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Abstract The wedge product of vectors has been shown to yield the generalised entangle-
ment measure I-concurrence, wherein the separability of the multiparty qubit system arises
from the parallelism of vectors in the underlying Hilbert space of the subsystems. Here,
we demonstrate the geometrical conditions of the post-measurement vectors which max-
imise the entanglement corresponding to the bi-partitions and can yield non-identical set
of maximally entangled states. The Bell states for the two-qubit case, GHZ and GHZ like
states with superposition of four constituents for three qubits, naturally arise as the maxi-
mally entangled states. The geometric conditions for maximally entangled two-qudit systems
are derived, leading to the generalised Bell states, where the reduced density matrices are
maximally mixed. We further show that the reduced density matrix for an arbitrary finite
dimensional subsystem of a general qudit state can be constructed from the overlap of the
post-measurement vectors. Using this approach, we discuss the trade-off between the local
properties, namely predictability and coherence with the global property, entanglement for
the non-maximally entangled two-qubit state.

1 Introduction

Entanglement is one of the most distinctive features of quantum mechanics which manifests
as nonlocal correlations in quantum systems [1–4]. The maximally entangled Bell states have
played a significant role in illustrating the nature of quantum correlations, as well as their use-
fulness in quantum tasks [5,6]. They have found applications in quantum cryptography [7],
quantum teleportation [8], super-dense coding [9], to mention a few well-known examples.
The three particle Greenberger–Horne–Zeilinger (GHZ) state [10], its generalisations and W-
states are known to show stronger non-locality and different entanglement properties [11,12].
These states have found use in quantum information splitting [13–15], quantum teleportation
[11,16–18] and revealed subtle phase structure in atomic systems [4,19]. Significantly, the
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implementation of quantum tasks has revealed the physical nature of the quantum non-local
correlations [20]. The entangled states of higher dimensions are under intense investigation
as they provide advantage over qubit states and show better quantum correlations by strongly
violating Bell’s inequality [21]. Entanglement has also thrown considerable light on corre-
lations in spin chains and quantum many body systems [22–24]. Therefore, understanding
of the physical nature of entanglement has attracted considerable attention in the current
literature [20,21,25].

Significant amount of work has been carried out to quantify entanglement, which for
the two particle case has been well understood [3]. While there exist several entanglement
measures for pure and mixed two-qubit systems, such as concurrence [26], entanglement of
formation [27], Schmidt number [28], etc., there is no straightforward and unique way to
characterise entanglement in multipartite setting. Among all these measures, concurrence is
one of the most widely used, as it provides necessary and sufficient conditions for separability
for a general pair of qubits. For arbitrary dimensions, the concurrence for multiparticle pure
state was generalised by Rungta et al. and is known as “I-Concurrence” [29]. Mintert et al.
carried out the general characterisation of concurrence for multipartite quantum systems,
showing that it is qualitatively different from other quantum correlations [30].

There have been various geometry-based approaches to characterise and quantify entan-
glement [31–35]. Recently, a geometric perspective of I-concurrence has been given for
multiparty entangled system of qudits, based on wedge product and Lagrange’s identity, a
generalisation of the Brahmagupta–Fibonacci identity [36,37]. This framework was further
explored in [35], where geometric representation of three way distributive entanglement,
known as 3-tangle [38] in two dimensions is given, with a measure to quantify the distribu-
tive n-party entanglement. In [33], the minimum distance between a set of bi-partite n-qudit
density matrices with positive partial trace and maximally mixed states was calculated using
a measure based on Euclidean distance between Hermitian matrices.

In this work, we use this wedge product formalism of I-concurrence to find geometri-
cal configurations corresponding to the separable and maximally entangled states of finite
dimensional multiparty systems. In this approach, entanglement across a bi-partition is given
in terms of the wedge product of the post-measurement vectors. The problem of separability
and entanglement is then reduced to geometry of area spanned by the post-measurement vec-
tors. Parallelism of post-measurement vectors results in separability across the bi-partitions,
whereas the orthogonality and equal norm of these vectors yield maximally entangled states.
These constraints are employed to find maximally entangled states in case of two-qubit and
three-qubit systems. For the two-qubit case, one obtains the general expression of the maxi-
mally entangled states, which after local unitary transformations lead to the Bell states. In the
three- qubit case, starting with the Schmidt decomposed canonical forms [39,40], we natu-
rally obtain GHZ and GHZ like states [41], as maximally entangled states. For three-qubit
case, we also show that the parallelism across any two bipartitions is sufficient for tripartite
separability. We then characterise and compare these states with the W-state using the polyno-
mial invariant 3-tangle [38], defined in the wedge product formalism. The general conditions
for maximally entangled states of a two-qudit system are established leading to the gener-
alised Bell states. Obtaining the reduced density matrices corresponding to the subsystems
in terms of overlap between the post-measurement vectors, we obtain the complementary
relation between the global entanglement, l1-norm coherence [42], and predictability for the
two-qubit systems.

