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Abstract In this paper, the two-dimensional generalized nonlinear Schrödinger equations are
introduced with the Lax pair. The existence of the Lax pair defines integrability for the partial
differential equation, so the two-dimensional generalized nonlinear Schrödinger equations are
integrable. Related to this development was the understanding that certain coherent structures
called solitons play a basic role in nonlinear phenomena as fluid mechanics, nonlinear optics
relativity, and lattice dynamics. Via the Hirota bilinear method, bilinear forms of the two-
dimensional generalized nonlinear Schrödinger equations are obtained. Based on which one-
and two-soliton solutions are derived. Furthermore, to find traveling wave solutions the
extended tanh method is applied. Through 2D and 3D plots, the dynamical behavior of the
obtained solutions is studied. The generalized form of the nonlinear Schrödinger equations
has a mathematical and physical interest because a fundamental model in the field of nonlinear
science. The used methods are quite useful in the solution of nonlinear partial differential
equations.

1 Introduction

The investigation of nonlinear evolution equations is the main area of research in the field
of nonlinear dynamics. One of the nonlinear equations is the nonlinear Schrödinger (NLS)
equation which arises from a wide variety of fields, such as weakly nonlinear dispersive
water waves, quantum field theory and nonlinear optics [1–4]. Different modifications and
generalizations of the NLS equations were proposed and studied [5–11]. There are various
methods to study nonlinear equations, such as the Darboux transformation [12–16], the Hirota
method [17–21], the sine-cosine [22,23], the extended tanh method [24–26], and so on. In
two-dimension, the generalized form of the NLS equation has a mathematical and physical
interest because it is nonlinear partial differential equation and describes many physical
phenomena such as nonlinear optical fibers, Bose–Einstein condensates, and water waves.
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As a coupled system, a one-dimensional generalized nonlinear Schrödinger (GNLS) equation
with Maxwell–Bloch system was studied in [27,28].

In this work, by Lax pair we introduce a generalization of the two-dimensional NLS
equation with additional parameters as α that denotes the amplification or absorption and β

that relates to dispersion. The obtained two-dimensional GNLS system of equations is

iqt + qxy − vq + αq − iβqx = 0, (1)

vx + 2(|q|2)y = 0, (2)

where q is complex function, v is real function, α and β are the constants, the subscripts
denote the partial derivatives with respect to the variables x, y, t . The equations (1)-(2)
admit next reductions: if α = 0, β = 0, we can obtain the two-dimensional nonlinear
Schrödinger equations [29], if x = y, α = 0, β = 0, we can get the one-dimensional
nonlinear Schrödinger equation [2–4].

The aim of this paper is to find some new solutions of Eqs. (1)–(2). We apply Hirota’s
bilinear method and obtain the bilinear form of the two-dimensional GNLS system of equa-
tions. One soliton and two soliton solutions are constructed based on the obtained bilinear
form. We derive traveling wave solutions using the extended tanh-method that provides wider
applicability for handling nonlinear wave equations. The figures have been plotted to analyze
the dynamical features of obtained solutions.

The article is organized as follows. In Sect. 2, we present the Lax pair for the two-
dimensional GNLS system of Eqs. (1)–(2). In Sect. 3, the Hirota bilinear method is applied
to obtain soliton solutions for two-dimensional GNLS system of equations. In Sect. 4, we
obtain traveling wave solution by the extended tanh method. In Sect. 5, we summarize the
results of our study.

2 Lax pair

The Lax pair provides the complete integrability of the nonlinear equation [2,3]. In this
section, we present the Lax pair for Eqs. (1)–(2) that can be expressed as follows:

Ψx = UΨ, (3)

Ψt = 2λΨy + VΨ, (4)

where Ψ = (Ψ1, Ψ2)
T (T denotes the transpose of a matrix), λ is a spectral parameter and

the matrices U and V have the form

U =
(−iλ q

−q∗ iλ

)
, (5)

V =
(−λiβ − iv

2 + iα
2 iqy + βq

iq∗
y − βq∗ λiβ + iv

2 − iα
2

)
. (6)

Through direct computations, it can be verified that the compatibility condition (also known
as a zero-curvature condition):

Ut − Vx − 2λUy +UV − VU = 0, (7)

exactly gives rise to
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iqt + qxy − vq + αq − iβqx = 0,

iq∗
t − q∗

xy + vq∗ − αq∗ − iβq∗
x = 0,

vx + 2|q|2y = 0.

