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Abstract We propose an Einstein-æther scalar–tensor cosmological model. In particular, in
the scalar–tensor Action Integral, we introduce the æther field with æther coefficients to be
functions of the scalar field. This cosmological model extends previous studies on Lorentz-
violating theories. For a spatially flat Friedmann–Lemaître–Robertson–Walker background
space, we write the field equations which are of second order with dynamical variables
the scale factor and the scalar field. The physical evolution of the field equations depends
upon three unknown functions which are related to the scalar–tensor coupling function, the
scalar field potential, and the æther coefficient functions. We investigate the existence of
analytic solutions for the field equations and the integrability properties according to the
existence of linear in the momentum conservation laws. We define a new set of variables in
which the dynamical evolution depends only upon the scalar field potential. Furthermore,
the asymptotic behavior and the cosmological history are investigated where we find that
the theory provides inflationary eras similar to that of scalar–tensor theory but with Lorentz-
violating terms provided by the æther field. Finally, in the new variables, we found that the
field equations are integrable due to the existence of nonlocal conservation laws for arbitrary
functional forms of the three free functions.

1 Introduction

A common property of various subjects of quantum gravity is the Lorentz violation [1].
Lorentz’s violation may not have been observed yet. However, gravitational models which
violate Lorentz symmetry have been of special interest in the literature these last years [2–
11]. A Lorentz violating gravitational theory has been widely studied is the Einstein-æther
theory [12–16]. In the Einstein–Hilbert Action Integral, there are introduced the kinematic
quantities of a unitary time-like vector field, the æther field. The Lorentz symmetry is vio-
lated by the definition of the preferred frame when the æther field is selected. The limit
of Einstein’s General Relativity exists while Einstein-æther theory preserves locality and
covariance formulation. Einstein-æther theory is a second-order theory and it has been used
for the description of various gravitational systems [18–25]. An important characteristic of
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Einstein-æther theory is that it can describe the classical limit of Hořava–Lifshitz [26]. The
inverse is not true, see the discussion in [27,28].

On the other hand, scalar fields play an important role in the description of the universe.
The main mechanism for the description of the early acceleration era of the universe is
attributed to a scalar field, the inflaton. Additionally, scalar fields have been used to describe
the late-time acceleration as possible solutions to the dark energy problem [29–36]. Another
important feature of the scalar fields is that they can attribute the degrees of freedom provided
by higher-order derivatives in gravitational Action Integral as a result of quantum corrections
or modifications of General Relativity [37–39]. Consequently, gravitational models where
they describe æther Lorentz violating inflationary solutions have been introduced in the
literature. A first attempt was proposed by Kanno and Soda in [40] while a more general
consideration was investigated by Donnelly and Jacobson in [17]. A common characteristic
of these studies is that the scalar field has been defined to be minimally coupled to gravity.
In this work, we extend the previous considerations and specifically the model proposed in
[40] for which we assume that the scalar field is nonminimally coupled to gravity, that is, we
select as natural frame the Jordan frame. We shall call this model Einstein-æther scalar–tensor
theory.

The commonest scalar–tensor theory is the Brans–Dicke theory. It was proposed in [41]
and it is inspired by Mach’s Principle. In Mach’s Principle, gravity is described by the metric
tensor and by a scalar field nonminimally coupled to gravity. The field plays an important role
in the description of the early universe [42] and in general on the construction of the physical
space. For a debate on which is the natural frame, the Jordan frame, or the Einstein frame
we refer the reader in [43–45] and references therein. Another well-known scalar–tensor
model is the dilaton theory, which is the fundamental Action Integral for string cosmology
[46].

In this study, we investigate the effects of the introduction of the aether field in scalar–
tensor theory in cosmology. For the description of the natural space, we assume an
isotropic and homogeneous universe described by the spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) metric. For this spacetime, and for the comoving time-like
aether field, we derive the field equations which are of second order as in scalar–tensor
theory. The field equations depend on three unknown variables which are constructed
by the scalar field potential, the scalar field coupling function to gravity, and the coef-
ficient functions which relate the aether and the scalar fields. We investigate the exis-
tence of integrable cosmological models by defining new variables and by using Noether’s
symmetry approach [47]. The latter approach has been applied for the classification
of various cosmological models and the determination of new analytic solutions [48–
51].

Moreover, we study the cosmological asymptotic solutions provided by this model by
determining the stationary points of the field equations [52–54]. Such analysis is essential
to infer the viability of the model [55]. We found that the Einstein-aether scalar–tensor
model can provide more than one inflationary eras, as also it provides a richer cosmo-
logical history is contrary to the scalar–tensor theory. The plan of the paper is as fol-
lows.

