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Abstract This paper presents the stress and vibration analysis of advanced composites and
sandwich plates supported by elastic foundations. An inter-laminar transverse shear stress
continuous plate theory is used to model the deformation responses of the multilayered plates.
This plate theory is a refinement of the classical plate theory and utilizes a trigonometric
function to define the nonlinear behavior of the transverse shear strains across the thickness
of the plates. Additionally, unit step functions are assumed along with some auxiliary variables
to satisfy the piecewise continuity requirements of displacements. The deformation behavior
of the elastic foundations is modeled using a two-parameter foundation model known as the
Pasternak’s foundation. The equations of motion are derived using Hamilton’s principle for
the dynamic problem which can also be reduced to a static problem by ignoring the effects of
inertia. Two solution schemes are proposed: the Navier-based analytical method, and the finite
element method for the spatial solutions of the displacement variables. Further, the solutions in
time are obtained using Newmark’s time integration technique. Detailed parametric studies on
static, free vibration and forced-vibration analysis of laminated composite plates are carried
out to show the effects of the elastic foundations on the structural responses. It is concluded
from the results that both analytical and finite element solutions are capable of accurately
predicting the responses of composite plates supported by elastic foundations.

1 Introduction

With the rapid increase in the application of composite materials in the field of civil, aerospace,
mechanical and automobile industries, etc., the quest for different methods of studying the
structural responses of the composite structures has gained huge momentum. Structural anal-
ysis of advanced composite plates supported on an elastic foundation is an important area
explored in the literature [1, 2] to understand the complex soil–structure interaction behav-
ior. Analysis of structures like the raft and buttress foundations, swimming pools, storage
tanks and stockpiling tanks requires the analysis of plates resting on elastic foundations. The
responses of these structures under various loading conditions are dependent on the elastic
medium supporting the structures [3]. Therefore, it is important to understand the interaction
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between the soil and structures to enhance structural safety and to provide a reliable design.
Earlier studies on plates supported on an elastic foundation reveal that the one-parameter
Winkler’s model is extensively used to model the deformation behavior of elastic founda-
tions [4]. The Winkler model is a one-parameter model based on the ‘Winkler’s hypothesis,’
which states that the deflection at any point on a surface of the elastic soil is proportional
to the load being applied onto the surface and is independent of the load being applied on
any other points on the surface [5]. The shortcoming in this model is the discontinuity of
the adjacent displacements in the mutually independent springs. Further refinement in Win-
kler’s model is the Pasternak’s foundation model which takes into account the proportional
interaction between the pressure and deflection of any point on the surface of the elastic soil
and also accommodates the continuity of the adjacent displacements by considering shear
interactions among the points on the elastic soil [6].

Numerous mathematical models have been developed to date for modeling plate defor-
mations under various external loads, and some are reviewed in [7]. The first-order shear
deformation theory (FSDT) is adopted in [8] for studying the static responses of compos-
ite plates supported by elastic foundations. Mantari and Granados [9] studied the dynamic
responses of advanced composite plates resting on elastic foundations with an improved
FSDT model. The FSDT model is inadequate for modeling thick composites plate structures
due to assumption of linear variations of in-plane displacements across the thickness of the
plates. A third-order shear deformation theory (TSDT) proposed by Reddy [10] is adopted
in [11, 12] for deriving the structural responses of advanced composite plates on elastic
foundation with uncertain material properties. In contrary to the displacement variations in
FSDT, TSDT considers nonlinear variations of in-plane displacements across the thickness
of the plates. Akavci [13] presented analytically a comparison of various plate models like
the classical plate theory (CPT), FSDT and TSDT for the static analysis of multilayered
composite plates on elastic foundations. Shen et al. [14] extended the TSDT for investigating
the thermo-mechanical effects on advanced composite plates supported on elastic founda-
tions using a state-space approach. Additionally, the vibration and buckling responses of
composite plates on the elastic foundations are also derived by Shen et al. [15, 16]. In the
above-mentioned works [11–16], the higher-order terms in the kinematic expansions are
introduced with polynomial terms obtained from the Taylor Series. These plate models are
often referred to as the polynomial higher-order shear deformation theories (PHSDTs). Apart
from the PHSDTs, there are also non-polynomial higher-order theories (NHSDTs) presented
in [17, 18], where different non-polynomial functions are adopted in the kinematic expan-
sions to model the nonlinear bending profile of the plate structures. Such models have the
advantage in terms of computational costs due to less number of primary variables in the plate
model. Akavci [19] adopted an NHSDT with hyperbolic function for investigating the free
vibration and buckling responses of laminated composite plates on elastic foundation using
Navier’s method. Exponential and trigonometric NHSDTs are employed in [20] and [21, 22]
for investigating the static and vibration responses of advanced composite plates supported by
elastic foundations. Sobhy [23] compared the responses of advanced composite plates with
TSDT and various NHSTs with exponential, trigonometric and hyperbolic functions. The
plate models in [20–23] have five numbers of primary variables like the FSDT. Additionally,
four-variable plate models [24–26] are also developed in the literature to further reduce the
computational costs while preserving a fair level of accuracy. The plate models in [24, 25]
consider the in-plane displacements and transverse displacement to consist of bending and
shear components. The components of in-plane displacements are further expressed in terms
of linear and nonlinear functions of the derivatives of bending and shear components of trans-
verse deformation, thereby reducing the number of field variables. In addition, the number
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of field variables is also reduced from five to four by writing the shear rotations in the form
of integrations of a common primary variable in the expansions of in-plane displacements
[26]. Such models are also known as the four-variable integral plate model [26].

The transverse shear deformation becomes very important in multilayered laminated com-
posites as the elastic-to-shear modulus ratios are very large. Thus, significant shear deforma-
tions are noticed in thick composite plates. Additionally, the transverse normal deformation
also becomes prominent in problems involving two fields like thermoelastic effects on com-
posites. To deal with such problems, the variation of the transverse displacement across the
thickness of the plates is considered to be nonlinear, thereby accommodating the transverse
normal deformation along with shear deformations. These plate models are known to be the
quasi-3 D plate models in the literature. The quasi-3D models are utilized in [27, 28] for
the modeling the static and free vibration responses of advanced composite plates on elas-
tic foundations. Kant and Swaminathan [29] presented a comparative study on the bending
responses of laminated composite plates with various quasi-3D plate models and PHSDTs
with constant transverse deformation.

Based on the aforementioned literature survey, it is observed that most of the studies deal-
ing with the structural analysis of advanced composite plates resting on elastic foundations are
carried out with plate models in the framework of the equivalent single-layer (ESL) approach
[30]. The ESL approach is widely used in many problems of multilayered composite plates
as the approach is easy to implement computationally. Furthermore, the global responses
like displacements, fundamental frequencies and buckling loads of moderately thick and thin
systems can be obtained with a fair level of accuracy. However, the responses are not efficient
in thick laminated composite structures, mechanical properties are significantly different in
each layer, and when materials exhibit high shear deformation [31]. The lack of accuracy in
the aforesaid conditions is due to the use of global and smooth functions which have at least
C1 continuity associated with the higher-order terms in the kinematic expansions. This results
in a continuous transverse shear strain and discontinuous transverse shear stress field which
is exactly opposite to the real phenomenon, thereby limiting the ESL models for the analysis
of relatively thin systems. To overcome the drawbacks of the ESL models, layerwise (LW)
[32, 33] and zigzag (ZZ) [34, 35] models are often used to derive the structural responses
of laminated composite plates. In the LW approach, kinematic expansions are independently
assumed for each layer, and conditions are enforced to satisfy the continuity of displacements
and transverse stresses. The performance of the LW approaches is impressive in terms of the
solution accuracy but requires huge computational involvement as the number of primary
variables dramatically increases with the increase in the number of layers. Subsequently, the
problems faced in the LW models are tackled by Di Sciuva [34, 35], Bhaskar and Varadan
[36], Cho and Parmerter [37] and Chakrabarti and Sheikh [38], to name a few who have
proposed efficient representations of kinematic expansion by combining the ESL field with
local ZZ functions. The continuity conditions of displacements and transverse shear stresses
can be satisfied a priori in the above models as the combination of the ESL field with the ZZ
function results in a displacement model with slope discontinuity in the thickness direction
at the interfaces between adjacent layers of different material properties. In most of the ZZ
models, the displacement field is a combination of global first-order [34] and polynomial
based higher-order theories (PHSDTs) [35–38] and very limited works are available on ZZ
models with non-polynomial higher-order theories (NHSDTs). As mentioned earlier, the
non-polynomial HSDTs adopt a single non-polynomial function to implicitly accommodate
the higher-order functions present in PHSDTs, and the responses obtained with these models
are also impressive at the cost of less computational efforts [20, 21]. The efficiency of the
solutions can be further increased when the NHSDTs are used to model multilayered plate
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structures using the ZZ kinematics. Therefore, in this article, we combine the kinematics of
a trigonometric NHSDT with a local ZZ function. The local ZZ function is selected in such
a manner so that it is C0 continuous with discontinuous derivatives at the interfaces of the
plates. Such a kinematic representation creates discontinuous transverse shear strain and con-
tinuous transverse shear stress fields. According to the best of the author’s knowledge, such
a plate model has not been used in the literature to study the effect of the elastic foundations
on the deformation responses of laminated composite plates.

