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Abstract We apply the Nikiforov–Uvarov method to solve the Klein–Gordon equation with
the Hua plus modified Eckart potential (HPMEP). The energy eigenvalues and corresponding
wave functions are obtained analytically. We show that in the non-relativistic limit, the
solution of Klein–Gordon equation reduces to that of Schrodinger equation. Special cases of
HPMEP such as modified Eckart, Hua, Morse and Poschl–Teller Potentials are also reported.
Furthermore, the partition function and other thermodynamic properties are studied for H2,
CO, NO and N2 molecules.

1 Introduction

Since the inception of quantum mechanics, the study of exactly solvable potentials has
attracted research interest in many areas of physics. Studies on exponential-type potentials
are known [1–4]. The exponential potential of interest in this study is the Hua plus modified
Eckart potential (HPMEP). This potential has been reported with respect to some wave equa-
tions [5–7]. The HPMEP is a superposition of the Hua potential [8, 9] and Eckart potential
[10] in modified version. In molecular physics and quantum chemistry, the Hua potential is
widely applied as an intermolecular potential. The Hua potential has been investigated within
the framework of relativistic and non-relativistic wave equations [11–13] and reduces to the
Morse potential [14] when the deformation parameter, q, equals zero. The Eckart potential
is very useful in chemical physics [15, 16] and has been investigated in the fields of quantum
mechanics (relativistic and non-relativistic aspects) [17, 18]. Dong et al. [19] derived the
bound states of Schrodinger equation with Eckart potential via approximate technique. In a
related work, the authors in Ref. [20] obtained scattering states of l-wave Schrodinger equa-
tion for Eckart potential. The bound and scattering state of l-wave Klein–Gordon equation
for mixed Eckart potentials are reported [21]. Other reports on Eckart potential can also be
found in Refs. [22, 23].

Recently, the study of thermodynamic properties in various potential models has become
the subject of research [24–27]. This has become possible through statistical mechanics
which allows the interpretation of thermodynamic properties of a system [28, 29]. In Sta-
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tistical physics, the partition function [30] contains the whole thermodynamic information
such as the entropy, the free energy, the specific heat and internal energy. Within the last
decade, the thermodynamic properties have been studied in various potential models such
as deformed Hylleraas plus deformed Woods–Saxon potential [31], screened Kratzer poten-
tial [32], Mobius square potential [33], improved Tietz potential [34], Morse potential [35],
improved deformed exponential-type potential [29], improved Rosen–Morse potential [36],
improved Manning–Rosen potential [37], improved Tietz potential [38], general molecular
potential [39] and others. Further literature on the thermodynamic properties of various sys-
tems can be found in Refs. [40–44]. However, thermodynamic properties with HPMEP have
not been studied, which is a motivation for the present work.

In relativistic limits, the motion of a particle is described using either Klein–Gordon or
Dirac equations [45, 46] depending on the particle’s spin. The spin-zero particles are reported
by the Klein–Gordon equation. Klein–Gordon equation with equal scalar-vector potential is
very interesting. The Klein–Gordon equation with various potentials is vital because one can
discuss the physics and properties of a system described by such solutions. Many techniques
are applied to solve Klein–Gordon equation for various potentials. These techniques include
Nikiforov–Uvarov (NU) method [47–51], factorization method [52], path integral method
[53], Ansatz method [54, 55] etc. The exact solutions of the Klein–Gordon equation with equal
scalar and vector ring-shaped potentials have been reported [56]. The Klein–Gordon equation
with equal scalar and vector Mobius square potential has been reported [57]. A number of
studies on Klein–Gordon equation in different potentials abound in literature [58–62]. The
study is therefore aimed at investigating thermodynamic properties of Klein–Gordon equation
with HPMEP. To achieve this, we solved the Klein–Gordon equation to derive the energy
levels and corresponding wave functions. Then, we can obtain the thermodynamic properties.
The HPMEP is expressed as [5–7]

V (r ) � V0 + V1

(
1 − e−2αr

1 − qe−2αr

)2

+ V2

(
4e−2αr

1 − qe−2αr

)
+ V3

(
1 + e−2αr

1 − qe−2αr

)
, (1)

where V0, V1, V2, V3, α and q are constants.

