
w = ez%, (55)

where the charged lepton masses are:
9 Y
A —,
1 \/5
In “Appendix B” we derived an expression (B13) for the SM Higgs boson, h(l), as a
linear combination of the scalars present in our model. We combine such relations with the

v v
me =a —, M= aé”)ﬁ—. (56)
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definitions of the charged lepton mass eigenstates and masses:

My = (Mf)diag = V;LMfoR, fa.n=Vrw,r LR,

V}L)ki (Mf)ij (VfR)jl fir

= 7“ (V;LMf'VfR>kl fir = 7@ (Mf)kl fir= mfk?kLﬁR,
3

(57

where fk( LRy and fir ry (k =1, 2, 3) are the SM fermion mass and interaction eigenstates,
respectively.
Then, considering the first three terms in Eq. (18) we find the h(l)ee couplings

—L;0,, C 1+ %;’7 + El (me,»aem + H.C.)
]EE ,Un vX

8 _
— r— (cq + Saty) h? (mel.e,'LeiR + H.c.) s (58)
mwy

coinciding in the limit s, — 0 with the SM ones. As seen from the above formula, there
are no lepton flavor violating decays of the SM-like Higgs bosons (LFVHD) h? — el.jtejE
with i # j at tree level. This is consistent with the latest experimental result, where no
signals were found setting the upper bound Br(h(l) — 7t tFe) < 0(1073) at 95 %
confidence level [154,155]. This feature distinguishes our model from some previous models
with discrete symmetry that predicted tree-level LFEVHD [156]. However, the SM-like Higgs
bosons in our model still couple with the heavy neutrinos through the four last Yukawa
terms in Eq. (18). Hence, the LFVHD may arise at one-loop level, as in the models of the
standard seesaw, inverse seesaw, and 3-3-1 model with massive neutrinos and inverse seesaw
mechanism [157-162]. While the standard seesaw model predicts suppressed branching ratios
for LEVHD, these branchings can reach interesting values of the order of 10~2 in the models
with inverse seesaw mechanisms. Recent studies predict that the experimental sensitivities
for LEVHD can reach values of the order of 107> in the near future [163,164].

The one-loop diagrams contributing to the LFV decays of ¢; — e;y and the SM-like
Higgs boson decay h? — eje; with i # j are exactly the same as those that appear in the
seesaw and inverse seesaw versions of the SM. The difference is the neutrino mixing matrix,
arising from the linear seesaw mechanism. Hence, it will be interesting to estimate how large
the Br(h(l) — e;e;j) can become under the current bounds of Br(u — ey) < 4.2 x 10-13
[165]. It is expected that the future experimental sensitivities to the LFV decays will be
improved, namely 6 x 107! for Br(u — ey) [166,167], and about O(10~?) for the two
decays Br(z — ey) and Br(z — py) [168] (for a recent review see, for instance, Ref.
[169]).

We will use the approximate formulas for the Br(e; — ¢;y) in 3-3-1 models given in
Ref. [170], which were checked to be well-consistent with the results obtained from the exact
numerical computation. Other approaches used for discussions of LFV decays of charged
leptons in 3-3-1 models were also given previously in the literature [28,171,172]. Analytic
formulas for calculating the one-loop contributions to LFVHD in the unitary gauge are
given in Ref. [32,161,162], and were shown to be consistent with previous works [160].
Using these formulas, we only determine couplings between physical states and ignore all
Goldstone bosons.
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From the definition of the SU (3), x U (1) x covariant derivative (7) we find its part related
with the charged gauge bosons in our model

0 Wi o0
cc 1 - -
n=—(w; o r;|. (59)

"
V2o vi 0
Hence, the couplings of the SM-like Higgs with the charged gauge bosons are given by:

Ly © (Dun)' (0"2) + (D) (D).
Ligvy = gmweahtW W, 4 gmyhfs Y 1Y, (60)

The matrix U;y, in Eq. (55) will be used to change the basis of the left-handed charged leptons
from the flavor basis to the physical one. Specifically, the correspondence between the original
basis of the left-handed leptons and the physical one is e[ R, <> e, or ef, <> Rj ey, while
the right-handed ones are unchanged. This means thate;;, — Uz ;je;j ande;p — e; U ZTL, ji
withi, j =1,2,3.

From Egs. (58) and (60), we note that the couplings SM-like Higgs boson with normal
charged leptons and gauge boson W= in the model under consideration and the SM are
(ca + st9) and cq, respectively. The lower bound mz > 4 TeV gives v, > 10 TeV, which
results in small s, > 124/2 ~ tg ~ v/vy ~ O(1072), therefore ¢, = 1+O(10~%). Similarly
for the couplings of SM-like Higgs bosons with the SM quarks and the neutral gauge boson
Z, where &, plays role of the SM Higgs boson after the first breaking step. After the second
one, the physical state of the SM-like Higgs boson is h(]) > cq&y and the relative difference
the Z boson with other particle is ¢y with 55 ~ v2/ v)zc given in Eq. (D3). Hence, the largest
relative differences between the couplings of the h? predicted by our model and the SM are
cq and cqcyp. As a consequence, these couplings of the SM-like Higgs bosons are still in the
allowed regions constrained from experiments.