The paper is organised as follows: In Sec. 2, we review definitions of some basic quantities
In Sec. 3, we illustrate the geometric approach to entanglement through two-qubit systems
and describe the general configurations for minimising maximising the global entanglement
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of a finite dimensional multiparty system. We use these geometric constraints to find explicit
conditions for separable and maximally entangled states of two- and three-qubit systems.
Further, the geometric conditions for maximally entangled states in a general two-qudit
system are obtained, which lead to the generalised Bell states. In Sec. 4, we investigate
the non-maximally entangled two-qubit pure state, and using geometric approach obtain the
complementary relation between the global and local properties. We conclude in Sec. 5 with
a summary of the work.

2 Preliminaries

In this section, we provide some definitions which will be used throughout the paper.

Wedge Product Consider an n-dimensional space where {ei }, with, i = 1, 2, ..n, is an
orthonormal basis. The linear superposition of two vectors a = ∑

i ai ei and b = ∑
j b j e j

forms a subspace, which naturally spans a complex plane containing the origin and these
vectors. The wedge product of a and b is defined as:

a ∧ b =
∑

i< j

(
aib j − a jbi

)
ei ∧ e j . (1)

The bivector a ∧ b represents an oriented parallelogram in the plane, with adjacent sides as
a and b. Therefore, wedge product of two vectors naturally leads to a geometrical represen-
tation in terms of area in a plane. It is evident that the area spanned will be zero whenever
the two vectors are parallel. Maximising the magnitude of the wedge product corresponds
to maximising the area of the parallelogram. Now, given a constraint on the perimeter of a
parallelogram, or length of the vectors a and b (which in our case will be due to normalisa-
tion condition on states), the condition for maximal area is obtained through isoperimetric
theorems [43]. One observes that, for some fixed length of vectors, area will be maximum
when a and b are orthogonal, i.e. a · b = 0. Furthermore, given a condition of the form,
|a|n + |b|n | = c, where c is a constant, the area is maximum when |a| = |b|. Therefore,
maximum value of |a∧ b| corresponds to vectors a and b satisfying orthogonality and equal
norm. This geometrically corresponds to the vectors a and b, as the sides of a square in the
underlying subspace.

A particularly useful identity concerning the wedge product is Lagrange–Brahmagupta
identity, which relates it to the norm and overlap of vectors [44],

|a ∧ b|2 = |a|2|b|2 − |a · b|2, (2)

where, | · | stands for the norm.

Post-measurement vectors Consider a general N -qudit system with S1, . . . , SN representing
individual qudits. The Hilbert space HSk of the qudit Sk is dk-dimensional with the standard
basis represented by {|ik〉}, where ik goes from 0 to dk − 1. An arbitrary state representing
the total system can be written as,

|�〉 =
∑

i1,..,iN

Ci1i2..iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉, (3)

where, Ci1i2..iN are the complex coefficients subjected to normalisation condition, and
|�〉S1,...,SN ∈ HS1 ⊗ · · · ⊗ HSN . Consider a bipartition S1 . . . S j |S j+1 . . . SN , then the
post-measurement vectors corresponding to the subsystem S1 . . . S j is obtained as,
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〈i1 · · · i j |�〉 =
∑

i j+1,..,iN

Ci1i2..iN |i j+1〉 ⊗ · · · ⊗ |iN 〉, (4)

where, 〈i1 · · · i j | = 〈i1| ⊗ · · ·⊗ 〈i j |. As evident from the explicit expression of 〈i1 · · · i j |�〉,
these vectors lie in the Hilbert space HS j+1 ⊗ · · ⊗ HSN of the subsystem S j+1 . . . SN . Total
number of post-measurement vector corresponding to S1 . . . S j will be d1 ×··×d j . Similarly
one may obtain the post-measurement vectors corresponding to other subsystems.