The objective of this research is to develop analytical and finite element (FE) solutions for
the static, free vibration and transient responses of multilayered composite plates supported by
elastic foundations in the framework of NHSDT with ZZ kinematics. The NHSDT adopted
in this research employs a secant function [39] as the shear strain function in the expan-
sions of the in-plane displacements. The trigonometric NHSDT is further supplemented with
some auxiliary variables which represents the changes in the slopes of the in-plane displace-
ments. The auxiliary variables are defined at the interfaces with Heaviside step functions.
The assumed kinematic model inherently satisfies the continuity of the displacements. The
inter-laminar continuity of transverse shear stresses is enforced by which the total number
of field variables reduces to the original number of field variables of the NHSDT. The elastic
foundations are modeled using a two-parameter Pasternak’s foundation model. Hamilton’s
principle is used to derive the governing equations, and Navier-based closed-form solutions
are obtained for diaphragm-supported boundary conditions. Navier’s solutions are restricted
to diaphragm-supported boundary conditions; however, the solutions are free from any numer-
ical error. Further, to model the responses of general laminated plates with general boundary
conditions, the finite element method (FEM) is also adopted in this research. An eight-noded
C0 serendipity element is used to discretize the physical domain. The spatial approximation in
FEM and the closed-form Navier’s solutions in the analytical approach reduce the partial dif-
ferential equations (PDEs) to ordinary differential equations (ODEs) in time. The responses
in the time domain are obtained using Newmark’s time integration scheme. Numerical exam-
ples are obtained using computer programs developed in MATLAB for both the analytical
and FE formulation. The efficiency and the range of application of the present analytical and
the FE model are established by comparing the results with standard elasticity solutions and
with various plate models in the literature.

2 Mathematical formulation

Consider a laminated composite plate supported on an elastic foundation as shown in Fig. 1.
The laminated plate consists of orthotropic layers stacked in the thickness direction (z). The
length, width and thickness of the plate are considered to be l, b and h, respectively. The
rectangular Cartesian coordinate system (x, y, z) is chosen, such that x � 0, l, and y � 0,
b define the boundaries of the plate, and z � 0 defines the mid-plane of the plate. The top
surface of the plate is subjected to a transverse mechanical pressure, q � q0 f 1 (t) f 2 (x, y),
where f 1 (t) and f 2 (x, y) are known mathematical variations of the pressure in the time and
spatial domain, respectively, and q0 is the magnitude of the applied mechanical pressure.
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Fig. 1 Schematic diagram of a multilayered laminated composite plate supported on elastic medium modeled
with the Pasternak’s foundation with spring stiffness (kw) and shear stiffness/Pasternak’s stiffness (ks)

2.1 Fundamental equations

2.1.1 Stress–strain constitutive model

The state of stress at any point in the plate is defined in terms of the state of strain at that point
with the stress–strain constitutive model. The material constitutive model of an orthotropic
system for the kth layer along the thickness (z) is written as
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(1)

where σ11, σ22, τ12, τ23 and τ13 are the stresses defined at any point in the kth layer and
ε11, ε22, γ12, γ23 and γ13 are the strains defined at that point. Q11, Q12, Q22, Q66, Q44 and
Q55 are the components of the reduced stiffness matrix for the kth layer derivable from the
plane-stress condition [40].
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2.1.2 Strain–displacement relations

The strains are defined in terms of the three displacements: U, V and W in the global x-, y-
and z-direction, respectively, with the following linear strain displacement relations.
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(2)

2.2 Plate model

This paper adopts a ZZ model, known as the trigonometric ZZ theory (TZZT) [39], which
is also a refinement of the classical plate theory (CPT). The refinement is made with a
trigonometric function, ‘z sec

( r z
h

)
’, which implicitly takes into account the higher-order

bending terms ‘z3, z5…’ of the polynomial HSDTs.

z sec
(r z

h

)
�
(

z + 0.5
( r

h

)2
z3 + 0.2083

( r

h

)4
z5 + 0.0847

( r

h

)6
z7 + · · · ∞

)

(3)

In the above equation, it is easily identified how a single non-polynomial function can
accommodate the odd powered terms of z, necessary for the refinement of the bending phe-
nomenon. In addition, some piecewise linear mathematical functions of z are also introduced
in the plate model to capture the slope discontinuity of the in-plane displacements (U, V ) at
the interfaces of the multilayered-plate. Such discontinuities are pronounced in thick mul-
tilayered laminated composite plates confirmed by the elasticity solutions [41]. The TZZT
model is defined as

(4)

where g(z) consists of the trigonometric function, ‘z sec
( r z

h

)
’. u0, v0, w0, βx and βy are the

primary variables defined at the mid-plane (z � 0), whereas αi
xu , α

j
xl , αi

yu and α
j
yl are the

auxiliary variables which represent the changes in slopes of the in-plane displacements at

123



Eur. Phys. J. Plus        (2021) 136:1186 Page 7 of 47  1186 

the interfaces of the ith and jth layers of the plates. nu and nl are defined as the number of
upper layers and lowers layers, respectively, with reference to the mid-plane. Implementing
the inter-laminar continuity conditions of the transverse shear stresses at all the interfaces,
the modified version of Eq. (4) is written as

(5a)
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(5b)

The kinematic description of the present plate model is presented in Fig. 2.

2.3 Foundation model

A two-parameter foundation model known as the Pasternak’s foundation model [21] is con-
sidered, which takes into account the proportional interaction between the pressure and
deflection of any point on the surface of the elastic soil, and also maintains the continuity of
the adjacent displacements by considering shear interactions among the points on the elastic
soil. The reaction–deflection relationship of the Pasternak’s model is written as

fEF � kwW − ks

(
∂2W

∂x2 +
∂2W

∂y2

)

(6)

where fEF is the reaction, kw is the modulus of the subgrade reaction or the stiffness coefficient
of the springs, and ks is the shear moduli of the subgrade or the shear stiffness coefficients
of the foundation (shear layer).

2.4 Analytical formulation

The strain–displacement relationships for the TZZT model are written as follows with the
help of Eqs. 2 and 5a.
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2
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(7a)

The strain parameters as shown in Eq. (7a) are further written in terms of the primary
variables that are defined at the mid-plane.
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Fig. 2 Deformation profile of a laminated composite plate according to the kinematics of trigonometric zigzag
theory (TZZT) accommodating constant, linear, nonlinear and piecewise linear deformation
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2.4.1 Governing equations of motion

Hamilton’s principle is used to derive the governing set of equations of the TZZT model. The
variation of the kinetic energy (K) and the total potential energy (�) of a plate, changing its
position between two time instants (t1, t2), is given by

∫ t1

t0
δ(� − K )dt � 0 (8)

� is further represented as the contributions from the total strain energy of the plate ‘UE’,
strain energy of the elastic foundation ‘UEF’ and the external work done by the applied
mechanical load ‘W ’. The variation in the potential energy function for the case of transverse
mechanical load is expressed as

δ� � δUE + δUEF − δW (9a)

The variations of the energies in Eq. (9a) are defined as
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ρ(k) is the density of the kth layer. Dot mark over the displacement parameters indicates the
time derivative. Substituting for the variations of the energies from Eqs. (9a, 9b) in Eq. (8),
performing integration by parts in both space (x, y) and time (t) to remove any form of
derivatives from the variations of the primary variables and also assuming that the variations
obtained in space and at time, t � t0 and t1 are zero gives the following equations of motion
and boundary conditions for the TZZT model.
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Equations of motion
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Boundary conditions
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)
� 0 or βy � 0

Boundaries parallel to x axis, i.e, y � 0 or b

Nxy � 0 or u0 � 0, Nyy � 0 or v0 � 0, Myy � 0 or
∂w0

∂y
� 0,

(
∂ Myy
∂y + 2 ∂ Mxy

∂x + ks
∂w0
∂y − I 1v̈0 + I 2

∂ẅ0
∂y − I 7β̈y

)
� 0 or w0 � 0,

(
	x Mxy + N∗

xy

)
� 0 or βx � 0,

(
	y Myy + M∗

yy

)
� 0 or βy � 0

At the corners

Mxy � 0 or w0 � 0 (10b)

Stress resultants in Eqs. (10a) and (10b) are the integration of the stresses along the
thickness defined over unit length of the mid-plane. These terms transform the 3 D form of
the equations to 2 D. For the TZZT model, stress resultants are defined as