The above-coupled system can give two-dimensional GNLS Eqs. (1)–(2).

3 Soliton solutions

In order to obtain soliton solutions for the two-dimensional GNLS system of equations, we
apply Hirota’s bilinear method. The method was suggested by Hirota [17,19]. This approach
provides a direct method for finding N-soliton solutions to nonlinear evolutionary equations.
The stages of the method are described in the next section.

3.1 Description of Hirota’s bilinear method

The basic idea in Hirota’s bilinear method is as follows [3,17,19,24]:
Bilinearization. At this stage, a dependent variable transformation is introduced. The

transformation ought to reduce the nonlinear equation to the bilinear equation, which is
quadratic in the dependent variables.

Transformation to the Hirota bilinear form. Hirota suggests the D-operator defined by

Dl
x D

m
y D

n
t (g · f ) =

(
∂

∂x
− ∂

∂x ′

)l (
∂

∂y
− ∂

∂y′

)m

×
(

∂

∂t
− ∂

∂t ′

)n

g(x, y, t) · f (x ′, y′, t ′)|x ′=x,y′=y,t ′=t (8)

with x ′, y′ and t ′ as three formal variables, g(x, y, t) and f (x ′, y′, t ′) being two functions,
l,m and n being three nonnegative integers. The operator (8) rewrites the bilinear equation
in terms of the D operator as a combination of variable coefficient bilinear equations.

Using the Hirota perturbation. Formal perturbation expansion into this bilinear equation
is introduced. This expansion is truncated in the case of soliton solutions. To prove that the
suggested soliton form is indeed correct, we use mathematical induction.

3.2 Application

Bilinear form
The two-dimensional GNLS system of Eqs. (1)–(2) can be rewritten as

[i Dt + Dx Dy + α − iβDx ](g · f ) = 0, (9)

Dx Dy( f · f ) + 2Dy(h · f ) = 0, (10)

Dx (h · f ) + |g|2 = 0, (11)

with the dependent variable transformations

q = g

f
, (12)

v = 2

(
h

f

)
y
, (13)
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where g is the complex function of x, y and t , f, h-are real ones, Dx , Dy and Dt are the
bilinear differential operators defined by (8).

To obtain the soliton solutions of Eqs. (9)–(11), we expand g, f, h with respect to a small
parameter ε as follows:

g(x, y, t) = εg1(x, y, t) + ε3g3(x, y, t) + . . . , (14)

f (x, y, t) = 1 + ε2 f2(x, y, t) + ε4 f4(x, y, t) + ..., (15)

h(x, y, t) = 1 + ε2h2(x, y, t) + ε4h4(x, y, t) + ..., (16)

where g j , ( j = 1, 3, 5, ...) are the complex functions of x, y and t , and fn, hn , (n =
2, 4, 6, ...) are the real ones. Substituting expression (14)–(16) into (9)–(11) and collecting
the coefficients of the same power of ε, we have from Eq. (9)

ε1 : [i Dt + Dx Dy + α − iβDx ](g1 · 1) = 0,

ε3 : [i Dt + Dx Dy + α − iβDx ](g3 · 1 + g1 · f2) = 0,

ε5 : [i Dt + Dx Dy + α − iβDx ](g5 · 1 + g1 · f2 + g1 · f4) = 0,

ε7 : [i Dt + Dx Dy + α − iβDx ](g5 · f2 + g3 · f4) = 0,

. . .

from Eq. (10)