In Sect. 2, we define the model of our consideration and we derive the cosmological field
equations. In Sect. 3, we define new variables in which we can reduce the cosmological field
equations into a Newtonian integrable model. The asymptotic dynamics are investigated in
Sect. 4. Finally, the symmetry classification scheme and the derivation of a new analytic
solution are presented in Sect. 5. Finally, in Sect. 6 we draw our conclusions.
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2 Einstein-aether scalar–tensor cosmology

Einstein-aether cosmological models with the scalar field have been introduced before in the
literature. In [17], it has been considered the scalar field potential for a quintessence field
to be an arbitrary function of the kinematic invariants of the aether field. This is a generic
model which has been used as a base model of study. The attention has been drawn by
the proposed Lagrangian by Kanno and Soda [40]. They introduced a gravitational action
integral in which the Einstein-aether coupling parameters are functions of the scalar field.
Such a cosmological model admits two stages for the inflationary era, the slow-roll era when
the scalar field dominates, and a Lorentz violating state when the aether field contributes to
the cosmological fluid.

The model proposed in [40] affects the dynamics of the chaotic inflationary model. It
has been used as a toy model for the definition of a Lorentz violating DGP model with no
ghosts [56]. Lorentz violating inflationary models has been widely studied in the literature,
see for instance [57–60]. In [61], the authors investigated the effects of Lorentz violation in
cosmological history. Moreover, in [59] the Lorentz violation in cosmology was constrained
on the cosmological observations. It was found that Einstein-æther cosmology can explain
cosmological observations.

The dynamics of cosmological models with an aether field was the subject of study for
many studies. In [62], the dynamics of the model proposed in [40] was investigated in detail.
For a purely scalar field, it was found that two attractor solutions can describe inflationary
epochs, which is in agreement with the two inflationary eras as described in [40]. Other
studies on the dynamics of Einstein-aether scalar field models can be found in [63–69].

Exact and analytic solutions in Einstein-aether scalar field cosmology were found by using
the symmetry analysis in [70]. Moreover, the first attempt to quantize in Einstein-aether scalar
field cosmology was performed in [71]. Specifically, by using the minisuperspace description
was proposed a canonical quantization approach where the Wheeler–DeWitt equation was
defined and was solved by investigating the existence of quantum operators which keep
invariant the Wheeler–DeWitt equation.

In this study, we generalize the gravitational model proposed in [40] and assume that the
scalar field is defined in the Jordan frame, that is, the field φ (xν) is coupled to gravity. We
propose the Einstein-aether scalar–tensor gravitational model defined by the Action Integral

S = SST + SAether, (1)

where SST is the Action Integral for the scalar–tensor theory [82]

SST =
∫

dx4√−g

(
F (φ) R + 1

2
gμνφ;μφ;ν + V (φ)

)
, (2)

function F (φ) is the coupling function of the scalar field φ (xν) with gravity which we
assume that it is nonconstant, and V (φ (xν)) is the scalar field potential. The second term,
SAether , in expression (1) corresponds to the aether field uμ as defined in [40]

SAether = −
∫

dx4√−g
[
β1 (φ) uν;μuν;μ + β2 (φ)

(
gμνuμ;ν

)2 + β3 (φ) uν;μuμ;ν

+ β4 (φ) uμuνuμuν − λ
(
uμuν + 1

) ]
.

(3)

Functions β1 (φ), β2 (φ), β3 (φ) and β4 (φ) are the coefficient functions which define the
coupling between the aether field and the scalar field. Moreover, λ is a Lagrange multiplier
which ensure the unitarity of the aether field, i.e., uμuμ + 1 = 0.
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According to the Cosmological principle, in large scale the universe is assumed to be
isotropic and homogeneous described by the spatially flat FLRW line element

ds2 = −N 2 (t) dt2 + a2 (t)
(
dx2 + dy2 + dz2) , (4)

in which N (t) is the lapse function, a (t) is the scale factor and describes the radius of
the three-dimensional Euclidean space. For the comoving observer, the expansion rate θ is
defined as θ = 3H2, where H = ȧ

Na is the Hubble function and dot means total derivative
with respect to the independent variable t .

For the line element (4), we calculate the Ricciscalar R = 12H2 + 6
N Ḣ . For the scalar

field and the Aether field, we assume that they inherits the symmetries of the background
space, φ = φ (t), while the unitarity condition for the Aether field provides uμ = 1

N δ
μ
t .

We replace in (1) and integrating by parts the gravitational action integral is written in the
minisuperspace description

S =
∫

dt

N

(
6F (φ) aȧ2 + 6F,φa

2ȧφ̇ + 1

2
a3φ̇2 − N 2a3V (φ) + 3 (β1 (φ) + 3β2 (φ) + β3 (φ)) aȧ2

)
.

(5)
Hence, the point-like Lagrangian which describes the field equations is

L
(
N , a, ȧ, φ, φ̇

) = 1

N

(
6A (φ) aȧ2 + 6B (φ) a2ȧφ̇ + 1

2
a3φ̇2

)
− Na3V (φ) , (6)

where the new functions A (φ) and B (φ) are defined as A (φ) = F (φ) + 1
2 (β1 (φ) +

3β2 (φ) + β3 (φ)) and B (φ) = F (φ),φ . The minisuperspace description is an important
feature of gravitational models. The field equations describe the evolution of point-like par-
ticles while methods from analytic mechanics can be applied. Moreover, the existence of the
minisuperspace is essential for the canonical quantization of the theory which leads to the
Wheeler–DeWitt equation of quantum cosmology. In this work, we are interested on classical
solutions for the field equations described by the singular point-like Lagrangian (6).