〈

⎡

⎣
Nxx

Nyy

Nxy

⎤

⎦

⎡

⎣
N∗

xx
0
N∗

xy

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎣
Mxx

Myy

Mxy

⎤

⎦

⎡

⎣
0
M∗

yy
M∗

xy

⎤

⎦

〉

�
NL∑

k�1

〈

∫ zk+1

zk

⎛

⎜
⎝

⎡

⎣
σxx

σyy

τxy

⎤

⎦

k

dz

⎞

⎟
⎠

∑NL
k�1

∫ zk+1

zk

⎛

⎜
⎝p1

⎡

⎣
σxx

0
τxy

⎤

⎦

k

dz

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∫ zk+1

zk

⎛

⎜
⎝z

⎡

⎣
σxx

σyy

τxy

⎤

⎦

k

dz

⎞

⎟
⎠

∫ zk+1

zk

⎛

⎜
⎝p2

⎡

⎣

0
σ yy
τxy

⎤

⎦

k

dz

⎞

⎟
⎠

〉

〈[
Qxx

Qyy

]∣
∣
∣
∣

[
T ∗

xx
0

] ∣
∣
∣
∣

[
0
Tyy

] 〉

�
NL∑

k�1

〈∫ zk+1

zk

([
τxz

τyz

]k

dz

)∣
∣
∣
∣
∣

∫ zk+1

zk

(

q2

[
τxz

0

]k

dz

) ∣
∣
∣
∣
∣

∫ zk+1

zk

(

q1

[
0
τyz

]k

dz

)〉

(11)

NL is denoted as the number of layers in the thickness direction. Similarly, the density
of each layer of the laminated plate is integrated along the thickness denoted as the inertia
components in Eq. (10a). The inertia components are defined as

⎡

⎣
I 0 I 1 I 2

I 3 I 4 I 5

I 6 I 7 I 8

⎤

⎦ �
⎛

⎝
NL∑

k�1

∫ zk+1

zk

⎧
⎨

⎩
ρk

⎡

⎣
1 z z2

f (z) z f (z) f 2(z)
g(z) zg(z) g2(z)

⎤

⎦dz

⎫
⎬

⎭

⎞

⎠ (12)
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It is important to note that for the static and free vibration analysis, the inertia components
and the loading terms must be omitted, respectively, from Eq. 10a. For the forced-vibration
analysis, all the terms in Eq. 10a are required. The stress resultants can be further expressed
in terms of the strain parameters. Further, the stress resultants are expressed in terms of the
strains with the help of the constitutive model defined earlier in Eq. 1.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧
⎪⎪⎨

⎪⎪⎩

Nxx

Nyy

Nxy

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

Mxx

Myy

Mxy

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

N∗
xx

0

N∗
xy

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

0

M∗
yy

M∗
xy

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[A](3×3) [B](3×3) [C](3×3)

[B](3×3) [G](3×3) [H ](3×3)

[C](3×3)

[D](3×3)

[H ](3×3)

[I ](3×3)

[L](3×3)

[M](3×3)

[D](3×3)

[I ](3×3)

[M](3×3)

[P](3×3)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧
⎪⎪⎨

⎪⎪⎩

ε0
x

ε0
y

γ 0
xy

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

ε1
x

ε1
y

γ 1
xy

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

ε2
x

0

γ 2
xy

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

0

ε3
y

γ 3
xy

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13a)

⎧
⎨

⎩

Qyy

Qxx

⎫
⎬

⎭
⎧
⎨

⎩

Tyy

0

⎫
⎬

⎭
⎧
⎨

⎩

0

T ∗
xx

⎫
⎬

⎭

�

⎡

⎢
⎢
⎣

[AA](2×2) [E E](2×2) [F F](2×2)

[E E](2×2) [SS](2×2) [T T ](2×2)

[F F](2×2) [T T ](2×2) [UU ](2×2)

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧
⎨

⎩

γ 0
yz

γ 0
xz

⎫
⎬

⎭
⎧
⎨

⎩

γ 1
yz

0

⎫
⎬

⎭
⎧
⎨

⎩

0

γ 2
xz

⎫
⎬

⎭

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13b)

The individual sub-matrices in Eqs. (13a, 13b) are defined in “Appendix 1.” The governing
equations of motion in Eq. (10a) are further written in terms of the primary variables with
the help of Eqs. (13a, 13b). The resulting partial differential equations (PDEs) are given in
“Appendix 2.”

2.4.2 Analytical solution technique

To derive the exact closed-form solutions of the present model, Navier’s solution method
is adopted with diaphragm-supported boundary condition on all four boundaries. Boundary
condition for the diaphragm-supported conditions is obtained from Eq. (10b)

At edges x � 0 and x � l

v0 � 0; w0 � 0; βy � 0; Nxx � 0; Mxx � 0;
(
	x Mxx + N∗

xx

) � 0

At edges y � 0 and x � b

u0 � 0; w0 � 0; βx � 0; Nyy � 0; Myy � 0;
(
	y Myy + M∗

yy

)
� 0

(14)
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The primary variables are assumed in the form of double trigonometric series solutions
by satisfying the above boundary conditions.

u0 �
∞∑

m�1,...

∞∑

n�1,...

u0mn cos
(mπx

l

)
sin
(nπy

b

)

v0 �
∞∑

m�1,...

∞∑

n�1,...

v0mn sin
(mπx

l

)
cos
(nπy

b

)

w0 �
∞∑

m�1,...

∞∑

n�1,...

w0mn sin
(mπx

l

)
sin
(nπy

b

)

βx �
∞∑

m�1,...

∞∑

n�1,...

βxmn
cos
(mπx

l

)
sin
(nπy

b

)

βy �
∞∑

m�1,...

∞∑

n�1,...

β ymn
sin
(mπx

l

)
cos
(nπy

b

)

(15a)

In the static analysis, the coefficients in Eq. (15) are constant in time and written as

u0mn � u0mn ; v0mn � v0mn ; w0mn � w0mn ; βxmn
� βxmn ; β ymn

� βymn (15b)

For free vibration problem, periodic solutions are assumed in time. The coefficients are
modified as

u0mn � u0mn eiωt ; v0mn � v0mn eiωt ; w0mn � w0mn eiωt ; βxmn
� βxmn eiωt ; β ymn

� βymn eiωt

(15c)

For forced-vibration analysis, the coefficients are unknown in the time domain.

u0mn � u0mn (t); v0mn � v0mn (t); w0mn � w0mn (t); βxmn
� βxmn (t); β ymn

� βymn (t)
(15d)

The coefficients in Eq. (15d) are obtained by solving a system of ordinary differential
equations (ODEs) in time. The loading is also assumed in the form of double trigonometric
series. The assumed trigonometric series along with proper Fourier coefficients can represent
different variations of load in the spatial domain. The loading is represented as

q �
∞∑

m�1...

∞∑

n�1...

qmnq(t) sin
(mπx

l

)
sin
(nπy

b

)
(16)

q(t) can be any variation of the load in the time domain. qmn is equal to q0 for SSL and(
16q0/π

2mn
)

for UDL, where q0 is the amplitude of the applied load. The solutions assumed
in Eq. (15a) along with the modified coefficients in Eqs. (15b, 15c and 15d) depending on
the type of analysis are substituted in the PDEs in “Appendix 2,” to get the final governing
equations. The final governing equation in the case of static analysis is a system of algebraic
equations, system of homogenous algebraic equations in the free vibration problem and
system of ODEs in the forced-vibration problem. The final equations are written as.

Static analysis
[
K
]

(5×5)
{�}(5×1) � {F

}

(5×1)
(17a)
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Free vibration analysis
([

K
]

(5×5)
− ω2[M

]

(5×5)

)
{�} � {0}(5×1) (17b)

Forced-vibration analysis
[
M
]

(5∗5)

{
�̈
}

(5×1)
+
[
K
]

(5×5)
{�}(5×1) � {F

}

(5×1)
(17c)

[
M
]
,
[
K
]

and
{

F
}

denote the mass matrix, stiffness matrix and the time-dependent exter-
nal force vector.

{
�̈
}

and {�} are the acceleration and displacement vectors containing
the unknown coefficients. Equation (17a) is solved for the unknown coefficients defined in
Eq. (15b). Equation (17b) is solved as an eigenvalue problem to obtain the fundamental
frequency ‘ω’ and the corresponding mode shapes given by the coefficients in Eq. (15c).
Equation (17c) is further integrated in time using the Newmark’s constant average accel-
eration method to derive the solutions in time for the coefficients defined in Eq. (15d). A
generalized analytical code is written in MATLAB software for deriving the various results
reported in this work.

2.5 Finite element (FE) formulation

2.5.1 Modified displacement field and continuity requirements

The FE formulation of the TZZT model requires C1-continuity of transverse displacements
due to the presence of first-order and second-order derivatives of the transverse displacement
(w0) in the displacement field [Eq. (5a)] and strain–displacement relations [Eq. (7a)]. The C1-
continuous FE formulations are computationally difficult; therefore, the first-order derivatives
are reduced to new degrees of freedom which requires only C0 continuity.

Assuming ∂w0
∂x � θx and ∂w0

∂y � θy , the modified displacement field of TZZT is written as

U (x, y, z, t) � u0(x, y, t) − zθx (x, y, t) + f (z)βx (x, y, t)

V (x, y, z, t) � v0(x, y, t) − zθy(x, y, t) + g(z)βy(x, y, t)

W (x, y, z, t) � w0(x, y, t) (18)

The new degrees of freedom ‘θx and θy’ impose artificial constraints, and in order to
retain the original kinematics of the TZZT model [Eq. (5a)], we need to satisfy the following
constraint equations that got generated while reducing the continuity requirements from C1

to C0.
(

∂w0

∂x
− θx

)

� 0,

(
∂w0

∂y
− θy

)

� 0 (19)

The above problem is identified as a multipoint constrain problem in which there are
relationships among two or more degrees of freedom, i.e., ∂w0

∂x � θx and ∂w0
∂y � θy . To enforce

the constraint equations in Eq. (19), penalty approach [42, 44] is used in this research.