ε2 : Dx Dy( f2 · 1 + 1 · f2) + 2Dy(h2 · 1 + 1 · f2) = 0,

ε4 : Dx Dy( f4 · 1 + f2 · f2 + 1 · f4) +
+2Dy(h4 · 1 + h1 · f2 + 1 · f4) = 0,

ε6 : Dx Dy( f4 · f2 + f2 · f4) + 2Dy(h4 · f2 + h2 · f4) = 0,

. . .

and from Eq. (11)

ε2 : Dx (h2 · 1 + 1 · f2) + g∗
1g1 = 0,

ε4 : Dx (h4 · 1 + h2 · f2 + 1 · f4) + (g3g
∗
1 + g1g

∗
3) = 0,

ε6 : Dx (h4 · f2 + h2 · f4) + (g5g
∗
1 + g3g

∗
3 + g5g

∗
1) = 0,

. . .

With the benefit of the above expression and symbolic computation, we can obtain the one-,
two-, and N-soliton solutions for Eqs. (1)–(2).

The one-soliton solutions
Truncating expressions (14)–(16) as

g = εg1, f = 1 + ε2 f2, h = 1 + ε2h2, (17)

setting ε = 1, and substituting them into bilinear forms (9)–(11), we can obtain the one-
soliton solutions for the two-dimensional GNLS system of equations as follows:

q = eθ1

1 + eθ1+θ∗
1 +R

, (18)

v = 2

(
1 + eθ1+θ∗

1 +S

1 + eθ1+θ∗
1 +R

)
y

, (19)
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Fig. 1 The time evolutions of the one-soliton solution (18). The parameters are: k1 = 1 + i; p1 = 1 − i;α =
1; β = 2

Fig. 2 The time evolutions of the one-soliton solution (19). The parameters are: k1 = 1 + i; p1 = 1 − i;α =
1; β = 2

where

eR = 1

(k1 + k∗
1)2 , eS = (1 − k1 − k∗

1)

(k1 + k∗
1)2 ,

θ1 = k1x + p1y + w1t + θ10,

with dispersion relation w1 = −βk1 + ik1 p1 + iα where k1 = k1R + ik1I , p1 = p1R +
i p1I , θ1 = θ1R + iθ1I .

The solutions (18)–(19) can also be written in the more conventional form

q = k1Reiθ1I

cosh(θ1R + φ1)
,

v = 2p1R

√
1 − 2k1R

cosh(θ1R + φ2)

cosh(θ1R + φ1)
,

where φ1 = R
2 , φ2 = S

2 and we have introduced the subscripts R and I for the real
and imaginary parts of the quantity in question. (A positive root has been used to define

e
R
2 , e

S
2 and hence φ1, φ2 are real.) From this form, it is easy to identify the amplitudes

k1R, 2p1R
√

1 − 2k1R and the phases φ1, φ2. Propagation of the one-soliton solutions (18)–
(19) is shown in Figs. 1 and 2.

The two-soliton solutions
To derive the two-soliton solutions for Eqs. (1)–(2), we truncate expressions (14)–(16) as

g = εg1 + ε3g3, (20)

f = 1 + ε2 f2 + ε4 f4, (21)

h = 1 + ε2h2 + ε4h4, (22)
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set ε = 1 and substitute them into the bilinear Eqs. (9)–(11) than we get

q = g1 + g3

1 + f2 + f4
, (23)

v = 2

(
1 + h2 + h4

1 + f2 + f4

)
y
, (24)

where

g1 = eθ1 + eθ2 ,

g3 = eθ1+θ2+θ∗
2 +δ1 + eθ1+θ2+θ∗

1 +δ2 ,

f2 = eθ1+θ∗
1 +R11 + eθ2+θ∗

1 +R21 + eθ1+θ∗
2 +R∗

21 + eθ2+θ∗
2 +R22 ,

f4 = eθ1+θ∗
1 +θ2+θ∗

2 +R3 ,

h2 = eθ1+θ∗
1 +S11 + eθ2+θ∗

1 +S21 + eθ1+θ∗
2 +S∗

21 + eθ2+θ∗
2 +S22 ,

h4 = eθ1+θ∗
1 +θ2+θ∗

2 +S3 ,

with

eR11 = 1

(k1 + k∗
1)2 , eR21 = 1

(k2 + k∗
1)2 ,

eR22 = 1

(k2 + k∗
2)2 , eS11 = (1 − k1 − k∗

1)