Variation concerning dependent variables N , a and φ of the action integral (5) provides
the cosmological field equations

1

N 2

(
6A (φ) aȧ2 + 6B (φ) a2ȧφ̇ + 1

2
a3φ̇2

)
+ a3V (φ) = 0, (7)

2aä + ȧ2 − 2aȧ
Ṅ

N
+ 2aȧφ̇ − a2

( 1
2 φ̇2 − N 2V (φ)

)
2A

+ a2B

A

(
B,φ

B
φ̇2 + φ̈ − φ̇

Ṅ

N

)
= 0,

(8)

φ̈ − Ṅ

N
φ̇ + 3

a
ȧφ̇ + 6

a2 B (φ)
(
aä + 2ȧ2 − aȧ Ṅ

) − 6A (φ),φ

(
ȧ

a

)2

+ N 2V,φ = 0, (9)

Equivalently,

6A (φ) H2 + 6B (φ) H
φ̇

N
+ φ̇2

2N 2 + V (φ) = 0, (10)

(
2

N
Ḣ + 3H2

)
+ 2

A,φ

A
H

φ̇

N
−

(
1

2N2 φ̇2 − V (φ)
)

2
+ B

A

(
B,φ

B
φ̇2 + φ̈ − φ̇

Ṅ

N

)
= 0,

(11)

φ̈ − Ṅ

N
φ̇ + 3H φ̇ + 6B (φ)

(
Ḣ + 3NH2) − 6A (φ),φ H2 + N 2V,φ = 0. (12)
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Therefore, the field equations (10) and (11) can be written as

3H2 = Geffρeff , (13)

2

N
Ḣ + 3H2 = Geff peff , (14)

in which ρeff and peff are the energy density and pressure for the effective fluid defined as

ρeff = 1

2

(
6B (φ) H

φ̇

N
+ φ̇2

2N 2 + V (φ)

)
, (15)

peff = −
(

2A (φ),φ H
φ̇

N
− 1

2

(
1

2N 2 φ̇2 − V (φ)

)
+ B (φ),φ

φ̇2

N 2 + B (φ)

(
φ̈ − φ̇

Ṅ

N

))
,

(16)

andGeff = 1
(−A(φ))

is the time-dependent gravitational constant. We remark that in contrary to
the scalar–tensor theory in which the effective gravitational constant depends on the coupling
function F (φ), in the Einstein-aether scalar tensor model it depends also on the aether
coefficients functions β1 −β4. In addition, we observe that if the aether coefficient functions
are constant, the usual scalar–tensor theory is recovered.

2.1 Conformal transformation

It is well known that there exists a unique relation of the minimally coupled scalar field with the
scalar–tensor theories through conformal transformations [72]. The conformal transformation
is nothing else than a geometric map that relates the gravitational action integrals of two
theories defined in the Einstein and the Jordan frames. However, the question of which frame
is physical is still without an answer. There are various studies in the literature that discuss
this issue [73–76]. However, while the question has not been answered yet, we know that
there are some features independent of the frame. In the following, we discuss the conformal
transformation for the scalar–tensor aether model of our analysis and we investigate the
evolution of the coupling functions between the two frames.

Consider the conformal transformation gi j = N−2 ḡi j , with N−1 = √
2F (φ), then the

component SST of the gravitational action integral reads [77]

SST =
∫

dx4√−g

[
R

2
− 1

2
	;i	; j gi j + V̄ (	)

]
, (17)

where d	 =
√(

3F2
φ −F

2F2

)
dφ and V̄ (	) = V (	)

4F(	)2 . The later action integral is nothing else

than that of a minimally coupled scalar field.
Moreover, the component of the aether field in the gravitational action integral becomes

SAether = −
∫

dx4√−g
[
β̄1 (	) ūν|μūν|μ + β̄2 (	)

(
gμν ūμ|ν

)2 + β̄3 (	) ūν|μuμ|ν

+ β̄4 (	) ūμūν ūμūν − λ
(
ūμūν + 1

) ]
,

(18)

where “| ” means covariant derivative with respect to the metric tensor ḡμν , ūμ = N−1uμ,
such that to be unitary the aether field and β̄ (	) = N−2β (	) . Hence, under a conformal
transformation in the scalar–tensor aether theory the scalar field aether theory of [40] is
recovered. In addition, because

√
β̄ corresponds to the mass scale of the symmetry breaking

[40], by definition parameters β should be positive defined.
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Consequently, in the absence of the scalar field, that is 	 = 	0, the Einstein-aether theory
is recovered, and coefficient functions β̄ become constants. Hence, the constraint values of
these parameters as provided by gravitational waves [78] observations and massive objects
and others [79–81] can be applied.