The neutrino mass matrix M, in Eq. (43) is diagonalized via an unitary 9 x 9 matrix U,
namely

UI'M, U, = M, = diag(m,,, mp,, ..., i) = diag(i,, riy), 61)

where 1, = diag(mp,, my,, my,;) and my = diag(m,,, mys, ..., my,) are the masses
of active and exotic neutrinos ny = (n1r, n2r, ..., nor). They are Majorana fermions that
satisfy ngg = ng; withk = 1,2, ..., 9. Relations between the interaction and physical basis

for the neutrino fields are: (g TR Ng) = WUUT and (v, vg Ng)T =Uyng.
The couplings of charged gauge bosons with leptons are given by

. 8 —— - —
Ly+y =i(LLy"PECLL) = i (@ry™vitW, +ery* )Ly, +He.).

[(UiL) ji U ixeiry mc W, + (Uin) ji (Un) swesrymin Y, +He ],
(62)

-

V2

—> Lytg =

where the sums are taken fori, j = 1,2,3andk = 1,2, .., 9, and we have used (v{); = vl.CR.
Based on Eq. (18), couplings of SM-like Higgs boson with neutrinos are included in the

following interactions:

@ Springer



Eur. Phys. J. Plus (2021) 136:1158 Page 23 of 43 1158

—L,0,, C (1 +oy E—X) [@Ml Ve 4 H.c.] + <1 + E—”) [@Mmg + H.c.]
: Up Uy Up

+ (1 + éi) [ﬁMgNIE + H.c.] ,
Vx
Ly = ﬁh? [(Ca +suto) (VMG +Hee) + o (VMaNG +Hec.)
tsats (vEMsNE +He.)]

C,
= ;:n‘; ) [+ tate) (U)ik(M1)ij (Uy) (j43)p + (U ik (M2)i (Uy) (j+6)p

+ tato(Uy) 43k (M3)i; (Uy) (j+6)p | kRN pr + Hec., (63)

where the sums are taken for i, j = 1,2,3 and k, p = 1, 2, ..., 9. By defining a symmetric
coefficient Ay, = Ay satisfying

Mp = (1 +1atg) (Ui (M1)ij (Uv) (j+3)p + (Un)ik(M2)ij (Uy) (j+6)p
+tato(Uy) (43 (M3)ij (Uy) (j+6)p + (k < p),

Eq. (63) can be written in the form

8C, —
Ly = (140 PL+ 3, PR 7, (64)
where P g = (1 F y5)/2 are chiral operators and 7, are four-component spinors of

Majorana neutrinos. This form of the couplings hngn, allows us to use the Feynman rules
in Ref. [173] for calculating LFVHD at one loop level.
Based on Ref. [170], the branching ratio for the e; — ¢y (i > j) decay takes the form:

1272 -
Br(e; — ejy) = GTlDij'Z x Br(e; — ejvjv;), (65)
F
where G = g2/ (4“/5’"%4/) and D;; is the one-loop contribution due to virtual charged gauge
bosons and Majorana neutrinos running in the internal lines of the loops. Such contribution

can be written as D;; = Di‘;./ + Di};., where:
w 682 :
DY = ————>" > WU Ui) jaU)ak F (tew),
327 my,
k=1a,b=1
2 9 3
eg
D}; =-—" Z WUD)iw+3) U)oU) ja+3) Un) (@+3k F (tky),  (66)
32w cmy —
=1a,b=1
where
A . _omp Foo = 10—43x 4 78x2 — 49x3 + 4x* + 18x3 In(x)
wW=—. iy =—, Flx)=- B T .
miy my x—=1)

(67)

We note that F'(x) was givenin Ref. [174]. The above formulas were used in the inverse seesaw
3-3-1 models [162] and were confirmed to be numerically consistent with the previous work
of Ref. [28]. Numerical values of Br(e; — ¢;v;v;) will be fixed as Br(u — ev,v,) = 100%,
Br(t — evevy) >~ 17.82%, and Br(t — v, v;) 2~ 17.39% [138]. At low energy we take
g% = 62/s2W = 47T0!em/S%V, where aeyy >~ 1/137 and S%V ~ 0.231.
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(p1 +p2)

Fig. 6 One-loop diagrams contributing to the SM-like Higgs boson decay h(l) — eje; in the unitary gauge,
vE=wE yE

For the LFVHD, one loop diagrams for Br(h(l) — e;e;) are shown in Fig. 6.
The decay width for the process h(]) — e;ej is given by:

mh(l)

P(h) — eiej) =T(h) — e el) + T — efe;) = o (1AGHLIP? + 1A6jHrI1)
(68)
with the condition m By > M j being m; ; the charged lepton masses.
The corresponding branching ratio is
Br(h) — eie;) = T(h) — eje;)/ r;j?tal (69)
where F;‘f}}al ~ 4.1 x 1073 GeV [175]. We define the Aijyr,r functions
4
Hw ()4
AGjHL.R = Z ( (i’j)L,R + A(i’j)L,R) ’ (70)

i=1

where analytic forms for the functions in the r.h.s. are shown in “Appendix C” (for detailed
calculations, see Refs. [32,161]). The above formulas were crosschecked using FORM [176,
177].