I-concurrenceConsider a multiparty system described by a pure state |�〉 . The I-concurrence
corresponding to a partition A|B is defined as:

C2
A|B = 2(1 − Tr(ρ2

A)) = 2(1 − Tr(ρ2
B)), (5)

where, ρA = TrB(ρ) and ρB = TrA(ρ) are the reduced density matrices for subsystem A
and B, respectively, with ρ = |�〉〈�|.

3 Geometric conditions for separable and maximally entangled states

Bhaskara and Panigrahi [34] have defined a global measure of entanglement as the sum of
generalised concurrence corresponding to all the bi-partitions for a system using Lagrange’s
identity and showed that the concurrence of each bi-partition for a pure state can be quantified
using wedge product of post-measurement vectors in the Hilbert space of the subsystems.
This measure was shown to provide a faithful quantification of entanglement across any
bi-partition for multipartite pure states. The wedge product formalism provides a geometric
representation of concurrence, leading to the understanding of entanglement in terms of
configuration of vectors in the Hilbert space of the subsystems.

To illustrate, for the two-qubit case, a state |�〉 in general can be written as,

|�〉AB = |0〉 ⊗ |ψ1〉 + |1〉 ⊗ |ψ2〉
where, |ψ1〉 and |ψ2〉 are two post-measurement vectors corresponding to subsystem A. In
the language of geometric algebra, entanglement in the system A|B is obtained in terms of
wedge product of |ψ1〉 and |ψ2〉 as,

CA|B = 2||ψ1〉 ∧ |ψ2〉|
This definition facilitates a geometric description for entanglement, since ||ψ1〉 ∧ |ψ2〉| is
the magnitude of area spanned by the vectors |ψ1〉 and |ψ2〉 as shown in Fig. 1. Therefore,
whenever the area spanned by the post-measurement vectors |ψ1〉 and |ψ2〉 is zero, the
state will be separable. It corresponds to the scenario when |ψ1〉 and |ψ2〉 are parallel, i.e.
|ψ1〉 = λ|ψ2〉, where λ ∈ C. In contrast, when the post-measurement vectors are non-parallel,
the state will be entangled, and maximal entanglement corresponds to the configuration
where area spanned is maximum. With a constraint on the perimeter (due to normalisation
condition), as described above, through isoperimetric theorem in planar geometry one obtains
that, the maximal area corresponds to the configuration where the vectors are sides of a square,
i.e. orthogonal and equal. Therefore, the maximally entangled state will satisfy the conditions,
〈ψ1|ψ2〉 = 0 and ||ψ1〉| = ||ψ2〉|. In the following, we use the wedge product formalism
to provide a geometrical perspective of entanglement in terms of parallelism of vectors for
multipartite scenarios.

Consider a multiparty system S, described by a pure state |�〉 and a bi-partition A|B,
of this system, with Hilbert space corresponding to A and B given by HA and HB,
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Fig. 1 Area spanned by the
post-measurement vectors |ψ1
and |ψ2〉 quantifies entanglement
in the bi-partition A|B

respectively. In terms of the density matrix of the system, the I-concurrence, correspond-
ing to the partition A|B is given by Eq. (5). Without loss of generality, one can take
dA = dim(HA) ≤ dim(HB) = dB. If {|φi 〉 i = 1, 2, ., dA} is an orthonormal basis of
HA, it follows that,

|�〉 =
dA∑

i=0

|φi 〉 ⊗ 〈φi |�〉. (6)

The set of post-measurement vectors {〈φi |�〉} contains dA vectors, which are projections
corresponding to each |φi 〉 ∈ HA, where the vectors 〈φi |�〉 ∈ HB. Concurrence of the
bi-partition A|B, defined in terms of the wedge products of post-measurement vectors, is
then [34]:

C2
A|B = 4

∑

i< j

|〈φi |�〉 ∧ 〈φ j |�〉|2, (7)

where i and j take values from 0 to dA. The condition for separability across the bi-partition
A|B is C2

A|B = 0. For vanishing concurrence, each of the wedge product, i.e. 〈φi |�〉 ∧
〈φ j |�〉 ∀ i, j must be zero, which in turn require the vectors 〈φ j |�〉 to be parallel to each
other, ∀ i in the Hilbert space HB, showing that the separability across bi-partitions can
be viewed in terms of parallelism of vectors. For the maximally entangled state |�〉, the
I-concurrence CA|B must take maximum value for all the possible bi-partitions A|B.