We continue our analysis by investigating the existence of analytic solutions for the field
equations (10)–(12).

3 Analytic solution

Before we proceed, we can define without loss of generality the new scalar field ψ with the
relation dφ = √

A (ψ)dψ . Hence, the point-like Lagrangian (6) reads

L
(
N , a, ȧ, ψ, ψ̇

) = 1

N

(
6A (ψ) aȧ2 + 6B (ψ) a2ȧψ̇ + A (ψ)

2
a3ψ̇2

)
− Na3V (ψ) .

(19)
The field equations of this cosmological model depend on three arbitrary functions,

A (ψ) , B (ψ) and V (ψ) which should be defined. For the lapse function, we consider N =
na−3A (ψ), the point-like Lagrangian (19) is written as follows

L
(
n, a, ȧ, ψ, ψ̇

) = a3

n

(
6aȧ2 + 6β (ψ) a2ȧψ̇ + 1

2
a3ψ̇2

)
− nV (ψ) A (ψ) , (20)

in which B (ψ) = β (ψ) A (ψ).
We continue by defining the new variable X = ln (a) + 1

2

∫
β (ψ) dψ , that is a =

exp
(
X − 1

2

∫
β (ψ) dψ

)
, then Lagrangian function (20) becomes

L
(
n, X, Ẋ , ψ, ψ̇

) = 1

2n
e−6X−3

∫
β(ψ)dψ

(
12Ẋ2 + (

1 − 3β (ψ)2) ψ̇2) − nV (ψ) A (ψ) .

(21)
We select again the new lapse function n = e−6X−3

∫
β(ψ)dψ , in which the point-like

Lagrangian reads

L
(
n, X, Ẋ , ψ, ψ̇

) = 1

2n
e−6X (

12Ẋ2 + (
1 − 3β (ψ)2) ψ̇2)−e−6XV (ψ) A (ψ) e−3

∫
β(ψ)dψ.

(22)
Now for the scalar field potential V (ψ) = V0 (A (ψ))−1 e3

∫
β(ψ)dψ , the field equations are

(
12Ẋ2 + (

1 − 3β (ψ)2) ψ̇2) + 2V0e6X = 0, (23)

Ẍ + V0e6X = 0, (24)

ψ̈ − 3β (ψ)
(
β,ψψ̇2 + β (ψ) ψ̈

) = 0, (25)

while the element for the background space is

ds2 = − exp (−12X) A (ψ) dt2 + exp

(
2X −

∫
β (ψ) dψ

) (
dx2 + dy2 + dz2) . (26)

The system of differential equations (23)–(25) describes the motion of particle in the
two-dimensional minisuperspace with line element

ds2
(ms) = (

12dX2 + (
1 − 3β (ψ)2) dψ2) , (27)

and effective potential Veff = V0e6X .
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The analytic solution of the field equations (23), (24), (25) is

X (t) = 1

6
ln

(
cosh

(√
3t

X0
+ X2

))
− 1

3
ln (X0) , (28)

	 (t) = 	1t + 	0, (29)

with d	 = √
1 − 3β (ψ)dψ . Consequently, for the integrability of the field equations the

following Proposition 1 follows.

Proposition 1 The cosmological field equations for the Einstein-aether scalar–tensor
described by the point-like Lagrangian are superintegrable for arbitrary functions A (ψ)

and B (ψ) when V (ψ) = V0 (A (ψ))−1 e3
∫ B(ψ)

A(ψ)
dψ . The field equations describe the motion

of a particle in the two-dimensional flat space in Cartesians coordinates for the lapse function
N = exp (−12X) A (ψ) with X = ln (a) + 1

2

∫ B(ψ)
A(ψ)

dψ.

In the special case in which B(ψ)
A(ψ)

= const, then for the scalar field potential and the

coupling function A (ψ) follows V (ψ) = V̄0A (ψ)−1.
The determination of integrability for a given cosmological model, and in general for a

physical system is an important property. Nowadays, it is popular to solve a dynamical system
by using numerical techniques. However, there are two important issues in that approach.
When we solve a dynamical system numerically, we do not know if the evolution is sensitive to
the initial conditions, especially when chaos exists. Moreover, it is unknown if the numerical
solution corresponds to an actual solution to the problem. These issues are solved when we
determine the integrability of the given dynamical system.

In cosmology, the knowledge that a dynamical system is integrable is of special interest.
Integrable cosmological models have been found that they can describe various areas in the
evolution of cosmological history. Moreover, the initial value problem for inflation [83] can be
solved easily for integrable models, while we know that the provided cosmologically history
is not sensitive to the small changes of the initial conditions. Although an integrable model
may not describe the complete cosmological history, it can be used always as a reference
model. For instance, the multi-body gravitational system is a chaotic dynamical system, the
integrable two-body system describes well the Sun–Earth orbits.