2.5.2 Element selection

Present study adopts an eight-noded isoparametric serendipity element for the FE formula-
tion. The field variables and the element geometry can be expressed as

〈x |y〉 �
NN∑

i�1

〈Ni xi |Ni yi 〉 (20a)
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(a)

(b) (c)

6

1 2 3

4

57

8

Fig. 3 a Eight-noded isoparametric element used in the present FE formulation to discretize the domain of
the plate (l ×b). b Discretization of the plate domain in the FE formulation with eight-noded isoparametric
elements. c Global number of the finite elements followed in the FE formulation

〈
u0|v0|w0|βx |βy |θx |θy

〉 �
NN∑

i�1

〈
Ni u0i |Niv0i | Niw0i | Niβxi | Niβyi

∣
∣Niθxi |Niθyi

〉
(20b)

The interpolation functions in Eqs. (20a, 20b) are given by

Ni � 1

4
(1 + ξξi )(1 + ηηi )(ξξi + ηηi − 1) for i � 1, 3, 5, 7

Ni � 1

2

(
1 − ξ2)(ηηi + 1) for i � 2, 6

Ni � 1

2

(
1 − η2)(ξξi + 1) for i � 4, 8

(21)

NN is denoted as the number of nodes of an element. The local order of numbering
the nodes for an eight-noded element is illustrated in Fig. 3a. Figure 3b and c shows how
the physical domain is discretized using the eight-noded elements, and the global-order of
element numbering followed in this work.
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2.5.3 Strain–displacement relations for an element

The strain vector, ‘{ε}’ is expressed in terms of the generalized strains given by

{ε}(5×1) � [H ](5×14){ε}(14×1) (22a)

where {ε} � {
εxx εyy γxy γyz γxz

}T and {ε} � { ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13 ε14
}T.

The generalized strain vector is further written in terms of the nodal coordinates.

{ε}(14×1) � [B](14×56)

{
q(e)
}

(56×1)
(22b)

where
{
q(e)
} �

{{
d(e)

1

} {
d(e)

2

} {
d(e)

3

} {
d(e)

4

} {
d(e)

5

} {
d(e)

6

} {
d(e)

7

} {
d(e)

8

} }T

{
d(e)

i

}
�
{

u(e)
0 i v

(e)
0 i w

(e)
0 i β

(e)
x i β

(e)
y i θ

(e)
x i θ

(e)
y i

}T

The details of [H ], [B] and the components of {ε} are given in “Appendix 3.”

2.5.4 Governing equations of motion

Governing equations of motion for an element ‘e’ are derived by substituting the variation
in the potential energy and the kinetic energy in Hamilton’s principle defined in Eq. (8). The

variation in the strain energy of the plate ‘δUE (e)
’ is obtained by substituting Eqs. (22a and

22b) in the strain energy expression given in Eq. (9b), and also making use of the constitutive
model in Eq. (1).

δU E (e) �
{
δq(e)

}T
(∫ l(e)

0

∫ b(e)

0

(
[B]t [D

]
[B]
)
dx (e)dy(e)

)
{

q(e)
}

�
{
δq(e)

}T[
K (e)

]{
q(e)
}

(23)

where
[
D
] � ∫

h
2

− h
2

(
[H ]T

[
Q
](k)

[H ]
)

dz �∑N L
k�1

(∫ zk+1

zk

(
[H ]T [Q](k)[H ]

)
dz
)

[
K (e)

]
is the stiffness matrix of the eth element on the domain of the plate. The variation

in the strain energy of the elastic foundation ‘δUEF’ is expressed as

δU EF(e) �
∫ l(e)

0

∫ b(e)

0

⎛

⎝
{

δw0
∂δw0
∂x

∂δw0
∂y

}
⎡

⎣
kw 0 0
0 ks 0
0 0 ks

⎤

⎦

⎧
⎨

⎩

w0
∂w0
∂x
∂w0
∂y

⎫
⎬

⎭

⎞

⎠dx (e)dy(e)

�
∫ l(e)

0

∫ b(e)

0

({δWEF}T[KEF]{WEF})dx (e)dy(e) (24a)

The elements of the vector ‘{WEF}’ in the above equation can be expressed in the following
manner

{WEF} � [BEF]
{

q(e)
}

(24b)
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The elements of the matrix ‘[BEF]’ for the ith node are given by

[BEFi ] �
⎡

⎣
0 0 Ni

0 0 ∂ Ni/∂x
0 0 ∂ Ni/∂y

0 0 0
0 0 0
0 0 0

0
0
0

⎤

⎦ (24c)

The variation in the strain energy of the elastic foundation can be finally obtained by
substituting Eqs. (24b and 24c) in Eq. (24a).

δU EF �
{
δq(e)

}T
(∫ l(e)

0

∫ b(e)

0

(
[BEF]T[KEF][BEF]

)
dx (e)dy(e)

)
{

q(e)
}

�
{
δq(e)

}T[
K (F)(e)

]{
q(e)
}

(25)

The variation in the kinetic energy for the eth element can be written as

δK (e) �
{
δq̇(e)

}T
(∫ l(e)

0

∫ b(e)

0

([
N
]T

[I ]
[
N
])

dx (e)dy(e)

)
{
q̇e} �

{
δq̇(e)

}T[
M (e)

]{
q̇e}

(26)

where

[I ] �
∫ h

2

− h
2

(
[Z ]tρ(k)[Z ]

)
dz �

∑NL

k�1

∫ zk+

zk

(
[Z ]tρ(k)[Z ]

)
dz

[Z ] �
⎡

⎣
1 0 0
0 1 0
0 0 1

f (z) 0 −z
0 g(z) 0
0 0 0

0
−z
0

⎤

⎦

The elements of the matrix ‘
[
N
]
’ for the ith node are given below

[
Ni
] �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ni 0 0 0 0 0 0
0 Ni 0 0 0 0 0
0 0 Ni 0 0 0 0
0 0 0 Ni 0 0 0
0 0 0 0 Ni 0 0
0 0 0 0 0 Ni 0
0 0 0 0 0 0 Ni

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)

The variation in the work potential ‘δWe’ is written as follows:

δW
(e) �

{
δq(e)

}T
∫ l(e)

0

∫ b(e)

0

([
N
]T{ fs}

)
dx (e)dy(e) �

{
δq(e)

}T{
F (e)

M

}
(28)

where { fs} �{ 0 0 q 0 0 0 0
}T

A penalty function ‘U (e)
pe ’ is generated due to the constraint equations in Eq. (19), and it

is added to the total potential energy ‘δ�(e)’ of an element in order to impose the constraint
equations using penalty approach. U (e)

pe is expressed in terms of a penalty term ‘γ ’ and the
constraint equations in the following manner

U (e)
pe � γ

2

∫ l(e)

0

∫ b(e)

0

{(
∂w0

∂x
− θx

)T(
∂w0

∂x
− θx

)

+

(
∂w0

∂y
− θy

)T(
∂w0

∂y
− θy

)}

dx (e)dy(e)

(29)

The terms inside the above equation is further written in terms of the nodal coordinates.
(

∂w0

∂x
− θx

)

� {Px }
{

q(e)
}

;

(
∂w0

∂y
− θ2

)

� {Py}
{

q(e)
}

(30)
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The elements of the vectors ‘{Px }’ and ‘
{
Py
}
’ for the ith node are written as

{Pxi } � { 0 0 ∂ Ni
∂x 0 0 −Ni 0

}
;

{P2i } �
{

0 0
∂ N j
∂y 0 0 0 −Ni

} (31)

Substituting Eqs. (30) in (29), the discretized equation of the penalty function is obtained
as

U (e)
pe � γ

2

∫ l(e)

0

∫ b(e)

0

{{
qe}T{Px }T{Px }

{
qe} +

{
qe}T{

Py
}T{

Py
}{

qe}
}

dx (e)dy(e) (32)

The corresponding variation of the penalty function can be written as follows:

δU (e)
pe � {δqe}T

(

γ

∫ l(e)

0

∫ b(e)

0

{
{Px }T{Px } +

{
Py
}T{

Py
}}

dx (e)dy(e)

)
{
qe}

� {δqe}T
[

K (e)
pe

]{
qe} (33)

It is important to note that when γ � 0, the constraints equations are not satisfied, i.e.,
∂w0
∂x �� θx and ∂w0

∂y �� θy . As the value of γ increases, the nodal displacement vector ‘{qe}’
changes in such a way that the constraint equations are more nearly satisfied. The value of
γ is considered to be 106 [43]. Finally, the variation in the total potential energy ‘δ�(e)’ for
an element can now be written as

δ�(e) � δU E(e) + δU EF + δU (e)
pe − δW

(e)
(34)

Substituting the variations in the total potential energy and kinetic energy of an element
from Eqs. (34), and (26), respectively, in Hamilton’s principle in Eq. (8), we get the following
integral equation in time.