Numerical input parameters we use for the analysis of the LFV processes correspond to the
benchmark point given in Eq. (49), which implies that the corresponding values of the physical
observables of the lepton sector are automatically consistent with the neutrino oscillation
experimental data. The mixing matrix of the charged lepton sector is fixed as givenin Eq. (51).
The neutrino mixing matrix U, and neutrino masses can be numerically determined from
Eq. (61), by using the numerical parameters given in (49). According to our estimates M 1(,1) is
nearly independent of v, . On the other hand the heavy neutrino masses show significant v, -
dependence, because they get main contributions from M3 given in Eq. (44). Furthermore
they are nearly degenerate, which implies, m;, >~ m,; ~ ... =~ m,, =~ y§<L) L (“—") as

/2 \A
indicated by Eqgs. (46) and (47). Hence, we can see the dependence of the LFV branching
ratios on the heavy neutrino masses, which are related to v, as shown by Eqs. (46), (47) and
(44). Besides the two VEVs vy and v, that were fixed in the discussion of the charged lepton
sector, we choose vg = v, = vy = AA, while the three factors in front of the matrices M > 3
in Eq. (44) can be written in terms of yj > as follows

’

2418
yivgalo = D0 (U—U)H yib D (U—")Eyzv 22,y 2L (U—”) _ Yevh
! 2W2A2NA T T JGA N A ! U2 VA m,

(71)
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Table S Branching ratios for the LFV decays with vy = 15 TeV. The second column presents the numerical
values of the heavy neutrino masses

1. y2) My [GeV] Br(u— ey) Br(rt —ey) Br(t — uy) Br(h(]) — pne) Br(h(l) —Te) Br(h(l) — TW)

0.1,0.1)  81.4 28%x 10713 85x 1071 68x10713 31x10718  44x10713  36x10712
05,0.1) 407 43x 1075 13x107  11x107¥ 96x10720  13x1074  11x10713
2.0.1) 1627.8 25x 10717 78x10718  62x10717 12x1071  1ex1074  13x10713
(5,0.1) 4069.5 6.8x 10719 21x10719 17x10718 83x10719  12x10713  95x 10713
0.1,05  41x102  27x10712 82x10713 66x10712 61x10717 85x10712  70x 1071
05,05 203x10° 66x10715 20x10715 16x107 12x1071%  16x1071  14x10710

(2,0.5) 8.14x 103 27x10717 82x10718 66x10717 16x10715  23x10710  19x107?
0.1,2) 1.63x 103 41x10712 12x10712 99x10712 19x1074  26x107? 22x1078
0.5,2) 8.14x 103 69x10715 21x107 17x107% 41x10713  58x1078 48 x 1077
(0.1,45) 3.66x103 42x10712 13x10712 10x10711 28x10712  39x1077 3.2 x 1070
0.2, 45) 73254 27x10713  82x1071% 66x10713 92x10712  13x107© 1.1x 1073

where y; 2 ~ O(1). In our numerical analysis we fix A 2~ 96 TeV, and the CP-even neutral
Higgs mixing parameters are set as follows s, = 0, ¢, = 1. In addition, we consider
values for the Z' mass satisfying Mz > 4 TeV, which correspond to a SU(3), x U(1)x
symmetry breaking scale fulfilling v, > 10 TeV, as derived from the approximate formula
M%, ~ gzc%vv)z(/(3 — 4s%,) [131]. Numerical results for Br(e; — e;y) and Br(h(l) — ejej)
depending on y; and y; are illustrated in Table 5 for v, = 15 TeV. For v,, around this value,
all numerical results are the same hence it is unnecessary to discuss them here.

The product yj y; is constrained by the perturbative limit of the Yukawa coupling y;y> ~
y)% < V4w ~ 3.5, as follows from Eq. (71). Table 5 shows the numerical values of the
Branching ratios for the LFV decays with v, = 15 TeV and different values of the Yukawa
couplings y; and y, and heavy neutrino masses. Notice that a specific value of (yr, y2) in
Table 5 will predict a value for the Yukawa coupling y)% ~ V2m, +/(yA) < 3.5, leading to
my, < 0.557v,. Thus for v, = 15 TeV we have m,, < 8.35 TeV.

Based on the numerical results reported in Table 5, we can see that Br(u — ey) canreach
values close to its recent experimental bound provided that y; is small enough. On the other
hand, Br(h? — ut) can reach O(1073) values when y; is large enough, like for example
y2 = 4.5 as shown in Table 5. Furthermore, increasing y, will result in larger values for
Br(hY — 17). We can see that the Br(h{ — e;e;) is enhanced when the heavy neutrino mass
my, is increased, which is a generic behavior observed in inverse seesaw models [160,161].
Because the experiment data favors lower bounds of y;, and the perturbative limit of y)%
and v, results in upper bounds of y,, there exist upper bounds, which are order of O107)
and O(107%) for the Branching ratios of the two decays h(l) — ut, et for the numerical
values of the free parameters chosen above. The remaining LFV decays T — uy, ey and
h(l) — e have much smaller Branching ratios than the characteristic sensitivities of current
experimental searches.