To understand the general evolution of the given cosmological model in the following
section, we investigate the asymptotic behavior of the field equations.

4 Asymptotic dynamics

Let us perform a detailed study on the evolution of the field equations in the Einstein-aether
scalar–tensor model. We prefer to work with the scalar field ψ , where the field equations are
described by the Lagrangian function (19). We select to work in the H -normalization [52]
and to define the new dimensionless variables

x = ψ̇

2
√

3H
, y = V (ψ)

A (ψ) H2 , λ = V,ψ (ψ)

V (ψ)
. (30)

We remark that in general someone should consider a more general consideration which will
allow for the Hubble function to take the value zero. Here, we work on the branch H > 0
and we focus on the existence of asymptotic solutions which describe de Sitter universes or
scaling solutions.
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For the arbitrary functions of the dynamical system, we assume B (ψ) = β0√
3
A (ψ) , β2

0 �=
1, with A (ψ) = A0e−νψ . Therefore, in the new variables the field equations read

y = −6
(
1 + 2β0x + x2) , (31)

and
dx

d ln a
= 1

1 − β2
0

(√
3 (λ + ν) (1 + β0x) − 3 (β0 + x)

) (
1 + 2β0x + x2) , (32)

dλ

d ln a
= 2

√
3λ2x (� (λ) − 1) , � (λ) = V,ψψV(

Vψ

)2 . (33)

Every stationary point for the dynamical system (32)–(33) describes an exact solution for
the scale factor for the background space. Indeed, the effective equation of state weff = peff

ρeff
in the new variables is

weff (x, λ) = −1 +
2β0

(
3β0 − √

3λ
)

− 2
(√

3β0λ − 3
)

(2β0 + x) x − 2
√

3ν (β0 + x (2 + β0x))

3
(
1 − β2

0

) .

(34)

Hence, at the stationary point P with coordinates P = (x (P) , λ (P)), weff (P) = const ,

that is, by definition a (t) = a0t
2

3(1+weff (P)) for weff (P) �= −1 and a (t) = a0eH0t for
weff = −1. Consequently, when we determine the stationary points of the system (32)–(33)
and investigate their stability we are able to infer about the asymptotic behavior for the
Einstein-aether scalar–tensor model.

For the scalar field potential, we consider the following potential function V (ψ) = V0eλψ .

4.1 Exponential potential

For the exponential potential, V (ψ) = V0eλψ , parameter λ is always a constant, thus the
dynamical system is reduced to the one-dimension equation (32). The right-hand side of
equation (32) vanishes when

x1 = −3β0 − √
3 (λ + ν)

3 − √
3β0 (λ + ν)

,

x2 = −β0 +
√

β2
0 − 1,

x3 = −β0 −
√

β2
0 − 1.

Consequently, we determine three stationary points, namely A1, A2 and A3 with coordinates
x1, x2 and x3, respectively.

For point A1, we derive y (A1) = 18
(
1−β2

0

)(
2
√

3β0(λ+ν)−3−(λ+ν)2
)

(
3−√

3β(λ+ν)
)2 , and weff (A1) =

− 3+2
(
λ2−ν2)+√

3β0(ν−3λ)√
3β0(λ+ν)−3

. Therefore, the asymptotic solution at A1 describes a universe where

the kinetic part, the potential part of the scalar field as also the aether field contributes in the
cosmological fluid. The scalar factor is scaling, except from the case in which ν = √

3β0−λ or
ν = λ where the asymptotic solution describes a de Sitter universe and weff (A1) = −1. The
linearized system around the stationary point A1 becomes dδx

d ln a = e1 (λ, ν, β0) δx in which

e1 (λ, ν, β0) = 3
(

3+(λ+ν)
(
λ+ν−2

√
3β0

))
√

3β0(λ+ν)−3
. When e1 < 0, the stationary point is an attractor and

the asymptotic solution is stable. Otherwise, the point A1 is a source. Let us focus in the special
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case that we studied before for the integrable model in which ν = −λ. In this case, we calcu-
late y (A1) = −6

(
1 − β2

0

)
, weff (A1) = −1+ 4

3β0λ and e1 (λ,−λ, β0) = −3. We conclude
that the stationary point is always an attractor and weff (A1) < − 1

3 when β0λ < 1
2
√

3
. In

addition, y > 0 when β2
0 > 1. On the other hand, for the two de Sitter ν = λ we derive

y (A1) = 18
(
1−β2

0

)(
4
√

3β0λ−3−4λ2
)

(
3−2

√
3βλ

)2 , weff (A1) = −1 and e1 (λ, λ, β0) = −6 + 3
(
3−4λ2)

3−2
√

3β0λ
.