For a particular bi-partition A|B, maximal CA|B corresponds to maximising the mag-
nitude of wedge product of post-measurement vectors, i.e. maximising |〈φi |�〉 ∧ 〈φ j |�〉|.
As discussed in the previous section, it geometrically corresponds to maximising the area
spanned by the vectors 〈φi |�〉 and 〈φ j |�〉. Using the result obtained through isoperimetric
theorem, one obtains the geometrical condition for maximal CA|B as following,

〈φi |�〉†〈φ j |�〉 = 0, ∀ i 	= j, (8)

|〈φi |�〉| = |〈φ j |�〉|, ∀ i, j. (9)

Therefore, all the post-measurement vectors are orthogonal to each other and have equal
length in the Hilbert space HB. Geometrically, it represents a dA-dimensional cube in the
Hilbert space HB. Now, a maximally entangled state |�〉 must have maximal concurrence
corresponding to all the possible bi-partitions, which occurs when the post-measurement
vectors for every bi-partition A|B form a dA-cube in the Hilbert space HB, where dA ≤ dB.
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One thus obtains a set of constraints for separability and maximal entanglement, in terms
of the relations between post-measurement vectors corresponding to bi-partitions of the
system. The parallelism of these vectors corresponds to separability across the bi-partition,
and orthogonality and equal norm of these vectors lead to maximal entanglement.

We note in passing that the above geometrical conditions for maximal entanglement, when
looked at in terms of reduced density matrix yield the absolute maximal entangled states [45].
However, the Absolute Maximally Entangled state begins with the definition that the reduced
density matrix corresponding to the smaller of the bi-partition is maximally mixed. In the usual
approach, given the normalisation and positive semidefinite constraints on the density matrix,
i.e. Tr(ρ) = 1 and ρ ≥ 0, maximising the entropy of reduced density matrix leads to the con-
dition that it must be proportional to identity, whereas, in the present approach, this naturally
comes from the geometry, namely maximising the area spanned by the post-measurement
vectors, wherein, the separability and entanglement across a bi-partition geometrically cor-
respond to the post-measurement vectors being parallel and non-parallel, respectively. This
approach is much simpler and transparent as compared to finding the reduced density matrix
and checking its purity, particularly in the multiparty scenario. Geometrical configurations
corresponding to maximal entanglement are derived by maximising the area spanned without
referring to a specific form of the reduced density matrix. Most importantly, the maximally
mixed form of reduced density matrix for the maximally entangled case is not an assumption
and, in fact, it naturally arises in our approach.

In the following subsections, we obtain the explicit conditions for separable and maximally
entangled states for two-qubit systems, three-qubit systems and two particle qudit states.

3.1 The two-qubit entanglement

For a two-qubit system, the general state |ψ〉 in the computational basis is given by,

|ψAB〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, (10)

where, |i j〉 = |i A〉 ⊗ | jB〉 and a, b, c, d ∈ C, satisfying the normalisation condition |a|2 +
|b|2 + |c|2 + |d|2 = 1. Here, we have only bi-partition A|B and, both HA and HB are
two-dimensional Hilbert spaces. The post measurement state corresponding to |0〉 and |1〉
for particle A are, 〈0A|ψ〉 = a|0B〉 + b|1B〉 and 〈1A|ψ〉 = c |0B〉+d|1B〉. These are vectors
in the two-dimensional complex Hilbert space HB. The generalised concurrence measure in
terms of wedge product for |ψ〉AB is given by:

CA|B = 2 |〈0A | ψ〉 ∧ 〈1A|ψ〉| . (11)

The separability condition is the parallelism of vectors 〈0A|ψAB〉 and 〈1A|ψAB〉 in the
Hilbert space HB , which corresponds to a

c = b
d . Maximising CA|B , geometrically corre-

sponds to maximising the area of the parallelogram formed by vectors OC = 〈0A|ψAB〉 and
OA = 〈1A|ψAB〉, as two adjacent sides in HB . Using (8) and (9) one obtains, ā = kd and
b̄ = −kc, where k = eiθ . The general maximally entangled state takes the form

|ψ〉AB = a |00〉 + b |01〉 − b̄e−iθ |10〉 + āe−iθ |11〉 . (12)