2 Klein–Gordon equation in D-dimensions

The D-dimensional Klein–Gordon equation (c � 1) is [63]
(
�

2∇2
D − (μ + S(r ))2 + (E − V (r ))2) �(r , �D) � 0, (2)

D is the spatial dimensionality, D ≥2, ∇2
D is the D-dimensional Laplace operator, S(r)

and V (r) are, respectively, the attractive scalar and repulsive vector potentials, c and E are
the speed of light and relativistic energy, respectively.

�(r , �D) � r− D−1
2 Rnl (r )ϒlm(�D), (3)

where ϒlm(�D) is the spherical harmonic function. The eigenvalues equation for the gener-
alized angular momentum operator is L2

Dϒlm(�D) � l(l + D − 2)ϒlm(�D). With this we
write the radial D-dimensional Klein–Gordon equation as.[

�
2 d2

dr2 +
(
E2 − μ2) − 2(μS(r ) + EV (r )) + V 2(r ) − S2(r ) − K (K + 1)�2

r2

]
Rnl (r ) � 0,

(4)
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where K � l + 1
2 (D − 3), n and l are the radial and orbital angular momentum quantum

numbers. For equal scalar and vector potentials, i.e., S(r) � V (r), Eq. (4) becomes[
�

2 d 2

dr2 +
(
E2 − μ2) − 2(μ + E) V (r ) − K (K + 1)�2

r2

]
Rnl (r ) � 0 (5)

Adopting Alhaidari et al.’s scheme [64], we rescale the potential under the non-relativistic

limit as V (r ) � S(r ) → V (r )
2 and setting, V (r ) � V0 + V1

(
1−e−2αr

1−qe−2αr

)2
+ V2

(
4e−2αr

1−qe−2αr

)
+

V3

(
1 + e−2αr

1−qe−2αr

)
, thus, Eq. (5) becomes

(6)

d2Rnl (r )

dr2 +

[(
E2 − μ2

�2

)
+

(
μ + E

�2

) {
V0 + V1

(
1 − e−2αr

1 − qe−2αr

)2

+V2

(
4e−2αr

1 − qe−2αr

)
+ V3

(
1 + e−2αr

1 − qe−2αr

)}
− K (K + 1)

r2

]
Rnl (r ) � 0

To solve Eq. (6), we include the approximation [65]

1

r2 ≈ 4α2e−2αr

(
1 − qe−2αr

)2 . (7)

Inserting Eq. (7) in Eq. (6) and using s � e−2αr gives

d2R(s)

ds2 +
(1 − qs)

s(1 − qs)

dR(s)

ds
+

−�s2 + ϕ s − χ

s2(1 − qs)2 R(s) � 0, (8)

where

� � − (
ε1q

2 − ε2V0q
2 − ε2V1 + ε2V3q

2), (9)

φ � 2ε2V0q + 2ε2V1 − 4ε2V2 + ε2V3(q − 1) − 2ε1q − k(k + 1), (10)

χ � −(ε1 − ε2V0 − ε2V1 − ε2V3), (11)

with

ε1 � E2 − μ2

4α2

ε2 � E2 + μ2

4α2

⎫⎪⎪⎬
⎪⎪⎭

(12)

To get the eigenvalues and eigenfunctions, we solve Eq. (8) using NU method [47–51].
First, we consider the equation:

d2ψ(s)

ds2 +
c1 − c2s

s(1 − c3s)

dψ(s)

ds
+

−ξ1s2 + ξ2s − ξ3

s2(1 − c3s)2 ψ(s) � 0. (13)

Applying parametric NU method [48], we have solution of Eq. (13) as

ψ (s) � Nnl s
c 12 ( 1 − c 3 s)

− c 12 −
(
c 13
c 3

)
P

(
c 10 − 1 , c 11

c 3
− c 10 − 1

)
n (1 − 2 c3 s) ,

(14)

where P (α, β)
n are Jacobi polynomials. The equation of the energy is expressed as:

(c2 − c3)n + α3n
2 − (2n + 1)c5 + (2n + 1)(

√
c9 + c3

√
c8) + c7 + 2c3c8 + 2

√
c8c9 � 0,

(15)
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with

c4 � 1

2
(1 − c1), c5 � 1

2
(c2 − 2c3), c6 � c2

5 + ξ1, c7 � 2c4c5 − ξ2,

c8 � c2
4 + ξ3, c9 � c3c7 + c2

3c8 + c6, c10 � c1 + 2c4 + 2
√
c8,

c11 � c2 − 2c5 + 2
(√

c9 + c3
√
c8

)
, c12 � c4 +

√
c8, c13 � c5 − (√

c9 + c3
√
c8

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(16)

Comparing Eqs. (13) with (8), we obtain

c1 � 1, c2 � c3 � q, c4 � 0, c5 � −q

2
, c6 � q2

4
+ �, c7 � −ϕ, c8 � χ , c9 � −qϕ + q2χ + � +

q2

4

c10 � 1 + 2
√

χ , c11 � 2
(
1 +

√
χ

)
+

1

2

√
4ε2

(
V1(q − 1)2 + 4qV2

)
+ 4qK (K + 1) + q2, c12 � √

χ ,

c13 � − 1

2

√
4ε2

(
V1(q − 1)2 + 4qV2

)
+ 4qK (K + 1) + q2 − q

(
1

2
+

√
χ

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(17)

Substitution of Eqs. (17) into (15) and Eq. (14) gives the energy eigenvalue as
(E2 − μ2) � (μ + E2)(V0 + V1 + V3)

− 4α2

⎛
⎝

(μ+E2 )
4α2 (V1(q − 1) + 4V2 + V3(q + 1)) + q

2 + qn(n + 1) + K (K + 1) +
(
n + 1

2

)√
μ+E
α2

(
V1(q − 1)2 + 4qV2

)
+ 4qK (K + 1) + q2

q + 2qn +
√

μ+E
α2

(
V1(q − 1)2 + 4qV2

)
+ 4qK (K + 1) + q2

⎞
⎠

2

(18)

According to Eq. (14), the corresponding wave function is obtained as

R(s) � Nnls
√

χ (1 − s)δP(2
√

χ ,2δ−1)
n (1 − 2qs) (19)

where

δ � 1

2
+

1

2

√
2μ

α2�2

(
V1(q − 1)2 + 4qV2

)
+ 4ql(l + 1) + q2 (20)

and Pn is the Jacobi polynomial expressed as

P(2
√

χ ,2δ−1)
n (1 − 2qs) � �

(
n + 2

√
χ + 1

)
n!�

(
n + 2

√
χ + 1

)2 F1
(−n, 2

√
χ + 2δ + n, 2

√
χ + 1; qs

)
(21)

2.1 Non-relativistic limit

In the non-relativistic limit, the transformations E + μ → 2μ

�2 and E − μ → E can be used
to get the corresponding non-relativistic energy of Eq. (18) as

E �V0 + V1 + V3

− 2α2
�

2

μ

⎛
⎝

μ

2α2�2 (V1(q − 1) + 4V2 + V3(q + 1)) + q
2 + q n (n + 1) + K (K + 1) +

(
n + 1

2

)√ 2μ

α2�2

(
V1(q − 1)2 + 4qV2

)
+ 4qK (K + 1) + q2

q + 2qn +
√

2μ

α2�2

(
V1(q − 1)2 + 4qV2

)
+ 4qK (K + 1) + q2

⎞
⎠

2

(22)

For D � 3, Eq. (22) becomes
E �V0 + V1 + V3

− 2α2
�

2

μ

⎛
⎝

μ

2α2�2 (V1(q − 1) + 4V2 + V3(q + 1)) + q
2 + q n (n + 1) + l(l + 1) +

(
n + 1

2

)√ 2μ

α2�2

(
V1(q − 1)2 + 4qV2

)
+ 4ql(l + 1) + q2

q + 2qn +
√

2μ

α2�2

(
V1(q − 1)2 + 4qV2

)
+ 4ql(l + 1) + q2

⎞
⎠

2

(23)
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3 Thermodynamic properties with HPMEP

The first step to evaluate the thermodynamic properties of any system is to establish the
partition function. One can obtain all microstate energies, and thus partition function Z, which
enables us to have the thermodynamic properties. The partition function for the vibrational
energy is given as