8 Conclusions

We constructed a viable multiscalar singlet extension of the 3-3-1 model with two scalar
triplets and three right-handed Majorana neutrinos where the tiny masses for the light active
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neutrinos are produced by the linear seesaw mechanism. Our model is based on the A4
family symmetry, which is supplemented by other auxiliary symmetries. The observed pattern
of the SM charged fermion masses and fermionic mixing parameters originates from the
spontaneous breaking of the discrete symmetries of the model and does not require any
fine-tuning of the model parameters.

We analyzed the implications of our model in the lepton flavor violating processes. We
demonstrated that the branching ratio Br(x — ey) can reach values close to the recent
upper experimental bounds, thus constraining the values of Br(r — uy) and Br(z — ey)
to be much smaller than the corresponding experimental sensitivities. On the other hand, the
model allows Br(h(l) — ut) and Br(h? — e7) to reach the values of about O(10~?) and
O(107°), respectively. Besides that, we have studied the implications of our model in meson
oscillations and we have found that our model is consistent with the constraints arising from
meson mixings. We also studied the production of the heavy Z’ gauge boson in proton—proton
collisions via the Drell-Yan mechanism. We found that the corresponding total cross section
ranges at the LHC from 0.11 fb up to 0.01 fb when the Z’ gauge boson mass is varied within
7 — 8 TeV interval. The Z’ production cross section will be significantly enhanced at the
proposed energy upgrade of the LHC with /S = 28 TeV reaching typical values of 82 — 30
fb. From these results we found that the pp — Z’ — [+~ resonant production cross section
reach the values of about 1073 fb and 1 fb for M = 7 TeV at the energies /s = 13 TeV
and /s = 28 TeV, respectively.

The first value of the resonant production cross section is below and the second lies on
the verge of the sensitivities of the LHC experiments at the corresponding energies.
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Appendix A: the product rules for A4

The A4 group has one three-dimensional 3 and three distinct one-dimensional 1, 1’ and 17
irreducible representations, satisfying the following product rules:

33=3,¢93, 0101 1",
1®1=17 1/®1//=1’ 1/®1/=1//’ 1//®1//=1/’ (Al)

Considering (x1, x2, x3) and (y1, y2, y3) as the basis vectors for two A4-triplets 3, the fol-
lowing relations are fulfilled:

B ®3); = x1y1 +x2y2 + X33,
(3 ®3)3, = (x2y3 + x3¥2, X3y1 + X1Y3, X1y2 + X2)1) ,
B®3)y = x1y1 + wxays + 0’x3y3.
B ®3)3, = (x2y3 — X3¥2, X3¥1 — X1¥3, X1Y2 — X2)1) ,
(B ®3) = x1y1 + 0’ x2y2 + @x3)3, (A2)

where w = ¢! 5 . The representation 1 is trivial, while the non-trivial 1" and 1” are complex
conjugate to each other. Some reviews of discrete symmetries in particle physics are found
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in Refs. [178—181]. The discrete symmetry A4 was first implemented to the 3-3-1 models in
the Refss [11] and [182].

Appendix B: scalar sector

Here, we present more details about the scalar sector of our model containing the SM Higgs
boson.
The scalar potential of the model can be split in the following two parts:

Vg = Vgnvariant + V;Oﬁ. (Bl)

The first part VI™ariant js invariant under the A4 x Zg x Z14 x Zy, discrete and SU(3)¢ x
SU@3)1 x U(1)x gauge symmetries,

VN — 2 X+ g+ pg oo + pEET + nE (O
+ 1 (0™ )1 + Lo (0¥ 0)1 + 15 (9 D) + [/Lén @*p)1 + H.c.]
F a0+ 4 30" + 3 [570578)]
N
+ a0 + 2, G 0 + (0%0) [Ae (X 10) + Ao (1'0)]
[ @ 1)), + [ED @ eh)], + [ED @ eh)], + He)

+ (0%0) {Z)"SO'(S*S)I + [Agpo (@*p)1 + HC]}
s

+ 0 {ZASX(S*SM + [Appx @*p)1 + Hc]}
s

+ ') Y hsy(S* )1 + [hgpn(@*p)1 + Hee ]
S

+ > {[@*p)(S*9)], + He.} (B2)
N

where S, S;, S; =&, ¢, p, ¢, ¢ are the scalar fields defined in Eq. (5). The second part V;"ft
consists of Ay X Zg X Z14 X Z», soft-breaking terms needed to generate nonzero masses for
the CP-odd neutral Higgs bosons as well as to solve the domain wall problem. The complete
set of these soft-breaking terms is

Vel = p20? + food 4+ [uf,’s (87), + fs (5%, a] +He., (B3)
S

where S = &, ¢, p, ¢, ¢; all parameters u,, f5, ,u%,’s, and fs have the same dimension of
mass.
The As-invariant products of four A4-triplets x, y, z, t can be decomposed as:
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() @01y = A7 @)@ + 257 ey @) + 237 ey 2y

xyzt

+ )\4 [(xy)3s(21)35]
+ 237 )35 @3]y + A [e)3a @3]y + 237 [(0))30 (2034l -

(B4)