The reduced density matrices ρA and ρB are maximally mixed for the above state,

ρA = TrB(ρ) =
∑

i=0,1

〈iB |ρ|iB〉 = I

2
, (13)
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and the concurrence is found to be, CA|B = 2||a|2 + |b|2| = 1, as expected. Bell states
are obtained by taking appropriate values of the parameters a, b and θ , which are also
obtained by performing local unitary transformations. For instance, for a, b ∈ R, the unitary
transformation I ⊗U |ψ〉AB results in the Bell states up to a phase factor:

|ψ±〉 = (|00〉 ± |11〉)√
2

for U = √
2

(
a b

−b a

)

, (14)

3.2 The three-qubit entanglement

A general state for a three-qubit system is given by :

|ψABC 〉 = λ0|000〉 + λ1|001〉 + λ2|010〉 + λ3|011〉 + λ4|100〉
+ λ5|101〉 + λ6|110〉 + λ7|111〉 (15)

where, λi ∈ C, i = 0, 1, . . . , 7 satisfy the normalisation condition,
∑7

i=0 |λi |2 = 1. For
the state |ψABC 〉, we have three independent bi-partitions. Therefore, the global measure of
entanglement C is given by sum of concurrence corresponding to all the three bi-partitions
[34]:

C = CA|BC + CB|AC + CC |AB . (16)

In the wedge product formalism, the concurrence is given by:

C = 2
∑

i=A,B,C

|〈0i |ψABC 〉 ∧ 〈1i |ψABC 〉|. (17)

As before, the separability condition across any bipartition is the parallelism of the post-
measurement vectors, since the wedge product is zero in that case. Interestingly, for the
three-qubit case, separability across any two bipartition is sufficient for tripartite separability.
For instance, assuming CA|BC = 0 and CB|AC = 0 leads to 〈1A|�ABC 〉 = α〈0A|�ABC 〉
and 〈1B |�ABC 〉 = β〈0B |�ABC 〉, respectively, where α, β ∈ C. The resulting state is then
tripartite separable,

|�ABC 〉 = (|0A〉 + α|1A〉) ⊗ (|0B〉 + β|1B〉) ⊗ |ψC 〉 (18)

where, |ψC 〉 = 〈0A0B |�〉. For Eq. (18), 〈1c|�ABC 〉 = γ 〈0c|�ABC 〉, where γ ∈ C , there-
fore CAB|C = 0. Hence, vanishing of the concurrence across any two bi-partition implies
vanishing of concurrence across the third bi-partition.

For a bi-separable state three-qubit state, concurrence across one of the bi-partition is zero
and nonzero across other bi-partitions. For instance, for a bi-separable state with separability
across the bi-partition A|BC , the post-measurement vectors 〈0A|ψABC 〉 = λ0|00〉+λ1|01〉+
λ2|10〉 + λ3|11〉 and〈1A|ψABC 〉 = λ4|00〉 + λ5|01〉 + λ6|10〉 + λ7|11〉 must be parallel, i.e.

λ0

λ4
= λ1

λ5
= λ2

λ6
= λ3

λ7
. (19)

It can be seen that global entanglement for bi-separable states is upper bounded by two.
Therefore, if the global entanglement C is greater than two, the state cannot be separated
across any bi-partition, i.e. genuine tripartite entangled.

To obtain the maximally entangled states, one needs to maximise |〈0i |ψABC 〉∧〈1i |ψABC 〉|
for all i = A, B,C . The conditions for maximally entangled states as discussed previously
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are : 〈0i |ψABC 〉 must be orthogonal to 〈1i |ψABC 〉 and |〈0i |ψABC 〉| = |〈1i |ψABC 〉| for each
i = A, B,C , leading to the following conditions,

λ0λ̄4 + λ1λ̄5 + λ2λ̄6 + λ3λ̄7 = 0,

λ0λ̄2 + λ1λ̄3 + λ4λ̄6 + λ5λ̄7 = 0,

λ0λ̄1 + λ2λ̄3 + λ4λ̄5 + λ6λ̄7 = 0;
(20)

and,

|λ0|2 + |λ1|2 + |λ2|2 + |λ3|2 = |λ4|2 + |λ5|2 + |λ6|2 + |λ7|2,
|λ0|2 + |λ1|2 + |λ4|2 + |λ5|2 = |λ2|2 + |λ3|2 + |λ6|2 + |λ7|2,
|λ0|2 + |λ2|2 + |λ4|2 + |λ6|2 = |λ1|2 + |λ3|2 + |λ5|2 + |λ7|2.