(k1 + k∗
1)2 ,

eS21 = (1 − k2 − k∗
1)

(k2 + k∗
1)2 , eS22 = (1 − k2 − k∗

2)

(k2 + k∗
2)2 ,

eδ1 = −eR21((k2 − k1)(p∗
1 + p2) + (k2 + k∗

1)(p2 − p1))

((k2 + k∗
1)(p∗

1 + p1) + (k1 + k∗
1)(p∗

1 + p2))

+eR11((k1 + k∗
1)(p2 − p1) + (k2 − k1)(p1 + p∗

1))

((k2 + k∗
1)(p∗

1 + p1) + (k1 + k∗
1)(p∗

1 + p2))
,

eδ2 = −eR22((k2 − k1)(p∗
2 + p2) + (k2 + k∗

2)(p2 − p1))

((k2 + k∗
2)(p∗

2 + p1) + (k1 + k∗
2)(p∗

2 + p2))

+eR
∗
21((k1 + k∗

2)(p2 − p1) + (k2 − k1)(p1 + p∗
2))

((k2 + k∗
2)(p∗

2 + p1) + (k1 + k∗
2)(p∗

2 + p2))
,

eR3 = (eδ1 + eδ2 + eδ∗
1 + eδ∗

2 )

(k1 + k2 + k∗
1 + k∗

2)2 ,

eS3 = (1 − k1 − k2 − k∗
1 − k∗

2)(eδ1 + eδ2 + eδ∗
1 + eδ∗

2 )

(k1 + k2 + k∗
1 + k∗

2)2 ,

θ1 = k1x + p1y + w1t + θ10,

θ2 = k2x + p2y + w2t + θ20,

with dispersion relations w j = −βk j + ik j p j + iα, where k j = k j R + ik j I , p j =
p j R + i p j I , θ j = θ j R + iθ j I ( j = 1, 2).

The multi-soliton solutions
To construct multi-soliton solutions for Eqs. (1)–(2), we have to expand g, f and h formally
as power series expansions (14)–(16) in terms of a small arbitrary real parameter ε. Then,
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by substituting Eqs. (14)–(16) into bilinear Eqs. (9)–(11) and solving the resultant set of
equations recursively, we can obtain the explicit values for the functions g, f, h.

For multi-soliton solutions, the expansions (14)–(16) can be in the following form:

One-soliton solution

g = εg1, f = 1 + ε2 f2, h = 1 + ε2h2,

where g1 = eθ1 , with θ1 = k1x + p1y + w1t + θ10, and k1, p1, w1, θ10 are constants. The
explicit values for the functions f2, h2 are determined from Eqs. (9)–(11). Note that g j = 0
for j = 3, 5, 7, . . . and fn = 0, hn = 0 for n = 4, 6, 8 . . ..

Two-soliton solution

g = εg1 + ε3g3, f = 1 + ε2 f2 + ε4 f4, h = 1 + ε2h2 + ε4h4,

where g1 = eθ1 + eθ2 , with θi = ki x + pi y + wi t + θi0, and ki , pi , wi , θi0, (i = 1, 2) are
constants. The explicit values for the functions g3, f2, f4, h2, h4 are determined from Eqs.
(9)–(11). Note that g j = 0 for j = 5, 7, 9... and fn = 0, hn = 0 for n = 6, 8, 10....