Therefore, the de Sitter point is an attractor when
{
β0λ <

√
3

2 , β0λ > 4λ2+3
4
√

3
, |λ| >

√
3

2

}

or
{
β0λ >

√
3

2 , β0λ < 4λ2+3
4
√

3
, |λ| <

√
3

2

}
, and

{
|λ| =

√
3

2 , β0λ �=
√

3
2

}
. For the second

de Sitter solution ν = √
3β0 − λ, we derive y (A1) = −6, weff (A1) = −1 and

e1

(
λ,

√
3β0 − λ, β0

)
= −3, from where we infer that the stationary point is always an

attractor and y (A1) < 0.
The stationary points A2 and A3 describe universes dominated by the kinetic part of the

scalar field, that is, y (A2) = 0 and y (A3) = 0. The points are real for |β0| < 1. The

equation of state parameter is found at each point weff (A2) = 1− 4
3ν

(
β0 +

√
β2

0 − 1

)
and

weff (A2) = 1 − 4
3ν

(
−β0 +

√
β2

0 − 1

)
. In a similar way as before for the linearized sys-

tem near the stationary points, we find e1 (A2) = 2

(
3 − √

3

(
β0 +

√
β2

0 − 1

)
(λ + ν)

)

and e1 (A3) = 2

(
3 + √

3

(
−β0 +

√
β2

0 − 1

)
(λ + ν)

)
. In the case with ν = −λ,

we find that e1 (A2) = e2 (A3) = 6, that is, the solutions are always unstable.

Moreover, when ν =
√

3
2

(
β0 −

√
β2

0 − 1

)
, point A2 describes a de Sitter universe

which is stable when

{
λ < −

√
3
2 , 3+4λ2

4
√

3λ
< β0 < −1

}
,
{

0 < λ <
√

3
2 , β0 < 3+4λ2

4
√

3λ

}
and

{
λ >

√
3

2 , β0 > 1
}

. Similarly, when ν =
√

3
2

(
β0 +

√
β2

0 − 1

)
point A3 describes a de

Sitter solution which is stable when
{
λ <

√
3

2 , β0 < −1
}

,
{

0 < λ <
√

3
2 , β0 < 3+4λ2

4
√

3λ

}
and{

λ >
√

3
2 , 1 < β0 < 3+4λ2

4
√

3λ

}
.

From these results, it is clear that inflationary solutions are provided by this cosmological
model. From (30), it follows V (ψ) = yA (ψ) H2. Thus, when V (ψ) �= 0 then we shall
say that the contribution of the aether field, through A (ψ) , is nonzero. That is true in
the solution described by the stationary point A1 , which can be seen as Lorentz violated
inflationary solution in the Jordan frame. Moreover, the asymptotic solutions described by
points A1 and A2 are similar to that of the usual scalar–tensor theory [84].

4.2 Arbitrary potential

For an arbitrary potential function, that is, for arbitrary function � (λ), then, the stationary
points of the two-dimensional dynamical system (32)–(33) are

B1 (λ0) =
(

−3β0 − √
3ν

3 − √
3β0ν

, λ0

)
,
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B2 (λ0) =
(

−β0 +
√

β2
0 − 1, λ0

)
,

B3 (λ0) =
(

−β0 −
√

β2
0 − 1, λ0

)
and

B4 =
(

0,
√

3β0 − ν
)

,

in which λ0 are solutions of the equation λ2 (� (λ) − 1) = 0.
The family of stationary points B1, B2 and B3 have the same physical properties with that

of points A1, A2 and A3, respectively, with λ = 0. The new point B4 is nothing else than
the de Sitter solution described by A1 and ν = √

3β0 − λ. What is different for an arbitrary
potential is the stability of the points which depends on the nature of function � (λ). We
summarize the results in the following Proposition 2.

Proposition 2 The stationary points for the Einstein-aether scalar–tensor field equations
(32)–(33) for arbitrary potential provide a de Sitter point as asymptotic solution, point B4 ,
and three families of scaling solutions described by points B1,B2 and B3 for every λ0 which
solves the equation λ2

0 (� (λ0) − 1) = 0.

4.2.1 Potential V (ψ) = V0
(
eσψ − 

)

We demonstrate the results of the latter Proposition 2 by considering the potential function
V (ψ) = V0

(
eσψ − 

)
. For this potential, we calculate � (λ) = σ

ψ
, such that Eq. (33) to

become
dλ

d ln a
= −2

√
3λ (λ − σ) x . (35)

Thus, the polynomial equation λ (λ − σ) = 0 has the following roots, λ1 = 0 and λ2 = σ .
The stationary points for the field equations (32)–(33) are

B1 (0) =
(

−3β0 − √
3ν

3 − √
3β0ν

, 0

)
,

B2 (0) =
(

−β0 +
√

β2
0 − 1, 0

)
,

B3 (0) =
(

−β0 −
√

β2
0 − 1, 0

)
,

B1 (σ ) =
(

−3β0 − √
3 (λ + ν)

3 − √
3β0 (λ + ν)

, σ

)
,

B2 (σ ) =
(

−β0 +
√

β2
0 − 1, σ

)
,

B3 (σ ) =
(

−β0 −
√

β2
0 − 1, σ

)
.

and
B4 =

(
0,

√
3β0 − ν

)
.