Z (β, λ) �
λ∑

n�0

e−β Enl , β � 1

kT
(24)

where λ is the upper bound quantum number. T and k are the absolute temperature and
Boltzmann constant, respectively. Setting l � 0, Eq. (23) can be simplified as:

E � V − 2α2
�

2

μ

(
(n + σ )

2
+

Q

2(n + σ )

)2

, (25)

where

P � μ

2α2�2 (V1(q − 1) + 4V2 + V3(q + 1)),

σ � 1

2
+

1

2q

√
2μ

α2�2

(
V1(q − 1)2 + 4qV2

)
+ q2

Q � P + qσ(1 − σ)

q
,

V � V0 + V1 + V2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

Substituting Eqs. (25) into (24) gives

Z (β, λ) �
λ∑

n�0

exp

(
−β

(
V − 2α2

�
2

μ

(
(n + σ )

2
+

Q

2(n + σ )

)2
))

(27)

In the classical limit, if we set ρ � n + σ , the partition function becomes

Z (β, λ) �
λ∫

0

e
Yρ2β− W

ρ2 β+Xβ
dρ (28)

Evaluating the integral using Maple software, the partition function becomes

Z (β, λ) � 1

2
e
(
βYρ2+Xβ

)√
β W

⎛
⎝2λe

β W
λ2

√
β W

−
2
√

β W
√

πer f i
(√

β W
λ

)
√

β W
− 2

√
π

⎞
⎠, (29)

where

X � α2
�

2Q

μ
− V , Y � α2

�
2

2μ
, W � α2

�
2Q2

2μ
(30)

The imaginary error function erfi(x) is defined by

erfi(x) � er f (i x)

i
� 2√

π

x∫
0

et
2
dt (31)

Using Eq. (29), we obtain other thermodynamic properties of the HPMEP as follows:
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• Vibrational Internal Energy

U (β, λ) � −∂ ln Z (β, λ)

∂β
(32)

• Vibrational Free Energy

F(β, λ) � − 1

β
ln Z (β, λ) (33)

• Vibrational Entropy

S(β, λ) � k ln Z (β, λ) − kβ
∂ ln Z (β, λ)

∂β (34)

• Vibrational Specific Heat Capacity

C(β, λ) � kβ2 ∂2 ln Z (β, λ)

∂β2 (35)

4 Discussions

Our results are based on Eq. (23). Table 1 shows the spectroscopic values of the molecules
[66, 67]. In Fig. 1, it is seen that for all the diatomic molecules studied, the partition function,
Z , increases monotonically as β, increases. In Fig. 2, a monotonic increase in Z as the
upper bound vibrational quantum number, λ, increases for all the diatomic molecules. As
seen in Fig. 3, the internal energy for all the diatomic molecules decreases progressively
as β increases for all the diatomic molecules. This implies that at higher temperatures, the
diatomic molecules have higher values of internal energy, U. In Fig. 4, all the diatomic
molecules show an increase in U as λ increases up to a value around λ � 15. Beyond this
point, U tends to a constant value for the molecules. In Fig. 5, the vibrational specific heat,
C, for all the molecules decreases as β increases. This implies that at lower temperatures,
the diatomic molecules have lower values of vibrational specific heat and vice versa. The
variation of C with upper bound vibrational quantum number, λ (Fig. 6), shows a similar
trend to the variation of internal energy, U, with λ. In Fig. 7, entropy, S, is seen to decrease
with increasing β for all the diatomic molecules studied, implying an increase in entropy at
higher temperatures, consistent with the predictions of statistical physics. Figure 8 shows
entropy increasing progressively as λ increases for all the diatomic molecules. This can be
explained by the fact that the molecules gain more energy as temperature increases and are
able to attain higher energy states. The variation of vibrational free energy, F, with β (Fig. 9),
shows that F first increases rapidly up to a point, then the increase becomes less rapid beyond
β � 0.001 for all the diatomic molecules. The variation of F with λ (Fig. 10) shows that F
decreases for all the diatomic molecules as λ increases.