Three-soliton solution

g = εg1 + ε3g3 + ε5g5, f = 1 + ε2 f2 + ε4 f4 + ε6 f6, h = 1 + ε2h2 + ε4h4 + ε6h6,

where g1 = eθ1 + eθ2 + eθ3 , with θi = ki x + pi y + wi t + θi0, and ki , pi , wi , θi0, (i =
1, 2, 3) are constants. The explicit values for the functions g3, g5, f2, f4, f6, h2, h4, h6 are
determined from Eqs. (9)–(11). Note that g j = 0 for j = 7, 9, 11 . . . and fn = 0, hn = 0
for n = 8, 10, 12 . . ..

Four-soliton solution

g = εg1 + ε3g3 + ε5g5 + ε7g7, f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8,

h = 1 + ε2h2 + ε4h4 + ε6h6 + ε8h8,

where g1 = eθ1 + eθ2 + eθ3 + eθ4 , with θi = ki x + pi y + wi t + θi0, and
ki , pi , wi , θi0, (i = 1, 2, 3, 4) are constants. The explicit values for the functions
g3, g5, g7, f2, f4, f6, f8, h2, h4, h6, h8 are determined from Eqs. (9)–(11). Note that g j = 0
for j = 9, 11, 13... and fn = 0, hn = 0 for n = 10, 12, 14....

and etc
The above procedure of obtaining soliton solutions can be extended to N soliton solutions
with some effort, though the analysis is unwieldy. Unfortunately, if we try to continue to
higher orders with the solution

g1 =
N∑
i=1

eθi , θi = ki x + pi y + wi t + θi0, (i = 1..N ),

the analysis becomes cumbersome. So, in this subsection, we only present a short explanation
of deriving multi-soliton solutions.

Discussion on the soliton solutions
In this section, we graphically investigate solutions (18)–(19) and (23)–(24).

Figure 1 displays the evolution of the bright one-soliton for solution (18), and Fig. 2
displays the evolution of the dark one-soliton for solution (19). It can be seen that the bright
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Fig. 3 The time evolutions of the two-soliton solution (23). The parameters adopted here are: k1 = 0.8 +
0.8i; p1 = 1 − 4i; k2 = −1 + 0.8i; p2 = −1 + i; α = 1; β = 2

Fig. 4 The time evolutions of the two-soliton solution (24). The parameters adopted here are: k1 = 0.8 +
0.8i; p1 = 1 − 4i; k2 = −1 + 0.8i; p2 = −1 + i; α = 1; β = 2

one-soliton and dark one-soliton keep their directions, widths, and amplitudes invariant during
the propagation on the x − y plane.

In Figs. 3 and 4, we present 3D plot of the interaction between the two-solitons via
solutions (23)–(24) on the x − y plane. We notice that the bright two solitons (23) and dark
two solitons (24) are traveling to the left by saving shape.

In order to study the direction of the two solitons, we consider next cases for the parameters:

(I) α > β; k1R, p1R > 0; k2R, p2R < 0; k1R, p1R > k2R, p2R; k1I , k2I , p1I , p2I >

0; p1I , k1I < k2I , p2I ;
(II) α < β; k1R, p1R > 0; k2R, p2R < 0; k1R, p1R > k2R, p2R; k1I , k2I , p1I , p2I >

0; p1I , k1I < k2I , p2I ;
(III) α < β; k1R, p1R < 0; k2R, p2R > 0; k1R, p1R < k2R, p2R; k1I , k2I , p1I , p2I >

0; p1I , k1I < k2I , p2I ;
(IV) α > β; k1R, p1R < 0; k2R, p2R > 0; k1R, p1R < k2R, p2R; k1I , k2I , p1I , p2I >

0; p1I , k1I < k2I , p2I .