The products like [(xz)(yt)];, [(xf)(¥2)];.... are not included in the scalar potential (B2)
because they can always be written as linear combinations of the seven A4-products in the
right-hand side of Eq. (B4). This fact can be easily demonstrated, using the rules given in
“Appendix A.” Let us note that due to the antisymmetry and symmetry properties of the 3,
and 3; triplet components in the products (§&) and (¢¢), we obtain (353,)1 + H.c. = 0.
Hence, many terms of this kind does not appear in the scalar potential. Therefore, particular
cases are written as

[($*$)7], = AT (S*)1(S*S)1 + A5 (S*S) 1 (S*S)1r + 43 [(5*8)3,(5*8)3, ],
+ 23 [(5%9)3,(59)3,], »
[Si*sis;fsj]l = 10 (TSNS + [ (ST S0w (S S+ He
a
+A§is'i(SfSi)3u(S}-ij)3u, Si # S,
[E&) @ 0M)], = M2 EEN (0 0™ + M5 EE) (00" 1r + 150 (EE) 11 (0™ 0™
+ 257 [E6)3s (0 ¢M)3], -
[0r)@* 8], = T (00)1 (@)1 + AL (o)1 (¢ ¢ 1r + AL (pp) 1 (9™
+ 207 [(0P)3s (@34, »
[Ee")(06%)], = 2777 G101 + 157 (601 (pd ™)1
2577 G0 1 (09" + 157 (6935 (093],
2577 (6035 (09 )3a], + 157 €030 (00 )35],
+2577 (6030 (0034 ], -
(G )], = 157 EeH ot o)1 + 157 60" 1 (0 )1
+2577 0 G0 (0* ) + 157 [0 (0" )3,
2577 (6035 (0" B)3a], + 157 [0 D30 (0 D)as]
3577 (€030 (0" P)3a] - (BS)

The above scalar potential has a fairly large number of scalar self-interactions.
The VEV’s chosen in Eq. (16) must satisfy all the minimization conditions of the scalar
potential (B2), namely

N * *
(87°8i)3, (5753,

av,
Sl =0. (B6)
8 SO SU=(SO),\'/S0

The model contains 20 neutral scalar components, where three of them have zero VEVs.
This leads to 20 minimization equations relating the VEVs to the parameters of the scalar
potential. We find that two equations for X? and pg are automatically satisfied. The remain-
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ing 18 equations allow expressing 18 parameters of the model in terms of the other
ones.

In order to generate fermions masses consistent with experiments we introduced in (20)
the VEV pattern implying new relations between VEVs. Let us show that this pattern is
consistent with the scalar potential (B2). It suffices to consider the simplified case of the
scalar potential in the decoupling limit, when the quartic couplings of the scalar SU (3) .-
triplets vanish, with the exception of two SU (3) -triples. We will comment on more general
cases later. The minimization conditions for the neutral scalars with real vev’s take in the
decoupling limit the form

Aypv2
0 0 2 X1"n 2
S :)(3—)[,(,)(:— 2 —}\.XUX,
Ayp2
0 0 2 XN "x 2
S =1 > Uy =-— > — Anvy,
2 2 2
0 0 2 2 n_ 3fevs ﬁ(f;vg + Jevg -I—fpvp)
S'=0" = uy =—vhe —2Ug — NG — o
«/Efqgvéei‘/’sza N ﬁfwvée*ﬂ/sza
Vo Vo '

SO=6).60.8) » ul = —V2fevo — gvg(:«mf +4215),
e =0,
$O=¢0. 6 > ug = —V2frve — vF Q245 + A5 +219),
v Qw + DS —15)
2(w +2)

2
I’Ll/{' = 5
2
§O=p0. 0% 09 — 3 = _gvﬁ(sxf +425),
Hop = 0. 1y, =0, (B7)

where we have used that 37, (¢;)2 = viei‘f’sza and Y3 (¢)? = —vée“"”sza.
Next, we consider the Ag-triplets ¢ and ¢ with complex VEVs given in Eq. (16). With
Hgp = 0, we have three different minimization equations for ¢ in the following forms:

3x12u2
s0 :¢(1) —- 0= 2v2¢ +}»? (x12+x22+x§) +)L%) (2x% _X% —x32)
¢
3//‘/2/ 3 fav
+axdad + 2 j; >
U(b U¢
3x2M2 Sprz,
S0 = g0 0= szng F 10 (2 4+ 23 4+ 03) + 28 (=] + 203 —x3) + 4300 + U21¢
2 ¢
3fpva
ﬁvé '
0_ 40 BGHG 02y 2 A4 b (2 1A
0= ) > 0= 2;U2 + A5 (57 + x5 +x3) + A (=x7 — x5 + 2x32) + 4x52]
¢
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2,2
3w pg n 3 fpvo
vé ﬁv¢ ’

where x| = cq + €/ Vo, x2 = w (ca + we'Vsg), and x3 = w? (cq + w?e'Vsy) that satisfy

(B8)

x1 + x2 + x3 = 0. Other relations used in our calculation are: Z?:l xi2 = 6¢cysqeV. From
the scalar potential minimization equations we find:

3V2 fpvo

2
2 2249 ¢
M¢——§U¢(3)\.1 +4)\.4)_m,

M%/d’ =0,
n 3 f ¢ Vo

V203 (x + 43+ x3)
In the same way, we treat the minimization conditions for ¢ and find the following relations

3V2fyvo )
2,2, 2 Mg
yit+y,+y3

o _ 39
2 =S

(B9)

2
2 2
My = —§v¢(3)\‘f + 4kf) — =0,
3 fyVo

=2+ 22, 2.2
\/El}w (yl +y2 +y3)

where y; = ¢4 — e Vg, V) = w? (ca — wze’i‘/’sa), and y3 = w (ca — we’i‘/’sa).