4.1 Cases and deductions from HPMEP

Modified Eckart Potential: Substituting V0 � V1 � 0, q � 1 in Eq. (1), the potential yields
modified Eckart potential

V (r ) � V2

(
4e−2αr

1 − qe−2αr

)
+ V3

(
1 + e−2αr

1 − qe−2αr

)
, (36)
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Table 1 Spectroscopic
parameters of the selected
diatomic molecules [66, 67]

Molecule μ(amu) α (Å-1)

H2 0.50391 0.7416

CO 6.8606719 1.1283

NO 7.468441 1.1508

N2 7.00335 2.6986

Fig. 1 Variation of vibrational partition function Z with β for the selected diatomic molecules

Fig. 2 Variation of vibrational partition function Z with λ for the selected diatomic molecules

123
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Fig. 3 Variation of vibrational internal energy U with β for the selected diatomic molecules

Fig. 4 Variation of vibrational internal energy U with λ for the selected diatomic molecules

with the energy equation as

E � V3 − 2α2
�

2

μ

⎛
⎜⎝

μ

2α2�2 (2V2 + V3) + 1
2 + n (n + 1) + l(l + 1) +

(
n + 1

2

)√
8μV2
α2�2 + (2l + 1)2

1 + 2n +
√

8μV2
α2�2 + (2l + 1)2

⎞
⎟⎠

2

(37)

If we assign V3 � α, 1
2α

� a, V2 � β, 2V2 + V3 � 4α and � � μ � 1 , the
result of Eq. (37) is seen to be consistent with Eq. (22) of Ref. [30], when expanded.
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Fig. 5 Variation of vibrational specific heat capacity C with β for the selected diatomic molecules

Fig. 6 Variation of vibrational specific heat capacity C with λ for the selected diatomic molecules

Hua Potential: Substituting V0 � V2 � V3 � 0 in Eq. (1) gives the Hua potential

V (r ) � V1

(
1 − e−2αr

1 − qe−2αr

)2

(38)

with corresponding energy as

E � V1 − 2α2
�

2

μ

⎛
⎜⎜⎝

μ V1(q−1)

2α2�2 + q
2 + q n (n + 1) + l(l + 1) +

(
n + 1

2

)√
2μV1(q−1)2

α2�2 + 4ql(l + 1) + q2

q + 2qn +

√
2μV1(q−1)2

α2�2 + 4ql(l + 1) + q2

⎞
⎟⎟⎠

2

(39)

123
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Fig. 7 Variation of vibrational entropy for S with β for the selected diatomic molecules

Fig. 8 Variation of vibrational entropy S with λ for the selected diatomic molecules

Morse Potential: Substituting V0 � V2 � V3 � 0,q � 0 into Eq. (1), we have

V (r ) � V1

(
1 − e−2αr

1 − e−2αr

)2

, (40)

and the energy equation

E � V1 − 2α2
�

2

μ

⎛
⎝

−μV1
2α2�2 + l(l + 1) +

(
n + 1

2

)√−2μV1
α2�2√

−2μV1
α2�2

⎞
⎠

2

(41)
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Fig. 9 Variation of vibrational free energy F with β for the selected diatomic molecules

Fig. 10 Variation of vibrational free energy F with λ for the selected diatomic molecules

Poschl–Teller Potential: If we set V0 � V1 � V3 � 0, and q � −1 in Eq. (1), we
obtain the Poschl–Teller potential

V (r ) � V2

(
4e−2αr

1 + e−2αr

)
(42)

123
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with energy equation

E � −2α2
�

2

μ

⎛
⎝

−μV2
α2�2 + 1

2 + n(n + 1) + l(l + 1) − (
n + 1

2

)√
1 − 4l(l + 1) + 8μV2

α2�2

1 + 2n −
√

1 − 4l(l + 1) + 8μV2
α2�2

⎞
⎠

2

(43)

The result of Eq. (43) is consistent with Eq. (20) in Ref. [68], when V2 � − V1.

5 Conclusion

This study presents the approximate solutions of Klein–Gordon equation and thermodynamic
properties of HPMEP using the NU method. In the non-relativistic limit, the energy spectrum
is used to calculate the partition function and other thermodynamic properties such as the
internal energy U, mean free energy F, entropy S and specific heat capacity C. Various plots
showing the variation of these thermodynamic properties with β and λ for H2, CO, NO and
N2 molecules are presented. Special cases of the HPMEP are also reported and are found to
be consistent with literature. Our work will find applications in molecular physics.
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