∫ t1

t0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

{
δq(e)

}T
[

K (F)
(e)
]
{
q(e)
}

+
{
δq(e)

}T
[

K (F)(e)
]{

q(e)
}

−{δq(e)
}T
{

F (e)
M

}
+ {δqe}T

[
K (e)

pe

]
{qe}

−{δq̇(e)
}T[

M (e)
]{q̇e}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

dt � 0 (35)

Solving the above equation and noting that the variations obtained at time, t � t0 and t1
is zero give the governing equation of motion for an element.

[
M (e)

]{
q̈(e)
}

+
([

K (e)
]

+
[

K (F)(e)
]

+
[

K (e)
pe

]){
q(e)
}

� {FM } (36)

[
K (e)

]
and

[
K (F)(e)

]
are the elemental stiffness matrices of the laminated composite plate

and elastic foundation, whereas
[
Kpe

(e)
]

is the elemental stiffness matrix due to the artificial
constraints.

[
M (e)

]
is defined as the elemental mass matrix. The integrations of the mass

and stiffness matrices are carried out numerically using the Gauss-quadrature method. A
selective integration scheme is used for a thin plate based on (3×3) and (2×2) gauss points,
whereas full integration scheme is used for a thick plate based on (3×3) gauss points. This
approach helps in eradicating any possible numerical disturbances like the shear locking
phenomenon for a thin plate system. To obtain the governing equations for the entire system,
the FE assembling of the matrices and the vectors are required to be carried out. The final
discretized governing equations for the forced-vibration analysis of composite plates are
written as follows:
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Forced-vibration analysis
[
M
]{q̈} +

([
K
]

+
[

K
(F)
]

+
[

K
(pe)
])

{q} � {F M
}

(37)

where
[
M
]�∑NE

e�1

[
M (e)

]
,
[
K
]�∑NE

e�1

[
K (e)

]
,
[
K

(F)
]
�∑NE

e�1

[
K (F)(e)

]
,
[
K

(pe)
]
�∑NE

e�1
[
Kpe

(e)
]
,
{
FM
} �∑NE

e�1{FM }
The governing set of equations for the static and free vibration analysis can be obtained

by neglecting the inertial terms and the load vector, respectively, from Eq. (37)
Static analysis

([
K
]

+
[

K
(F)
]

+
[

K
(pe)
])

{q} � {F M
}

(38)

Free vibration analysis
[
M
]{q̈} +

([
K
]

+
[

K
(F)
]

+
[

K
(pe)
])

{q} � {0} (39)

The following boundary conditions are used to evaluate the results from the FE formula-
tion.

Diaphragm-support (SSSS)
uo � wo � βx � θx � 0 at y � 0, b and vo � wo � βy � θy � 0 at x � 0, l
Clamped-support (CCCC)
uo � wo � βx � θx � vo � βy � θy � 0 at x � 0, l and y � 0, b
Clamped-diaphragm support (CSCS)
uo � wo � βx � θx � 0 at y � 0, b and uo � wo � βx � θx � vo � βy � θy � 0 at x �

0, l
Equation (37) is further solved using the Newmark’s constant average acceleration method.

A generalized FE code is written in MATLAB software for the static, free vibration and
forced-vibration analysis for producing the various results reported in this paper.

3 Results and discussion

In this section, the numerical results are obtained using the analytical and FE formulations
derived in the preceding section. The non-dimensional parameters and material properties
used to evaluate the numerical results are presented below.

3.1 Non-dimensional parameters

ND1: U � E22
qmn S3h

U ; W � 100E22
qmn S4h

wo; σ̃xx = σxx
qmn S2 ; K w � K 1 � kwl4

E2h3 ; K s � K 2 � ksl2

E2h3

ND2: U 3 � 0.999781
hq U3

( l
2 , b

2 , 0
)
; σ̃ 1

xx = 1
q σ 1

xx

( l
2 , b

2 ,− h
2

)
; K w � K 1 � kwl4

E2h3 ; K s � K 2 �
ksl2

E2h3

ND3: ω � l2

h

√(
ρ

E22

)
ω; K w � K 1 � kwl4

E2h3 ; K s � K 2 � ksl2

E2h3

Material properties

MM1 [45]
E11/E22� 25; G12� G13� 0.5 E22;G23=0.2 E22; ϑ12=0.25.
MM2 [39]
Material properties of the core
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Table 1 Convergence and validation of transverse deflection of laminated composite plate (0/90/90/0) resting
on elastic foundation subjected to SSL (material properties: MM1; non-dimensional parameters: ND1)

l/h References (W )

Foundation stiffness

K w � 0, K s � 0 K w � 100, K s � 0 K w � 100, K s � 10

10 Present analytical 0.7360 0.4240 0.2308

Present FEM (4×4) 0.7352 0.4226 0.2295

Present FEM (6×6) 0.7362 0.4238 0.2306

Present FEM (8×8) 0.7363 0.4240 0.2308

Present FEM (10×10) 0.7363 0.4241 0.2308

Pagano [41] 0.7430 – –

Setoodeh and Azizi [45]a 0.4312 0.2687 0.1541

Setoodeh and Azizi [45]b 0.6049 0.3769 0.2161

20 Present analytical 0.5129 0.3390 0.2031

Present FEM (4×4) 0.5131 0.3390 0.2029

Present FEM (6×6) 0.5130 0.3391 0.2031

Present FEM (8×8) 0.5130 0.3391 0.2031

Present FEM (10×10) 0.5130 0.3391 0.2031

Pagano [41] 0.5170 – –

Setoodeh and Azizi [45]a 0.4312 0.2924 0.1788

Setoodeh and Azizi [45]b 0.4747 0.3219 0.1968

100 Present analytical 0.4346 0.3029 0.1896

Present FEM (4×4) 0.4341 0.3030 0.1897

Present FEM (6×6) 0.4346 0.3030 0.1896

Present FEM (8×8) 0.4346 0.3030 0.1896

Present FEM (10×10) 0.4346 0.3030 0.1896

Pagano [41] 0.4390 – –

Setoodeh and Azizi [45]a 0.4312 0.3009 0.1885

Setoodeh and Azizi [45]b 0.4330 0.3021 0.1893

aCPT classical plate theory, bRFSDT refined first-order shear deformation theory

[Q]core �

⎡

⎢
⎢
⎢
⎢
⎣

0.999781 0.231192 0 0 0
0.231192 0.524886 0 0 0
0 0 0.262931 0 0
0 0 0 0.26681 0
0 0 0 0 0.1559914

⎤

⎥
⎥
⎥
⎥
⎦

;

[Q]face - sheets � R[Q]core

MM3 [19]
E11/E22� 40; G12� G13� 0.5 E22;G23=0.2 E22; ϑ12=0.25.
MM4 [46]
E11/E22� variable, E22 � 2.1×106 N/cm2, G12� G13=G23=0.5 E22, ϑ12=0.25, ρ � 8×
10–6 Nsec2/cm4.

123



 1186 Page 20 of 47 Eur. Phys. J. Plus        (2021) 136:1186 

Fig. 4 Finite element convergence of the results of in-plane normal stresses
(
σ̃xx , σ̃yy

)
and in-plane shear

stress
(
τ xy
)

of a laminated composite plate resting on elastic foundation under the action of SSL a σ̃xx(
l
2 , b

2 , h
2

)
; b σ̃yy

(
l
2 , b

2 , h
4

)
; c τ xy

(
0, 0, h

2

)
(material properties: MM1, non-dimensional parameter: ND1)

MM5 [47]
E11 � 172.369 GPa, G12=G13=3.448 GPa, E22 � 6.895 GPa, G23=1.379 GPa, ϑ12=0.25,
ρ� 1603.03 kg/m3.

3.2 Static analysis of multilayered laminated composites and sandwich plates supported
on elastic foundation

The first example in this section considers a four-layered (0/90/90/0) laminated composite
plate with diaphragm support at all the edges. The mechanical pressure is assumed to be
sinusoidal in the spatial domain (x, y). The material properties of each orthotropic layer are
corresponding to the values listed in MM1. The normalized maximum transverse deflections
of the plate under the given mechanical load are listed in Table 1 for various span-thickness
ratios and foundation stiffness. The exact results of this problem without considering the
effects of the foundation are available in [41]. The results of Setoodeh and Azizi [45] are also
listed in the table for comparison. The present FE results are observed to get converged at the
mesh size of 8×8 in the table. An excellent agreement of the present analytical and FE results
with the solutions in [41] is observed in the table. The deflection of the plate decreases by
42.39% when only Winker stiffness (K w=100, K s=0) is considered, and 68.64% when both
the Winkler and shear stiffness of the foundations (K w=100, K s=10) are considered. The
results of Setoodeh and Azizi [45] using CPT and refined first-order shear deformation theory
(RFSDT) are observed to underestimate the magnitudes of the transverse displacement for a

123



Eur. Phys. J. Plus        (2021) 136:1186 Page 21 of 47  1186 

Fig. 5 Variation of σ̃xx

(
x, b

2 , h
2

)
along the length of a thick composite plate with Winkler (Kw � K1) and

shear stiffness (Ks � K2) of the foundation (material properties: MM1, non-dimensional parameter: ND1)