Thus, we see that the minimization conditions in the decoupling limit do not constrain the
vev’s. This conclusion is valid in the general case, when all the quartic coupling return back
to the scalar potential. This is trivial because these couplings just introduce new independent
parameters, which cannot introduce any constraint on the vev’s.

Let us identify the SM-like Higgs boson with one of the scalars of our model or their
linear combination.

Note that the neutral CP-even components of the Higgs bosons always contain only one
massless state absorbed by the gauge boson X°. This state is one of the linear combinations
of the two real components R( X?) and R(ng), which have zero VEVs. More precisely, the
model contains two would-be Goldstone bosons G x, G*X, a neutral CP-odd Higgs boson /4,
and a mass eigenstate hg Namely, defining

Ay (B10)

Un
tp =tanf = —,
Uy

we have the following relations between the original and the mass eigenstates of the neutral

Higgs bosons
Ry, _ [ ce SQ) Gy Iy, _( co se Gy
Ry, —S9 Co hg T\, —s9 Co hy, |’
1
mGy =mg, =0, myg=mj, =i, @) +v)). (B11)
. . . 2 _ 2 2
The R;, is one mass eigenstate with mass m Rey = §(—3l)v§.

The remaining CP-even components of the neutral Higgs boson consist of 17 states &, =
ﬁRx?’ &y = ﬁRn?, Ry, Reg; (i = 1,2,3), Ry, and Rg;. The squared mass matrix of these
states is the 17 x 17 matrix denoted as M% This matrix has nonzero determinant, which
means that all the neutral CP-even Higgs bosons are massive. In addition, Det[/\/l%]vnzo =0
implies that there is at least one Higgs boson with mass at the electroweak scale. That lightest
CP even scalar state is identified with the SM-like 126 GeV Higgs boson.

@ Springer



Eur. Phys. J. Plus (2021) 136:1158 Page 31 of 43 1158

To illustrate that there is one Higgs that can be identified with the 126 GeV SM-like Higgs
boson found by LHC, we consider the simplified case when the SU (3), triplets x and n
decouple from S = o, &, ¢1, &3, pi, @i, and ¢; so that the corresponding quartic couplings
vanish A5 = Ays = 0. Then, the matrix /\/l%l is split into two block-diagonal 2 x 2 and
15 x 15 matrices. The first matrix in the basis (§,, &,) takes form

M2 — < Z)WIU%/ )"WXUX;}"> . (B12)
ht ApxUxUy 2hyvy

Its mass eigenstates, h(1) and hg, and their masses are

2
2 2 2 2 2 2 5242
mh(l)2 =Ayvy + A0y F \/<AXUX — knvn) + A5 Vy Vi

sn) ( Ca sa) <h(1)) knxtﬁ
= , hy =tanRa) = ———. B13
<§x —Sa Ca) \ I3 2a 2 by = ol B

These two neutral Higgs bosons are similar in many respects to those discussed in the model
[41]. Analogously to this model, in our case in the limit 7y < 1, we find that mh0 ~

2
(2)»,7 - A—) %, as should be for the SM Higgs boson, the mass of which is generated on
the electroweak scale. Thus, we identify h? with the SM-like Higgs boson found by the LHC.
The simplified case when 7y < 1 is used in our discussion of the LFV Higgs decays in Sec.
7.

The soft breaking terms introduced in the Higgs potential (B3) are enough to generate
nonzero masses for all CP-odd Higgs bosons in the model under consideration, even some
of them vanish by the minimization conditions of the Higgs potential. Namely, in the limit
of fs = O0withall S =o0,§, {,p, ¢, ¢, the total squared mass matrix of the CP-odd
neutral components in the basis So = (I, Ig;, Ir;, Ip,; 1g;, 1y;) separates into the six block
sub-matrices, including one physical state I, and another five 3 x 3 matrices.

mly = -4,
1 1 1
2 _ 22,8 £ 2 & & £ 2 £ & £
mE, = VEGA] 40, ZuE(-ISA] + 1815 +40). SvF (1S4 + 1835 +40) 1
4
—3)L w— 4A (w+2)+l (Tw+38)
3 ¢ ¢t
bt 0 08 2§ -4
M = g asnfradwrarf w8 w+2) 0 2,
¢ 2(w+2) c c .
¢ ot ¢ 335 (=425 @+2)+35 (w+3)
08§ -4 0 el

V52
Mg = 5 X (3] + 425 —15K] + 1825 + 40, —152] + 1818 +43]).