In Fig. 5, we present the result of case (I) as we notice that bright two-solutions q (blue solid
line ) and dark solitons v (red dashed line) move to the right by keeping form and direction.
In case (II), bright and dark two solitons change directions by traveling to the left (see Fig. 6).
The result of case (III) we present in Fig. 7 where two solitons after interaction move to the
right by saving shape and direction. In Fig. 8, interaction of case (IV) is shown. As we notice,
bright two solitons q (blue solid line ) and dark two solitons v (red dashed line) travel to the
left.
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Fig. 5 Evolution of the two soliton solutions q (blue solid line) and v (red dashed line) given by expression (23)
and (24) at y = 0 with parameters k1 = 1+i; p1 = 1+i; k2 = −1.5+1.5i; p2 = −1.5+1.5i;α = 3;β = 1

Fig. 6 Evolution of the two soliton solutions q (blue solid line) and v (red dashed line) given by expression (23)
and (24) at y = 0 with parameters k1 = 1+i; p1 = 1+i; k2 = −1.5+1.5i; p2 = −1.5+1.5i;α = 1;β = 3

Fig. 7 Evolution of the two soliton solutions q (blue solid line) and v (red dashed line) given by expression (23)
and (24) at y = 0 with parameters k1 = −1+i; p1 = −1+i; k2 = 1.5+1.5i; p2 = 1.5+1.5i;α = 3;β = 1

Fig. 8 Evolution of the two soliton solutions q (blue solid line) and v (red dashed line) given by expression (23)
and (24) at y = 0 with parameters k1 = −1+i; p1 = −1+i; k2 = 1.5+1.5i; p2 = 1.5+1.5i;α = 1;β = 3

4 Traveling wave solutions

We use the extended tanh method [24] to obtain traveling wave solutions for the two-
dimensional GNLS system of equations. The tanh method was suggested by Malfliet [30]
and then was extended by Wazwaz [24]. In the next section, the description of the method is
presented.
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4.1 Description of the extended tanh method

The partial differential equation (PDE)

E1(q, qt , qx , qy, qtt , qxx , qyy, . . .) = 0, (25)

where E1 is a polynomial of q(x, y, t) and its partial derivatives in which the highest order
derivatives and nonlinear terms are involved, can be converted to the ordinary differential
equation (ODE)

E2(Q, Q′, Q′′, Q′′′, . . .) = 0, (26)

by using a wave variable

q(x, y, t) = Q(ξ), ξ = x + y − ct, (27)

where c is the constant. We integrate Eq. (26) as long as all terms contain derivatives. Con-
stants of integration are considered zeros. By using a new independent variable

Y = tanh(μξ), ξ = x + y − ct, (28)

where μ is the wave number, we have the following change of derivatives:

d

dξ
= μ(1 − Y 2)

d

dY
,

d2

dξ2 = −2μ2Y (1 − Y 2)
d

dY
+ μ2(1 − Y 2)

d2

dY 2 .

The extended tanh method admits the use of the finite expansion in the following form:

Q(ξ) =
M∑
n=0

anY
n +

M∑
n=1

bnY
−n, (29)

where a0, a1, a2, a3, . . . , aN and b1, b2, b3, . . . , bN are unknown constants. M is obtained
balancing the highest order derivative term and the nonlinear terms in Eq. (26). Then, put the
value of Q(ξ) from (29) in Eq. (26), and comparing the coefficient of Yn we can obtain the
values of the coefficients a0, a1, a2, a3, . . . , aN and b1, b2, b3, . . . , bN .

4.2 Application

In this section, we obtain exact traveling wave solutions of the two-dimensional GNLS system
of equations using the extended tanh method [24,26]. For applying this method, we ought
to reduce the system (1)–(2) to the system of ordinary differential equations. If we consider
the transformation

q(x, y, t) = ei(ax+by+dt)Q(x, y, t), (30)

where a, b, d are the constants, Q(x, y, t) is the real-valued function, then the system (1)–(2)
reduced to the following system of differential equations

Q(−d − ba + α + βa) + Qxy − vQ = 0, (31)

Qt + aQy + (b − β)Qx = 0, (32)

vx + 2(Q2)y = 0. (33)
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Substituting the wave transformation

Q(x, y, t) = Q(ξ) = Q(x + y − ct), (34)

v(x, y, t) = V (ξ) = V (x + y − ct), (35)

into system (31)–(33), we obtain that

Q(−d − ba + α + βa) + Q
′′ − V Q = 0, (36)