Fig. 6 Variation of σ̃yy

(
l
2 , y, h

4

)
along the width of a thick composite plate with Winkler (Kw � K1) and

shear stiffness (Ks � K2) of the foundation (material properties: MM1, non-dimensional parameter: ND1)

thick plate (S � 10). As the plate becomes thin, the present results and the results of [45] do
not have large differences. Figure 4a, b and c shows the convergence of the FE solutions of the
maximum in-plane normal stresses

(
σ̃xx , σ̃yy

)
and in-plane shear stress

(
τ xy
)
, respectively,

for a thick plate, S � 10. An excellent convergence of the results is observed in the figures.
Further, the variation of σ̃xx

(
x, b

2 , h
2

)
, and σ̃yy

( l
2 , y, h

4

)
along the length and width of the

same plate is shown in Figs. 5 and 6, respectively, for various magnitudes of the foundation
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Fig. 7 Variation of τ xy

(
0, x, h

2

)
along the length of a thick composite plate with Winkler (Kw � K1) and

shear stiffness (Ks � K2) of the foundation (material properties: MM1, non-dimensional parameter: ND1)

Fig. 8 The across variation of in-plane normal stress, σ̃xx

(
l
2 , b

2 , z
)

for a thick composite plate with Winkler

(Kw � K1) and shear stiffness (Ks � K2) of the foundation (material properties: MM1, non-dimensional
parameter: ND1)

stiffness. The in-plane stresses, σ̃xx and σ̃yy are observed to be maximum at the center of the
plate and zero at both ends. The decrement in the magnitude of the stresses is observed in the
figures due to the foundation stiffness. The variation of the in-plane shear stress, τ xy

(
x, 0, h

2

)

is presented in Fig. 7. The in-plane shear stress is observed to be maximum at the corner (0, 0,
h
2 ) and minimum at the center (l/2, 0, h

2 ) of the boundary line. The across variations of the in-
plane normal stress, σ̃xx

( l
2 , b

2 , z
)

are shown in Fig. 8. The maximum value of σ̃xx is attained at
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(a) (K1=0; K2=0) (b) (K1=100; K2=0) (c) (K1=100; K2=10)

(d) (K1=0; K2=0) (e) (K1=100; K2=0) (f) (K1=100; K2=10)

Fig. 9 In-plane variation of transverse displacement, W
(

l
2 , b

2 , 0
)

for a thick composite plate with various

boundary conditions a CCCC, K1 � 0; K2 � 0. b CCCC, K1 � 100; K2 � 0. c CCCC, K1 � 100; K2 � 10.
d CSCS, K1 � 0; K2 � 0. e CSCS, K1 � 100; K2 � 0. f CSCS, K1 � 100; K2 � 10 (material properties:
MM1, non-dimensional parameter: ND1)

both the extreme surfaces (z �± h/2) of the plate, and the values decrease when the foundation
stiffness is taken into consideration. In the examples discussed above, the structural responses
of the deflection and stresses are more affected due to the combined Winkler and shear
stiffness (Pasternak’s stiffness) of the foundations. The inclusion of the shear stiffness (K s�
K2) creates a continuity of the transverse displacement among the points surrounded by the
loaded region, resulting in more resistance against deformation compared to the Winkler’s
stiffness alone. Therefore, the deflection and stresses are observed to decrease more due to
the combined Winkler and shear stiffness of the foundations. The in-plane variation of the
normalized transverse displacement of the same composite plate with different boundary
conditions, clamped–clamped (CCCC) and clamped-diaphragm support (CSCS) is shown
in Fig. 9a–f for various values of Kw and Ks. The results are presented based on Winkler’s
model and Pasternak’s model. The decrement in the magnitude of transverse displacement
is observed to be much more in the case of fully clamped (CCCC) condition than in the
clamped-diaphragm-support (CSCS) condition. In the case of the fully clamped condition,
the stiffness of the plate is much more due to the complete translational and rotational
restraints from the boundaries; thus, the magnitude of the deflection is lower compared to
the CSCS condition. Further, the variation of the transverse displacement with the Winkler
and shear stiffness of the foundation is shown in Fig. 10a–c for simply support (SSSS),
CCCC and CSCS conditions. It is observed in the figures that the plate experiences minimum
deflection when both the stiffness of the foundation is at its maximum value and maximum
deflection when both the stiffness of the foundation is minimum. It is also observed in the
figures that the plate experiences less defection due to the shear stiffness alone compared
to Winkler stiffness. Next, a three-layered (0/90/0) laminated composite plate is considered
with diaphragm-supported boundary condition at all the edges subjected to uniform variation
of mechanical load. The elastic properties listed in MM1 are used in this problem. The
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Fig. 10 Variation of the transverse displacement, W
(

l
2 , b

2 , 0
)

with Winkler kw � K1 and shear stiffness (ks

� K2) of the foundation for a thick composite plate with various boundary conditions. a Diaphragm-support
(SSSS). b Clamped support (CCCC). c Clamped-Diaphragm support (CSCS) (material properties: MM1,
non-dimensional parameter: ND1)

results of the normalized maximum transverse deflection are presented in Table 2. Reddy
[10], and Sheikh and Chakrabrati [48] have previously reported the results of this problem
without considering the effects of the elastic foundations. The present results are in excellent
agreement with the solutions in [10, 48] for thin and moderately thick plates. As the plate
becomes thick, the slope discontinuities of the in-plane displacement components become
prominent at the interfaces, and as a result, some differences in the present solutions and the
solutions from the ESL-based models in [10, 48] are observed. In order to check the slope
discontinuities, the through-thickness variation of the in-plane displacement ‘U ’ is shown in
Fig. 11a and b. It is observed in Fig. 11a that no prominent discontinuities of U are visible for
a thin plate, S � 100. However, as the plate becomes thick, the slope discontinuities begin to
develop at the interfaces of the plates. The decrement in the magnitude of U is also visible in
Fig. 11b when Winkler stiffness of the foundation is considered. Next, a three-layered soft-
core sandwich plate (0/C/0) resting on elastic foundations is considered for investigating the
static responses. The material properties of the core layer are listed in MM2. The material
properties of the face-sheets are obtained by multiplying the properties of the core with a
constant ‘R’. The results of the normalized deflection (W ) and in-plane stress (σ̃xx ) for a thick
plate (S � 10) are given in Table 3 for various values of R, and the FE convergence of the
transverse deflection (W ) and in-plane stress (σ̃xx ) are shown in Fig. 12a and b, respectively,
for R � 5. An excellent convergence of the present FE results is observed in the figure. In the
table, the exact solutions [49] and solutions obtained using various plate models [50, 51] in
the framework of LW approach are collected in the table. The present results are in excellent
agreement with the exact solutions [49] and with the results of Ferreira [50] and Roque et al.
[51]. In the results of σ̃xx , the magnitude decreases by 68.17% due to the Winkler stiffness
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Table 2 Transverse deflection of laminated composite plate (0/90/0) resting on elastic foundation subjected
to UDL (material properties: MM1; non-dimensional parameters: ND1)

l/h References (W )

Foundation stiffness

K w� 0, K s� 0 K w� 100, K s� 0 K w� 100, K s� 10

10 Present analytical 1.1587 0.6383 0.3434

Present FEM 1.1586 0.6377 0.3431

Reddy [10] 1.0900 – –

Sheikh and Chakrabarti [48] 1.0910 – –

20 Present analytical 0.7963 0.5135 0.3055

Present FEM 0.7962 0.5134 0.3055

Reddy [10] 0.7760 – –

Sheikh and Chakrabarti [48] 0.7763 – –

50 Present analytical 0.6873 0.4670 0.2896

Present FEM 0.6872 0.4669 0.2895

Reddy [10] 0.6838 – –

Sheikh and Chakrabarti [48] 0.6841 – –

100 Present analytical 0.6714 0.4598 0.2870

Present FEM 0.6714 0.4598 0.2870

Reddy [10] 0.6705 – –

Sheikh and Chakrabarti [48] 0.6708 – –

and 86.12% when both Winkler and shear stiffness are considered for R � 5. When the
difference in the material properties of the face-sheets and the core is very high (R � 100),
the decrement in the magnitude of normal stress is calculated to be 29.39% and 52.56% due
to Winkler and the combined Winkler-shear stiffness of the foundation, respectively.