(21)

Acín et al. have shown that any pure three qubit can be reduced to a canonical form, having
five amplitudes and one relative phase using the generalised Schmidt decomposition [39,40].
Any generic three-qubit state can be reduced to several classes of canonical forms using five
local base product states (LBPS), while preserving nonlocal properties of the state. Owing
to different degrees of orthogonality, there exist three inequivalent classes of five LBPS. We
begin with the general state built using the canonical forms from these LBPS classes.

One such canonical form built from a symmetric LBPS class, with qubits A, B and C is
given by :

|ψ〉ABC = aeiθ |000〉 + b |001〉 + c |010〉 + d |100〉 + e |111〉 , (22)

where a, b, c, d, e are positive numbers and 0 ≤ θ ≤ π .
To obtain maximally entangled states, we use the orthogonality and equal norm constraints

for all the three bi-partitions A|BC, B|AC and C |AB. The orthogonality conditions on the
post-measurement vector yields, ab = ac = ad = 0 and the equal norm conditions after
some calculation leads to, |b| = |c| = |d| and |a|2 + |d|2 = |e|2. Two set of equations
satisfy the above conditions. For a 	= 0, we get the maximally entangled state GHZ state,

|ψ〉 = 1√
2
(|000〉 + |111〉). (23)

For a = 0, the maximally entangled state obtained is :

|ξ1〉 = 1

2
(|001〉 + |010〉 + |100〉 + |111〉) (24)

This state is known in the literature as GHZ like state. It has maximal entanglement measure
and satisfies the condition ρA = ρB = ρC = I

2 . These states can be derived alternatively
using the algebraic properties of density matrix [46].

Using the entanglement measure of [34], we have been able to find states corresponding to
the maximally entangled states as the geometry corresponding to the extrema (separable and
maximally entangled states) are well defined. Given a non-extremal global entanglement,
a natural configuration cannot be assigned to the post-measurement vectors since various
combination of vector norms and angles between the post-measurement vectors can span
same area. Therefore, one cannot find states that do not correspond to maximum value of the
measure, the highly entangled W-state is one such example,

|W 〉 = 1√
3
(|100〉 + |010〉 + |001〉). (25)

W-state satisfies all the orthogonality criteria for the maximally entangled state, but does
not satisfy the equality of sides criterion, and hence its configuration does not correspond to
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that of maximal entanglement. The length of the post-measurement vectors is unequal and
is in the ratio of

√
2 : 1. For states which do not belong to the extremum ones, we cannot

ascribe the geometry of the state without knowing the state a priori. The global entanglement
for W state is not maximal and has value 2

√
2 as compared to 3 for GHZ and GHZ like states.

In order to characterise the genuine three party distributive entanglement in three-qubit
pure states |ψABC 〉, one can use the 3-tangle, which is a polynomial invariant quan-
tity under permutation of qubits, follows from the Coffman–Kundu–Wooters inequality
C2

A|BC ≥ C2
A|B + C2

A|C [38]. Here C2
A|BC corresponds to the squared concurrence corre-

sponding to the bi-partition A|BC , and C2
A|B(C) is the square concurrence between A and

B(C). If the qubits A, B and C are entangled, the residual entanglement or 3-tangle is given
by :

τ = C2
A|BC − C2

A|B − C2
A|C (26)

In [35], this was defined in terms of wedge product [35], where the post-measurement vectors
considered were obtained corresponding to the subsystem with higher dimensional Hilbert
space, say for a bi-partition A|BC , measurement was done on the bi-partition BC , this
resulted into four post-measurement vectors in a two dimensional planar Hilbert space, which
lead to geometrical manifestation of 3-tangle in terms of area inequality. Since in our analysis,
we are considering the smaller of the bipartitions, the tangle can be alternatively defined with
measurements corresponding to smaller of the two bi-partitions, where, the 3-tangle takes
the form:

τ = 4|〈0A|ψABC 〉 ∧ 〈1A|ψABC 〉|2 − 4|
∑

i=0,1

〈0A|ψAB〉i ∧ 〈1A|ψAB〉i |2

−4|
∑

i=0,1

〈0A|ψAC 〉i ∧ 〈1A|ψAC 〉i |2, (27)

where, |ψAC 〉i = 〈iB |ψABC 〉 and |ψAB〉i = 〈iC |ψABC 〉 are the post-measurement vectors
corresponding to B and C , respectively. For the GHZ and GHZ like states, the 3-tangle
obtained is one and vanishes for the W-state.