Q
′
(−c + a + b − β) = 0, (37)

V
′ + 2(Q2)

′ = 0. (38)

From Eq. (37), we have that

c = a + b − β. (39)

Integrating Eq. (38) with respect to ξ and taking integration constant zero for simplicity, we
find

V = −2Q2. (40)

Substituting Eq. (40) into Eq. (36), we obtain the following ordinary differential equation

Q(−d + (β − b)a + α) + Q
′′ + 2Q3 = 0, (41)

where prime denotes the derivation with respect to ξ . Balancing the nonlinear term Q3, which
has the exponent 3M , with the highest order derivative Q

′′
, which has the exponent M + 2,

in (41) yields 3M = M + 2 that gives M = 1. Then, the extended tanh method allows us to
use the substitution

Q(ξ) = a0 + a1Y + b1

Y
. (42)

Substituting (42) into (41) and collecting the coefficients ofY , we obtain a system of algebraic
equations for a0, a1, b1, μ. Solving this system with the aid of Maple, we obtain the following
results:

Result 1:

a0 = 0, c = a + b − β, (43)

a1 = ±1

2

√
1

2
(a(b − β) − α + d), (44)

b1 = ±1

2

√
1

2
(a(b − β) − α + d), (45)

μ = ±1

2

√
−1

2
(a(b − β) − α + d). (46)

Result 2:

a0 = 0, a1 = 0, c = a + b − β, (47)

b1 = ±
√

1

2
(a(b − β) − α + d), (48)

μ = ±
√

−1

2
(a(b − β) − α + d). (49)
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Result 3:

a0 = 0, b1 = 0, c = a + b − β, (50)

a1 = ±
√

1

2
(a(b − β) − α + d), (51)

μ = ±
√

−1

2
(a(b − β) − α + d). (52)

Result 4:

a0 = 0, c = a + b − β, (53)

a1 = ∓1

2

√−(a(b − β) − α + d), (54)

b1 = ±1

2

√
(−a(b − β) − α + d), (55)

μ = ±1

2

√
(a(b − β) − α + d). (56)

By substituting Eq. (42) into (34), (40) and then the obtained expressions into (30) and
(35), we can obtain solutions for the two-dimensional GNLS system of Eqs. (1)–(2) in the
following form

q(x, y, t) = ei(ax+by+dt)[a0 + a1 tanh(μξ)

+b1 coth(μξ)], (57)

v(x, y, t) = −2(a0 + a1 tanh(μξ)

+b1 coth(μξ))2, (58)

where ξ = x + y − ct .
Finally, substituting the results (43)–(56) into (57)–(58), we can obtain traveling wave

solutions in the next forms

q1(x, y, t) = ei(ax+by+dt)

[
±1

2

√
1

2
(a(b − β) − α + d)

×
(

tanh

(
±1

2

√
−1

2
(a(b − β) − α + d)ξ

)

+ coth(±1

2

√
−1

2
(a(b − β) − α + d)ξ)

)]
, (59)

v1(x, y, t) = −2

(
±1

2

√
1

2
(a(b − β) − α + d)

×
(

tanh

(
±1

2

√
−1

2
(a(b − β) − α + d)ξ

)

+ coth

(
±1

2

√
−1

2
(a(b − β) − α + d)ξ

)))2

, (60)

q2(x, y, t) = ei(ax+by+dt)

(
±

√
1

2
(a(b − β) − α + d)
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× coth

(
±

√
−1

2
(a(b − β) − α + d)ξ

))
, (61)

v2(x, y, t) = −2

(
±

√
1

2
(a(b − β) − α + d)×

× coth

(
±

√
−1

2
(a(b − β) − α + d)ξ

))2

, (62)

q3(x, y, t) = ei(ax+by+dt)

(
±

√
1

2
(a(b − β) − α + d)

× tanh

(
±

√
−1

2
(a(b − β) − α + d)ξ

))
, (63)

v3(x, y, t) = −2

(
±

√
1

2
(a(b − β) − α + d)