3.3 Free vibration responses of laminated composites and sandwich plates supported
on elastic foundation

A three-layered laminated composite (0/90/0) plate resting on elastic foundations with
diaphragm support at all the edges is chosen to study the dynamic behavior. The material
properties of the orthotropic layers are listed in MM3. A comparative study for determining
the accuracy of the present analytical and FE model is presented in Table 4 by evaluating the
fundamental natural frequencies of the plate for various span–thickness ratios and Young’s
modulus ratio (MR), E11/E22� 40. The present results are compared with the solutions of
different higher-order shear deformation models of Akavci [14] and Shen et al. [13]. The
results show an excellent agreement for all the cases of thick, moderately thick and thin
plates. Next, the fundamental frequencies of the same plate are plotted in Figs. 13 and 14
for various modulus ratios and foundation stiffness. Figure 13 illustrates the variation of the
natural frequencies for different magnitudes of MR and Winkler stiffness

(
K w � K 1

)
. The

natural frequencies tend to increase with the increase in the magnitude of MR and Winkler
stiffness. The stiffness of the plate increases with the increase in MR, and the resistance to
deformation due to the stiffness of the springs (K w) increases the overall stiffness of the
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Fig. 11 a Across variation of in-plane displacement
(
U x
)

for a three-layered composite plate with various
span–thickness ratios. b Across variation of in-plane displacement

(
U x
)

for a three-layered composite plate
by considering the effects of foundation and various span–thickness ratios (material properties: MM1, non-
dimensional parameter: ND1)

system, resulting in the increase in the fundamental frequencies. Figure 14 illustrates the
variation of the natural frequencies of the plate with MR and the shear stiffness

(
K s � K 2

)

of the foundation. The fundamental frequencies are observed to increase more with the shear
stiffness. The shear layer in the foundation model maintains continuity of the displacements
among the points in the vicinity of the loaded surface resulting in the increase in the over-
all stiffness of the system. Therefore, the fundamental frequencies are observed to increase
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Table 3 Static response of soft-core sandwich plate (0/Core/0) subjected to uniform pressure resting on elastic
foundation (material properties: MM2; non-dimensional parameters: ND2)

Foundation stiffness References R � 5 R � 10 R � 15 R � 100

Transverse displacement (W )

K w� 0, K s� 0 Present analytical 259.2695 159.5937 121.9010 49.7942

Present FEM 259.2693 159.5935 121.9009 49.7940

Srinivas and Rao [49] 258.9700 159.3800 121.7200 –

Ferreira [50] 257.5230 158.3799 120.9883 –

Roque et al. [51] 259.1200 159.5000 121.8800 –

K w� 100, K s� 0 Present analytical 92.2301 75.4919 65.7236 36.5169

Present FEM 92.2298 75.4917 65.7233 36.5164

K w� 100, K s� 10 Present analytical 40.9604 37.3236 34.7758 24.4251

Present FEM 40.9603 37.3234 34.7756 24.4248

In-plane stress (σ̃xx )

K w� 0, K s� 0 Present analytical 60.3308 65.2830 66.7210 67.9918

Present FEM 60.5143 65.4819 66.9234 68.1553

Srinivas and Rao [49] 60.3530 65.3320 66.7870 –

Ferreira [50] 59.9675 64.8462 66.2911 –

Roque et al. [51] 60.3400 65.2800 66.7300 –

K w� 100, K s� 0 Present analytical 19.2010 28.9315 34.2479 48.0060

Present FEM 19.2824 28.9923 34.3276 48.1031

K w� 100, K s� 10 Present analytical 8.3707 14.0780 17.9097 32.2518

Present FEM 8.4855 14.1090 17.9532 32.3240

more with the shear stiffness. Figure 15 shows the variation of the normalized natural fre-
quencies of the same plate with MR and span–thickness ratio by considering the combined
Winkler stiffness (K w � 100) and shear stiffness (K s � 10) of the foundation. The nat-
ural frequencies are observed to increase with the increase in the span–thickness ratios. In
Fig. 16, the effect of the plate boundary condition on the natural frequencies is shown by
considering the same plate with clamped–clamped (CCCC) boundary conditions resting on
Pasternak’s foundation. The fundamental frequencies are observed to be higher in the CCCC
boundary condition compared to the diaphragm-supported (SSSS) condition. The CCCC
boundary condition provides greater stiffness in comparison with the SSSS condition due to
complete translational and rotational restraints at the boundaries, resulting in the increase in
the fundamental frequencies.

3.4 Forced-vibration analysis of laminated composite plates on elastic foundation

At first, the validation of the forced-vibration responses is presented by considering three-
layered (0/90/0) and five-layered (0/90/0/90/0) laminated composite plates with diaphragm-
support at all the edges. The material properties used in this problem are listed in MM4.
The laminated plate is subjected to a suddenly applied constant pulse load in time. The
maximum transient deflection of the plate under the loading is presented in Table 5 for
various magnitudes of modulus ratio (MR). The solutions obtained by Reddy [46] and Kant
et al. [52] using FSDT and HSDT, respectively, are collected in the table for comparison of
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Fig. 12 Finite element convergence of transverse displacement and in-plane normal stress of a soft-core
sandwich plate resting on elastic foundations: a transverse displacement (W ); b in-plane normal stress (σ̃xx )

(material properties: MM2, non-dimensional parameter: ND2)

the present analytical and FE solutions. The present analytical and FE solutions are in close
agreement with the references [46, 52].

The effects of the elastic foundation on the forced-vibration responses of laminated com-
posite plates are now investigated. A three-layered diaphragm-supported laminated compos-
ite plate is chosen with material properties corresponding to MM5. The plate structure is
first loaded with a pulse load acting for 0.006 s and then removed from the plate as shown
in Fig. 17a. The applied load is sinusoidal in spatial domain (x, y). The displacement—
time response of the plate is shown in Fig. 17b for three different conditions, namely, without
considering any foundation, considering only the Winkler foundation, and considering Paster-
nak’s foundation. The FE results of the vibration have converged at a mesh size of 8×8;
therefore, the results presented in the forced-vibration analysis are corresponding to this mesh
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Table 4 Natural frequencies of a three-layered (0/90/0) laminated composite plate resting on elastic foundation
(material properties: MM3; non-dimensional parameters: ND3)

Foundation stiffness References Natural frequency (ω)

l/h

10 20 50 100

K w� 0, K s� 0 Present analytical 14.7073 17.4824 18.6405 18.8276

Present FEM (4×4) 14.7095 17.4933 18.6597 18.8642

Present FEM (6×6) 14.7041 17.4838 18.6432 18.8312

Present FEM (8×8) 14.7032 17.4822 18.6412 18.8285

Present FEM (10×10) 14.7029 17.4818 18.6407 18.8279

Present FEM (12×12) 14.7028 17.4817 18.6405 18.8277

Shen et al. [14] 14.702 17.483 18.689 –

Akavci [13] 14.700 17.481 18.640 –

K w� 100, K s� 0 Present analytical 17.7569 20.1318 21.1519 21.3181

Present FEM (4×4) 17.7587 20.1413 21.1688 21.3504

Present FEM (6×6) 17.7543 20.1330 21.1543 21.3213

Present FEM (8×8) 17.7535 20.1317 21.1526 21.3189

Present FEM (10×10) 17.7533 20.1313 21.1521 21.3184

Present FEM (12×12) 17.7532 20.1312 21.1519 21.3182

Shen et al. [14] 17.753 20.132 21.152 –

Akavci [13] 17.751 20.131 21.152 –

K w� 100, K s� 10 Present analytical 22.5992 24.5357 25.3903 25.5308

Present FEM (4×4) 22.6030 24.5457 25.4066 25.5599

Present FEM (6×6) 22.5976 24.5371 25.3928 25.5339

Present FEM (8×8) 22.5967 24.5357 25.391 25.5316

Present FEM (10×10) 22.5965 24.5354 25.3906 25.5311

Present FEM (12×12) 22.5964 24.5352 25.3904 25.5309

Hui-Shen et al. [14] 22.596 24.536 25.39 –

Akavci [13] 22.595 24.535 25.39 –

size unless specified. A good agreement of the present analytical and FE results is observed in
the figure. The amplitude of the vibration decreases, while the frequency increases due to the
elastic foundation. The behavior of the plot can be explained as the Winkler and Pasternak’s
foundations provide additional resistance to deformation via Winkler and shear stiffness of
the springs and the shear layer. The coefficients of the mass matrix do not change, while the
coefficients of the stiffness matrix corresponding to w increase, resulting in the increase in the
frequency of the vibration. The decrement in the amplitude and increment in the frequency
of the vibration are much more when both the Winkler stiffness and shear stiffness of the
foundation are considered. Next, a time-dependent triangular load acts on the plate for 0.006 s
as shown in Fig. 18a, and the corresponding vibration responses are shown in Fig. 18b. The
amplitude of the vibration decreases with time up to t � 0.006 s, and then the amplitude
becomes constant in time. Also, an excellent correlation of the analytical and FE responses
can be observed in the figure. Next, a sinusoidal excitation is allowed to act on the plate for
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Fig. 13 Variation of the normalized natural frequency of the laminated composite plate on elastic foundation
with modulus ratio (MR) and Winkler stiffness (K w � K 1) of the foundation (material properties: MM3,
non-dimensional parameter: ND3)

Fig. 14 Variation of the normalized natural frequency of the laminated composite plate on elastic foundation
with modulus ratio (MR) and shear stiffness (K s � K 2) of the foundation (material properties: MM3, non-
dimensional parameter: ND3)

0.006 s and then removed as shown in Fig. 19a. The corresponding vibration response under
the load is shown in Fig. 19b. The pattern of the response is similar to the variation of the load
in the time domain; the amplitude of the vibration increases like the sinusoidal pulse under
the action of the load in the forced-vibration regime. Also, the amplitude under the forced
vibration (t ≤ 0.006 s) is higher in comparison to the amplitude under the free vibration
regime (t > 0.006 s). However, the amplitude of the free vibration response is smaller com-
pared to the previous cases of constant pulse and triangular load. Next, we apply a sinusoidal
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Fig. 15 Variation of the normalized natural frequency of the laminated composite plate on elastic foundation
with modulus ratio (MR) and span–thickness ratio (material properties: MM3, non-dimensional parameter:
ND3)