3.3 The two-qudit entanglement

Consider the general form of two particle qudit state,

|ψAB〉 =
∑

i, j

ai j |i A〉 ⊗ | jB〉, (28)

where i, j = 0, . . . , d − 1 for a d -level computational basis.
From the discussion in the beginning of the section, the maximal entanglement will cor-

respond to the configuration when vectors 〈i A|ψAB〉 are the sides of a d-cube in the Hilbert
space HB . Interestingly, for the maximally entangled case, as the vectors 〈i A|ψAB〉 are the
sides of a d-cube in HB , one can consider these vectors as a set of new computational basis
and write |ψAB〉 in a Schmidt decomposed form. Taking |i ′

B〉 = √
d〈i A|ψAB〉 as the new

orthonormal basis, we get the state vector in the following form, |ψAB〉 = ∑
i a

′
i |i A〉 ⊗ |iB〉,

with a
′
i = 1√

d
. Hence, for a two-qudit system, the maximally entangled state takes the form,

|ψAB〉 = 1√
d

d−1∑

i=0

|i i〉. (29)
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This is a generalised form of the Bell states, as is evident from the fact that the partial trace
corresponding to subsystem A or B, leads to I/d where, I is the identity matrix. As an
example, for a two-qutrit state, the maximally entangled state is obtained as:

|ψ++〉 = 1√
3
(|00〉 + |11〉 + |22〉). (30)

The complete orthogonal basis of maximally entangled states can be found using local unitary
transformations U1 ⊗U2 on |ψ++〉.

For an n-qudit system, total number of bi-partitions are 2n−1 − 1. A maximally entangled
state must satisfy the constraints of orthogonality and equal norm of vectors for each of
these bi-partitions. However, it is not guaranteed that such a state necessarily exists. In fact,
maximally entangled state does not exist for a four qubit and more than six qubit systems
[45]. It is seen that the GHZ state for four qubits:

|GHZ〉4 = 1√
2
(|0000〉 + |1111〉) (31)

does not satisfy the equal norm criterion for the post-measurement vectors for the bi-
partitions, where each subsystem has two qubits and hence, does not achieve the maximum
value for global entanglement. This scenario also occurs for the |GHZ〉n = 1√

2
(|00...0n〉 +

|11...1n〉), describing the n-qubit system with n ≥ 4.

4 Non-maximally entangled states and complementarity

Consider a two-qubit system with three nonzero coefficient in the computational basis, for
instance,

|ψ〉 = a|00〉 + b|01〉 + c|10〉, (32)

with, a, b, c ∈ C satisfying the normalisation condition |a|2+|b|2+|c|2 = 1 and a, b, c 	= 0.
The post-measurement vectors corresponding to the subsystem A are, |φ1〉 = 〈0A|φ〉 =
a|0〉B + b|1〉B and |φ2〉 = 〈1A|φ〉 = c|0〉B . Therefore, one observes that for three nonzero
coefficients in a general two-qubit system in its computational basis, the state is always
non-separable and also non-maximally entangled, since for such a scenario neither of the
condition, parallelisability or orthogonality holds. At this point, one might ask, what makes
these states distinct from the maximally entangled ones, such as the Bell states and, whether
the deficiency in the global entanglement compensated through other local characteristics
of the system. The answer to the latter turns out to be affirmative and, it is observed that
the local properties of coherence and predictability compensate the deficiency in the global
entanglement from maximal, for the non-maximally entangled systems and obeys a triality
relation [47], which we investigate in the following.

Firstly, we show that the reduced density matrix of the subsystems can be written in
terms of inner product of post-measurement vectors. Suppose, |�〉 describes a multiparty
system S with the Hilbert space H. We consider an arbitrary partition A|B of S, such that,
H = HA ⊗ HB, with dA = dim(HA) and dB = dim(HB), where subsystem A and B
can be any finite collection of qudits. Suppose, (|φi 〉A)

dA
i=1 form an orthonormal basis of the

Hilbert space HA, then the post-measurement vectors corresponding to subsystem A are
obtained as |ψi 〉B = 〈φi |�〉 where i = 1, .., dA. The post-measurement vectors |ψi 〉B lie in
the Hilbert space HB . The state vector of the system is:
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|�〉 =
dA∑

i=1

|φi 〉A ⊗ |ψi 〉B. (33)