123



Eur. Phys. J. Plus        (2021) 136:1130 Page 11 of 16  1130 

Let us focus on the stability conditions for point B4. The eigenvalues of the linearized
system around the de Sitter point B4 are

e± (B4) = −3

2
±

√
3

2

√√√√√27β2
0 + 8ν (ν + σ) − 8

√
3 (2ν + σ)√

β2
0 − 1

. (36)

In Fig. 1, we present region plots in the spaces {σ, ν}, {β0, ν} and {σ, β0} in which the real
parts for the eigenvalues e± (B4) are negative and the de Sitter universe described by B4 is
an attractor.

5 Symmetry classification

In Sect. 3, we determined a family of analytic solutions for arbitrary functions A (ψ) and
B (ψ) with the empirical approach of reducing the field equations to a two-dimensional
system in Cartesians coordinates and recognizing its integrable form by our experience in
analytic mechanics. We now use a systematic method to determine the scalar field potential
V (ψ) such that the field equations form a Liouville integrable system. The Noether symmetry
approach is applied to perform a classification of the scalar field potential similar to that of
Ovsiannikov’s classification scheme. We briefly discuss the basic properties and definitions
of Noether’s theory.

Consider the one-parameter point transformation in the space of dependent and indepen-
dent variables

{
t, xi (t)

}
:

t ′ = t + εξ
(
t, x j

)
, xi = xi + εηi

(
t, x j

)
, (37)

and generator Z = ξ∂t + ηi∂i . Then, according to Noether’s first theorem, for a dynamical
system provided by the variational principle of the Lagrangian function L

(
t, x j , ẋ k

)
, the

dynamical system remains invariant under the action of the one-parameter point transforma-
tion with generator X if and only if there exists a function f such that the following condition
be true

Z [1]L + L ξ̇ = ḟ , (38)

where Z [1] = Z + (
η̇i − ẋ i ξ̇

)
∂ẋ i is the first extension of X in the jet space

{
t, xi , ẋ i

}
.

Condition (38) is called the Noether symmetry condition and, when it is true, the vector field
Z is a Noether symmetry for the dynamical system described by the Lagrangian function
L

(
t, x j , ẋ k

)
.

The importance of the derivation of Noether symmetries for a dynamical system is twofold.
Noether symmetries form a subalgebra of the Lie point symmetries of the dynamical system.
Thus, the determination of Noether symmetries can be used to define invariant functions or
under the action of similarity transformations to simplify the expression of the dynamical
system. Moreover, from Noether’s second theorem there exists a formula that relates any
Noether symmetry to a specific conservation law.

Indeed, if Z is the Noether symmetry for the dynamical system with Lagrangian
L

(
t, x j , ẋ k

)
, then the following quantity

� = ξ

(
ẋ k

∂L

∂ ẋ k
− L

)
− ηk

∂L

∂ ẋ k
+ f (39)

is a conservation law, i.e., d�
dt = 0.
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Fig. 1 Region in the spaces {σ, ν}, {β0, ν} and {σ, β0} in which the real parts for the eigenvalues e± (B4) are
negative and the de Sitter universe described by B4 is an attractor
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The gravitational field equations of the Einstein-æther scalar–tensor cosmology form a
two-dimensional Hamiltonian constraint system. The constraint equation, which is the first
modified Friedmann’s equation, can be seen as a conservation law. Thus, we should determine
a second conservation laws in order to infer the integrability of the field equations for other
forms of the scalar field potential. We prefer to work in the coordinates (X, 	) and the lapse
function which we used to write the field equations (23)–(25). In these coordinates and for
an arbitrary potential function, the point-like Lagrangian is

L
(
X, Ẋ , 	, 	̇

) =
(

6Ẋ2 + 1

2
	̇2

)
− V̂ (	) e6X , (40)

where d	 = √
1 − 3β (ψ)dψ and V̂ (ψ) = V (ψ) A (ψ) e−3

∫ B(ψ)
A(ψ)

dψ .
At this point, it is important to mention that, while our original system was dependent

upon three free functions, A (ψ) , B (ψ) and V (ψ) , we were able to find a specific coordi-
nate system in which only one function is essential, that is the scalar field potential V (ψ).
Functions A (ψ) and B (ψ) play a significant role in the physical properties of the solutions.
However, that is not true of the dynamics described by (40). Function A (ψ) has been elim-
inated by the field equations by selecting a specific lapse function, while B (ψ) has been
eliminated by a coordinate transformation on the field ψ . Moreover, because we are inter-
ested on time-independent conservation laws which are in-involution with the Hamiltonian,
{�,H} = 0, where {,} is the Poisson bracket and H = ẋ k ∂L

∂ ẋ k
− L , from the results of the

symmetry analysis of [85] we search for Noether symmetries with ξ
(
t, x j

) = 0.
We omit the derivation of the Lie point symmetries and the unique real nonconstant

scalar field potential V̂ (	) that we find in which the point-like Lagrangian (40) admits
additional Noether symmetries in the exponential potential V̂ (	) = V̂0 exp (−6μ	) . The
corresponding symmetry vector is Z = ∂X+ 1

μ
∂	 while the resulting Noetherian conservation

law is �0 = 12Ẋ + 1
μ
	̇.