× tanh

(
±

√
−1

2
(a(b − β) − α + d)ξ

))2

, (64)

q4(x, y, t) = ei(ax+by+dt)
[
∓1

2

√−(a(b − β) − α + d)

× tanh

(
±1

2

√
(a(b − β) − α + d)ξ

)
±

±1

2

√−(a(b − β) − α + d) ×

× coth

(
±1

2

√
(a(b − β) − α + d)ξ

)]
, (65)

v4(x, y, t) = −2

(
∓1

2

√−(a(b − β) − α + d)

× tanh

(
±1

2

√
(a(b − β) − α + d)ξ

)
±

±1

2

√−(a(b − β) − α + d) ×

× coth

(
±1

2

√
(a(b − β) − α + d)ξ

))2

, (66)

where ξ = x + y − (a + b − β)t .

Discussion on the traveling wave solutions
In this section, we analyze obtained traveling wave solutions (59)–(66). In Figs. 9, 10, 11 and
12, we present propagation of solutions (59)–(62) on the x − y plane at t = 0 and t = 3. As
we notice from 3D plots and density plots, the solutions q1, v1, q2, v2 give the bright solitons.
The evolution of the dark soliton solutions q3, v3 in 3D and density plot at t = 0 is displayed
in Figs. 13 and 14. It can be seen that the dark solitons and bright solitons keep their directions
invariant during the propagation on the x − y plane. Moreover, periodic type solutions q4, v4

at t = 0 and t = 3 are presented in Figs. 15 and 16. Analyzing the graphs of obtained
solutions, we notice that in case q1, v1, q2, v2 we can obtain bright solitons which are almost
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Fig. 9 Propagation of the solution q1 via (59) with the α = 1;β = 3

Fig. 10 Propagation of the solution v1 via (60) with the α = 1;β = 3

Fig. 11 Propagation of the solution q2 via (61) with the α = 1; β = 3

similar to the one-soliton solutions obtained by Hirota’s bilinear method in Sect. 3. But in
case q3, v3, q4, v4, dark solitons and periodic solutions can be derived. Thus, the extended
tanh method can yield various types of solutions compared to Hirota’s bilinear method.

The algorithms described in Sects. 3 and 4 can be applied to a wide class of nonlinear partial
differential equations. The main advantage of the extended tanh method is the possibility of
reducing the size of computational work in contrast to Hirota’s bilinear method. Moreover,
the extended tanh method can give a different type of solutions such as soliton, kink, periodic
solutions, peakon. However, for deriving multi-soliton solutions, Hirota’s bilinear method is
a very helpful tool compared to the extended tanh method. The disadvantages of Hirota’s
bilinear method are cumbersome calculation, and also sometimes, it is difficult to find a
bilinear form for nonlinear partial differential equations.
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Fig. 12 Propagation of the solution v2 via (62) with the α = 1;β = 3

Fig. 13 Propagation of the solution q3 via (63) with the α = 1; β = 3

Fig. 14 Propagation of the solution v3 via (64) with the α = 1;β = 3

Fig. 15 Propagation of the solution q4 via (65) with the α = 1;β = 3
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Fig. 16 Propagation of the solution v4 via (66) with the α = 1; β = 3

5 Conclusion

In this work, we presented the two-dimensional generalized nonlinear Schrödinger system of
equations with the Lax pair. The Lax pair plays an important role in the study of the integra-
bility of the differential system. By employing two methods, we have obtained the nonlinear
wave solutions for the two-dimensional generalized nonlinear Schrödinger equations. Soli-
ton solutions are derived by Hirota’s bilinear method. This method gives a mechanism for
finding arbitrary N-soliton solutions for PDEs which can be written in bilinear form in the
D-operator via a transformation of the dependent variable. We obtained the traveling wave
solutions using the extended tanh method that provides wider applicability for handling non-
linear wave equations. The figures are plotted to display the dynamical features of those
solutions. Moreover, the presented methods can be applied to obtain new solutions for other
nonlinear equations.
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