M
b _ 4 o2, 2 4 2 ¢ 02,2 %
— :dlag{2A4 (xl +13 - 5) +(3:3 —2)f, 22 (xl +3 -3
¢
2 b (3.2 byt (2,2 4
+(33 —2)f, (3xF —2) 20 + 224 (x2 22 §>}
M2
7R 4 4
TZ“’ = dlag{zxf (;12 +y3 - 5) + (%% -2)af. 284 (3y12 +3y3 - 5)
¢
4
+ (333 -2) 8. (352 2) 2% + 22 <}2+}3_§)], (B14)

where m? . denotes the squared mass eigenstate of the CP-odd Higgs boson corresponding
to the orlglnal basis {/s;}. It can be seen that the CP-odd Higgs boson masses get contribu-
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tions from the discrete symmetry preserving terms. Other trilinear soft-breaking terms with
fs # 0 will yield complicated mixings among these Higgs bosons, without affecting the
phenomenology of our model, since this scalar sector, being very heavy, is decoupled from
the SM fields. Notice that since we are considering a CP conserving scalar potential, the
heavy neutral CP odd scalars do not mix with the CP even electrically neutral component of
the SU (3) . scalar triplet n. On the other hand, the heavy physical scalar states arising from
the gauge singlet scalars are mainly decoupled from the 126 GeV SM-like Higgs boson due to
the very small mixings between the scalar singlets and the CP even electrically neutral com-
ponent of n. Consequently, we are in the decoupling scenario where the coupling strengths of
the 126 GeV SM-like Higgs boson with SM particle are very close to the SM expectation. In
view of the above, setting fs 7% 0 will not affect the main physics results of this paper. One
can also think about introduction of an additional ad hoc symmetry forbidding the trilinear
terms in (B3) and thus guarantying fs = 0. The study of this possibility goes beyond the
scope of this paper and is deferred for a future work.

Appendix C: analytic formulas of LFVHD at the one-loop level

One-loop contributions to LFVHD defined in Eq. (70) are written in terms of Passarino—
Veltman (PV) functions [183]. In this work, they are denoted as B, @ » By (12) , Coand C12.In
the limit m; ; >~ 0, their analytic formulas were given in Refs. [32, 161 184] These functions
are used for our numerical analysis. It has been shown numerically that they are in a good
agreement with the exact results computed by LoopTools [185] in Ref. [186].

The analytic expressions of A(l)w AEZ) 1.r given in Eq. (70), where i implies the
diagram (i) in Fig. 6, are

C,
ADW _ gca

P =t Z Z<Uu>ak<U ok (Uen) ja Ui

miy 1a.b=1
X [m2 (Bfl) — B(l) B(z)) %B;z) + <2m%‘, +mi0> mﬁkCO
1

[ZmW(ZmW—i—mnk—l—m —m)—l—m m ]Cl

+ [2m%v (mz mi?) + mlzmlzo] C } ,

x [ m?, (B(Z) + B“) + B(Z)) +m2B{" + (2m3, + mi?) e

k
—[Zm%v(mlz )—l—mm ]C]

+[2mw<2mw+mnk—m +m>+m m ]Cz}
3

3 9
PV = 22 S S W) ak U (Uer) ja (Ui

MW k=1 a,b=1

[, [ B = miyCo+ (2my +mE, — ) 1]
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+A2pmnk [Bfl) i <2m%v +m%p — m?) C1]} ,
9 3

== N S Un)a Uy WUen) ja Ui in

MWk o=1a,=1
(12) 2 2
X [Akpmnk [BO - mWCO - <2mW —i—mn —m; ) Cz]

— Ag;mnp [sz) + (2’"%4/ + m,%k - mi) Cz]} ,

GHHW g'mjm? (ca + salp) e * i
APV _ _ Y0 Y UnakUpUen) jaUfpin

2.,,3 2 2
64 mW(mj my) =1 bl

x [2m, (B = BY) = (2t +m2,) (B + BY) =3B —m?B{" ],
G+Hw _ Mj  G+Hw
Ag = —A)

mj

1 g S
A(L)y =~ D; é Z Z WU a+3k U w33k Uer) jaUGin
My 121 a,b=1

1 1 2 2
x fm, (81" = B = B&) = m?B? + (2m} +mly )

— I:Zm%, (ng, +m%k + m? — mlz) + mikmi?] Cq
2
1

Co

k

3
ny g Calli
AT = ~ oS §j > U asan UD 4 Uer) ja Uy ib
My (D J

2 1 2 1
X [ my, (B( )4 B( s B( )> +m§B]( )4 (2m§ +mi?) mﬁkCo
[Zmy (m2 — mh) —I—m m ]Cl
+[2m%, (2m%,+m —m +m; )+m m ]Cz }
g3cam; ’
AP =2 N Z Un) @+3U) 04+3)p WUer) ja(Ugpib

3
647 My 4 oo=1a,b=1

X [Ag;m”p I:B(()lz) - m%,Co + (Zm%, +m —-m ) Cl:l
—i—)»gpmnk [Bl(l) + (Zm% + m,zlp — mlz,) Cl]] ,

3 9 3
glcom;
%’Y = rﬂ"m; E E U)@+3x UD) o+3)pWUer) ja (UDin

Y k,p=la,b=1
X [}\gpmnk [B(]z) mYCo — <2m%/ —i—mﬁ —m; )CQ:I

— )»g;mnp [Bl(z) + (Zm% + mﬁk — m?) Cz]] ,

@ Springer



1158 Page 34 of 43 Eur. Phys. J. Plus (2021) 136:1158

3 2 9 3
G+ayy g mjm; (Co + Salp) x .