Reduced density matrix of subsystem A is given by ρA = TrB ρ, where ρ = |�〉〈�| and,

ρA
i j = 〈φi |ρA|φ j 〉 =

dB∑

m=1

〈ξm |ψi 〉〈ψ j |ξm〉, (34)

where (|ξi 〉B)
dB
i=1 is an orthonormal basis of HB. Using completeness of the basis, it follows

that the reduced density matrix ρA in terms of overlap of post-measurement vectors is given
by ρA

i j = 〈ψ j |ψi 〉. Therefore, the diagonal elements correspond to the length of the post-
measurement vectors, equivalently, the probabilities of the possible outcomes.

Consider a two-qubit pure state |�〉, with the post-measurement vectors for subsystem A
corresponding to |0A〉 and |1A〉 denoted by, |ψ1〉 and |ψ2〉, respectively. As discussed in the
previous section, global entanglement between subsystems A and B is given by,

C2
A|B = 4||ψ1〉 ∧ |ψ2〉|2 (35)

A quantitative measure of quantum coherence is l1-norm, which satisfies the nonnegativity,
monotonicity and convexity criteria [42], is defined in terms of off-diagonal elements of the
density matrix. For the subsystem A, the coherence is obtained as,

CA =
∑

i 	= j

|ρA
i j | = 2|〈ψ1|ψ2〉|. (36)

Predictability is defined as the difference of the diagonal elements of the reduced density
matrix ρA,

PA = |ρA
11 − ρA

22| = |〈ψ1|ψ1〉 − 〈ψ2|ψ2〉|, (37)

which encodes the difference in probabilities of the outcomes for this two level system. For
example, in case of two slit interference with single photon, it is the difference of probabilities
of going through either slit. Using the above definitions of entanglement, coherence, and
predictability one obtains,

C2
A|B + C2

A + P2
A = 4||ψ1〉 ∧ |ψ2〉|2 + 4|〈ψ1|ψ2〉|2 + |〈ψ1|ψ1〉 − 〈ψ2|ψ2〉|2 (38)

= (〈ψ1|ψ1〉 + 〈ψ2|ψ2〉)2 = 1, (39)

where, we have used identity (2), and the normalisation condition. Remarkably, the bipartite
property concurrence and the single party property of coherence and predictability obeys a
tight triality relation for a pure two party system,

C2
A|B + C2

A + P2
A = 1. (40)

For a separable pure state, concurrence is zero which results in the usual duality relation
between the complementary characteristics of single party property of coherence and pre-
dictability [48]. However, for a maximally entangled state concurrence is maximal and equal
to one leading to zero coherence and predictability. Hence, it is observed that the single
particle properties (coherence and predictability) are absent when the bipartite property of
the system, entanglement is maximal which implies that the violation of Bell’s inequality is
intrinsically related with complementarity between the global and local properties [47].

It has been observed that for composite tri-partite pure states, the quantum correlation
measure I-concurrence, completes the complementary relation between the local properties
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of the subsystem (such as coherence and predictability) and the global entanglement of
the composite system [49]. It would be interesting to further analyse the complementary
characters of coherence and entanglement for the mixed states using the present approach. It
would also be interesting to study the same for qutrit and higher dimensional systems, as it
has strong implications in the multi-slit interferometry [50].

5 Conclusion

In conclusion, the wedge product formalism of I-concurrence naturally leads to a geometric
quantification of entanglement in terms of area spanned by the post-measurement vectors,
wherein separability and entanglement is shown to be a consequence of vectors being parallel
and non-parallel, respectively. Geometrical configurations corresponding to the separable and
maximally entangled states are obtained by minimising and maximising the area spanned, and
it was shown that the geometrical condition for maximal entanglement is orthogonality and
equal norm of post-measurement state vectors corresponding to bi-partitions of the multiparty
system. These conditions lead to the general form of the maximally entangled two-qubit state,
GHZ and GHZ like states. In the case of a three-qubit system, the vanishing of concurrence
corresponding to any two bi-partition is shown to be sufficient for tripartite separability. We
derived the general conditions for maximally entangled states of two qudits, which lead to
the generalised Bell states. Using the density matrix in terms of inner product between post-
measurement vectors, a complementarity between global entanglement and local properties
of the subsystems for pure two-qubit systems is discussed.
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