We define the new variable X = u
6 + μ	. Thus, the point-like Lagrangian (40) is written

as
L

(
u, u̇, 	, 	̇

) = u̇2 + 12μu̇	̇ + 3
(
1 + 12μ2) 	̇2 − 6V̂0eu, (41)

while the field equations are

u̇2 + 12μu̇	̇ + 3
(
1 + 12μ2) 	̇2 − 6V̂0eu = 0,

ü + 3V̂0
(
1 + 12μ2) eu = 0, (42)

	̈ − 6V̂0μeu = 0. (43)

Hence, the analytic solution is

u (t) = ln

(
u1

6V̂0
(
1 + 12μ2

)
)

− 2 ln

(
cosh

(√
u1

2
t

))
, (44)

	 (t) = 2

3
(
1 + 12μ2

)2

(
6μ

(
1 + 12μ2) ln

(
cosh

(√
u1

2
t

))
−

√
3

2

√
(−u1)

(
1 + 12μ2) t

)
.

(45)

This is the analytic solution for the model the dynamics of which we studied in Sect. 4
when β (ψ) = β0, 	 � ψ such that μ = μ (λ, ν) and function A (ψ) was the exponential
function.
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5.1 Nonlocal symmetries

The point-like Lagrangian (40) is in a form similar to that of the (phantom) minimally coupled
scalar field 	 in general relativity where X plays the role of the scale factor, for the lapse
function N = X3. Thus, if we select to work with nonlocal symmetries, we can obtain the
results of [86] and end with the following Proposition 3.

Proposition 3 The gravitational field equations of the Einstein-æther scalar–tensor with
arbitrary potential functions A (ψ), B (ψ) and V (ψ) are integrable according to the exis-
tence of nonlocal symmetries, consequently upon the existence of nonlocal conservation laws,
because of the existence of the constraint equation.

The proof of Proposition 3 is straightforward, by applying the same procedure with that of
[86], thus we omit it. The result summarized in this proposition 3 is very important because if
we elect to solve the field equations numerically for any functional form of the three unknown
functions, we know that the numerical solutions correspond to actual solutions.

6 Conclusions

In this work, we introduced an Einstein-æther scalar–tensor cosmological model inspired by
the Einstein-æther scalar field model proposed in [40] in which the æther coupling functions
depend upon the scalar field. In our proposed model, we assumed that the scalar field is
defined in the Jordan frame and that it is coupled to gravity. In the case of a spatially flat
FLRW background space, the field equations describe the evolution of the scale factor and the
scalar field, while there are three unknown functions that should be defined. These functions
are related to the scalar field potential, the scalar–tensor coupled function to gravity, and
the æther coefficient functions. The field equations are described by a minisuperspace and a
point-like Lagrangian. This is an important observation because important techniques from
Analytic Mechanics can be applied.

We investigated the integrability property of the field equations and the existence of
analytic solutions. We were able to define a new set of variables in the minisuperspace and
eliminate two of the three unknown functions of the model. We end with a dynamical system
in which only the scalar field potential drives the dynamics. The other two unknown functions
have been eliminated by a change in the lapse function of the background space and by a
coordinate transformation. These functions play a significant role in the physical properties
of the cosmological solution, but they do not affect the dynamics in the new variables.

To understand the evolution of the physical variables, we performed a detailed study of
the field equations by investigating the stationary points in the dimensionless variables of the
H -normalization approach. For exponential functional forms of the coupled variables and
exponential scalar field potential, we found that there exist three stationary points which in
general describe scaling solutions. The effective cosmological fluid in two of the stationary
points depends only upon the kinetic part of the scalar field, while the scalar field potential
contributes in the third point. These solutions can be seen as analogs in the Jordan frame of
the Lorentz-violation inflationary solutions which were found in [40] defined in the Einstein
frame. Moreover, for an arbitrary potential function, we found that the stationary points
belong to the three families described by the exponential potential with the addition of a new
stationary point which provides a de Sitter universe.

Finally, we performed a symmetry classification for the field equations according to the
admitted Noether point symmetries, inspired by Ovsiannikov’s classification scheme. We
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found that for the scalar field potential, the field equations admit additional conservation
laws and the cosmological solution can be written in a closed-form expression. In addition,
this closed-form solution can describe the generic evolution which was found by the analysis
of the stationary points in the H -normalization. That is a very interesting result. We can relate
the analysis of the stationary points with an actual solution for the dynamical system.

From this analysis on the extension of the Einstein-aether scalar field model in the Jordan
frame, we can conclude that the cosmological model can be physically viable since it can
provide important eras in the cosmological evolution. In a future study, we plan to investigate
further the physical properties of the model as also to investigate the effects of the conformal
transformation in the physical properties of the theory.
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