A = — U U Uer)ia(U,7)i
I 64712m§,(m§ — ) kE:IaEb:I( W a3k U o430 Uer) jaUppin

2 (g0 _ g® 22y (g0 L g@Y _ 2 _ 2 p(0)
x [2m?, (B = BY) = (@mf +m2) (B + B ) —m3 BV — m?B{"],

m;
A(R;>+4)Y — mi{A?+4)Y- (Cl)
1

Appendix D: couplings of the Z and Z’ gauge bosons to fermions

The interactions between fermions and neutral gauge bosons are determined as
= N
Engaugefermion = ngMPM Cf s (Dl)
where f denotes all fermions in the model under consideration. Then one gets

o Electromagnetic interaction, as usual: L., = efy*Qf A “w -

e Interaction between Z with fermion
3 —4s2 2
w SW

g J—
Lzp=—=Fr"|cs (T3 =53 Q) =54 Ty + X\ | fZu
ow V3 J3 453,
g J—
= —frrY"8LRILRZy, (D2)
cw

where ¢ is the Z — Z’ mixing angle given in Ref. [131], Sp = sing, cy = cos ¢,

(1—253),/3 —4s3, (02 2.2 V2 (1 — 252 )2
COTWNITI () e 8T g AT 2T g
43 —4sy) Cyy

2
Vx

tan ¢ >~ 54 40€V

The couplings of the Z gauge boson with fermion are presented in Table 6, ignoring
mixing of SM and exotic quarks.

It can be seen that s, — 0 when mZZ/MZ, — 0, leading to the consequence that g; >~ gr
for the exotic quarks T, Jj 2, as given in Table 6. Note that in the limit ¢ — 0, the couplings
of Z to the SM fermions are the same as those of the SM Z boson.

e Interaction between Z’ with fermion
3 — 4s2 2
w s
s + W

g —
—fy"|c 8
cw G J3—4s2,

g J—
afL,Ry#glL,RfL,RZl/u (D4)

Lz ¢ X | +sp(T3—53,0) | £Z,

It is worth noting that couplings of Z and Z’ are related to each other by replacing
Cp <> S¢p-

The couplings of the Z, gauge boson with fermion (by replacing cy — s4 and sy — —cg)
are presented in Table 7 .

Note that in both Tables, dealing with neutrino we used v{ ~ vg.
For practical uses, we present neutral currents in the vector and axial forms as follows

Lzf = S Fyriey - vsea) fZy (D5)
ZCW
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Table 6 Couplings between Z boson and fermions

8L &R
b cp I s¢(—1+2s%‘/) S¢L‘%V
! 2 a2 2
2 3—45W 1—4sW
2 2
1 2 sp (=142sy,) S
e c(—f—ﬁ—s >+7 [T I — —
PNTZTIW)T g, W Bl
3452 2
U 0 (3 — 452 455 LW “2eyed, — 20w
n 6 w ¢ 6 35w 3 s
[3-4s2,
2
D (34252 + V374w 1.2 5955
n 3 w) 155 3CSwy + 5
o
¢ 54 (—34252,) 252
U3 TG —dshy) + L —0- ~Zepsty —sp b
6,/3—4s3, 3,/3-4s%,
C, S, (—3+2s2 ) 1 B 52
D3 (34252 4 W] 1CoSt, + 5y —D—
6 W 6,/3—4s%, 39%w ¢3‘/374s‘2,‘,
2 2
2. 2 _ Sp(=3+55p) 2.2 25y
T —5CpSty — —F———% —ZCpST, — Sp ———
3w TS roaz, 30w TS faoas,
/3—4s2
In fepsiy —sp 5

2

1 2 Sw
3CpSw +Sp ——
3 3—4SW

Table 7 Couplings between Z’ boson and fermions

/ /
8y 8R
2 2
v; s% I c¢(71+23W) CHpCy
2,/3-4s%, 1453,
. 2 2
1 2 L¢(—1+25W) 2 Sy
ej s(—f-i—s )—7 S¢Sy — €
s\TZ W 2,/3-4s2, ow e 3-4s%,
Sp 2 v/ 3—4S€V 26¢s%‘,
Un [ 2 S T3eSw Tt T,
3/3—4sy,
s /374sa, s
Dy, %(73 + Zs%l,) —cp—5— %s(ps%‘, - W Wz
3\/3—4sy,
S, c, (—34—252 ) 2 ) 252
U3 V(345 - W — 25452, + cp—L—
o v 6,/3—4s%, 30w ¢3‘/374s‘2,‘,
2 2
5¢ 2 cp(=3+2sy) 1 B Sy
" LA Ly oW T Ry
w - 4
. 2 2
2. 2 cpB-5s) 2, 2 sy
T —38pSyy — —F—— — 58Sy +Cp —F——
30w 3,/3-4s%, 3w ¢3‘/374S‘2/V
3—4s2 2
1.2 L NTTTW 1.2 Sw
In 3565w t¢p—3 35S ~ € 5
3,/3-4s2,
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Lzy= %7?“(8@ —yse)fZ),, (D6)

where the relation among two kinds of couplings is given by

gv=8L+&grR. &A=8L — &R- (D7)
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