Fig. 16 Variation of the natural frequencies of the laminated composite plate supported on an elastic foundation
with CCCC boundary condition (K w� K1; K s� K2) (material properties: MM3, non-dimensional parameter:
ND3)

excitation at a frequency equal to the natural frequency of the laminated composite plate.
The natural frequency of the plate without considering the stiffness of the foundation is first
evaluated by solving an eigenvalue problem and found out to be 4373 rad/sec. The variation
of the sinusoidal excitation with time at the same frequency is shown in Fig. 20a. Figure 20b
shows the forced-vibration response under the sinusoidal excitation without considering the
foundation stiffness. As expected, the plate vibrates under the resonance condition as the
frequency of the excitation is equal to the fundamental frequency of the plate. Figure 20c
shows the forced-vibration response under the same sinusoidal excitation by considering the
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Table 5 Convergence and
validation of the transient
deflection of composite plates
(material properties: MM4)

E11/E22 References W� 103 W

0/90/0 0/90/0/90/0

25 Present analytical 0.3341 0.2910

Present FEM (4×4) 0.3350 0.2934

Present FEM (6×6) 0.3352 0.2940

Present FEM (8×8) 0.3351 0.2940

Present FEM (10×10) 0.3351 0.2940

Reddy [46] 0.3386 0.2924

Kant et al. [52] 0.3309 0.2902

40 Present analytical 0.2928 0.2464

Present FEM (4×4) 0.2941 0.2499

Present FEM (6×6) 0.2941 0.2504

Present FEM (8×8) 0.2942 0.2504

Present FEM (10×10) 0.2942 0.2504

Reddy [46] 0.2985 0.2463

Kant et al. [52] 0.2993 0.2473

Winkler and shear stiffness of the foundation. The plate does not vibrate under the resonance
condition anymore as the foundation stiffness has altered the fundamental frequency of the
plate. Next, the vibration responses of the laminated composite plates are shown in Figs. 21,
22, 23, 24, 25 and 26 under various time-dependent loads like pulse, ramp, ramp-constant
and exponential blast load. In all the figures, the individual effect of the Winkler stiffness
(K w) and shear stiffness (K s) of the foundations is investigated. Figure 21a and b shows the
vibration response of the laminated plate under constant-pulse acting for the entire duration
of the plate vibration by considering Winkler and shear stiffness, respectively. The vibration
response is exactly similar in both the figures when K w and K s � 0. As the value of the
stiffness increases, the amplitude of the vibration decreases and the frequency increases with
greater effect noticed in Fig. 21b due to shear stiffness compared to Winkler stiffness. Fig-
ure 22a shows the time-dependent variation of another mechanical load known as the ramp
variation, and the resulting vibration responses under the load are presented in Fig. 22b and c
by considering the Winkler and shear stiffness of the foundation, respectively. The amplitude
of the vibration in both the figures is linearly increasing like the load profile. As the value
of the stiffness increases, the effect of the foundation gets evident in the figures. Figure 23b
and c shows the vibration response of the plate under the action of the ramp load acting
for t � 0.006 s, and then it is removed from the plate. It is observed in the figures that the
amplitude of the vibration is increasing as long as the load acts, and then, the plate vibrates
with constant free vibration amplitude at t > 0.006 s. Figure 24a shows the ramp-constant
variation of the mechanical load in time, in which the portion of the ramp variation is up to
0.004 s and then constant in time after t > 0.004 s. The vibration of the plate under the action
of the load is shown in Fig. 24b and c. It is observed in the figures that the entire vibration
response is under the forced-vibration just like the load profile. The vibration of the plate
when t < 0.004 s is exactly similar to the responses presented earlier under the action of ramp
load; however, when the plate is under the action of the constant pulse (t > 0.004 s), the plate
oscillates around the transverse displacement at t � 0.004 s. Figure 25a shows the variation
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Fig. 17 a Variation of the pulse mechanical loading in time acting for t � 0.006 s. b Vibration response of the
laminated composite plate resting on an elastic foundation under pulse loading acting for 0.006 s (material
properties: MM5)

of an exponential blast load (q (t) � eγ t ) in time with decay parameter, γ � − 1320 s−1. The
vibration response of the plate under the action of the load is presented in Fig. 25b and c for
duration of 0.0025 s. The vibration response has decreasing amplitude due to the presence
of the decay constant (γ ) in the blast load. Initially, the plate vibrates with high amplitude
under the action of the strong blast; thereafter, the plate vibrates with decreasing amplitude
of vibration similar to the load profile in Fig. 25a. The effect of the decay constant in the
blast load is further investigated by considering several values of the decay constant in the
blast load profile. Figure 26a shows the variation of the blast load in time for several values
of the decay constant. Figure 26b shows the 3 D graphical representation of the displacemen-
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Fig. 18 a Triangular variation of the mechanical load in time acting for t � 0.006 s on the plate. b Forced and
free vibration response of a laminated composite plate resting on elastic foundation under triangular loading
acting for 0.006 s (material properties: MM5)

t–time response of the laminated plate supported on an elastic foundation with foundation
stiffness, K w � 100; K s � 10 under the action of the load. It is observed in the figure that
as the magnitude of the decay constant increases, the faster the plate enters the steady-state
condition.
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Fig. 19 a Sinusoidal variation of the mechanical load in time acting for t � 0.006 s on the plate. b Variation
of the sinusoidal excitation with time. b Forced and free vibration response of a laminated composite plate
resting on elastic foundation under sinusoidal loading acting for 0.006 s (material properties: MM5)
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Fig. 20 a Sinusoidal mechanical excitation acting at a frequency equal to the natural frequency of the plate.
b Vibration response under the sinusoidal excitation without considering the foundation stiffness. c Vibration
response of the plate under the sinusoidal excitation by considering the foundation stiffness (material properties:
MM5)
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Fig. 21 a 3D graphical representation of forced-vibration response of laminated composite plate on elastic
foundation by considering Winkler stiffness under pulse loading. b 3D graphical representation of forced-
vibration response of laminated composite plate on elastic foundation by considering shear stiffness under
pulse loading (material properties: MM5)
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Fig. 22 a Ramp variation of the mechanical load in time. b 3D graphical representation of forced-vibration
response of laminated composite plate on elastic foundation by considering Winkler stiffness under ramp
loading. c 3D graphical representation of forced-vibration response of laminated composite plate on elastic
foundation by considering shear stiffness under ramp loading (material properties: MM5)
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Fig. 23 a 3D graphical representation of forced-vibration response of laminated composite plate on elastic
foundation by considering Winkler stiffness under ramp loading acting for 0.006 s. b 3D graphical represen-
tation of forced-vibration response of laminated composite plate on elastic foundation by considering shear
stiffness under ramp loading acting for 0.006 s (material properties: MM5)
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Fig. 24 a Ramp-constant variation of the mechanical load in time. b 3D graphical representation of forced-
vibration response of laminated composite plate on elastic foundation by considering Winkler stiffness under
ramp-constant load. c 3D graphical representation of forced-vibration response of laminated composite plate
on elastic foundation by considering shear stiffness under ramp-constant load (material properties: MM5)

Fig. 25 a Variation of the exponential blast load in time with decay parameter, γ � -1320 s−1. b 3D graphical
representation of forced-vibration response of laminated composite plate on elastic foundation by considering
Winkler stiffness under exponential blast load. c 3D graphical representation of forced-vibration response of
laminated composite plate on elastic foundation by considering shear stiffness under exponential blast load
(material properties: MM5)
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Fig. 26 a Variation of the exponential blast load in time with various decay parameters, γ . b 3D graphical
representation of forced-vibration response of laminated composite plate on elastic foundation subjected to
exponential blast load with various decay constants (material properties: MM5)
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4 Conclusions

This article studies the influence of the elastic foundations on the static, free vibration and
transient behavior of advanced composite plates using a non-polynomial shear deformation
theory (NSDT) with zigzag kinematics. The plate model consists of an ESL-based non-
polynomial higher-order theory to accurately model the nonlinearity of the transverse shear
strains across the thickness of the plates, and a ZZ field for satisfying the piecewise contin-
uous displacement requirements that are essential for accurately representing the transverse
shear strain/stress fields. The interaction between the foundation and the plate is modeled
using Pasternak’s foundation model. Analytical solutions for diaphragm-supported bound-
ary conditions of the plate are proposed using Navier’s solution, and the numerical solutions
for different boundary conditions are obtained using the finite element method. The struc-
tural responses are obtained by considering various parameters like the span–thickness ratio,
modulus ratio, different types of static and dynamic loadings and foundation stiffness. The
results reflect that the foundation stiffness has a significant effect on the structural responses
of deflection, stresses, natural frequencies, amplitude and frequency of the vibration. The
deflection and stresses are observed to decrease due to the elastic foundations. The funda-
mental frequencies tend to increase with the increase in the stiffness of the foundations. The
amplitude and frequency of the vibration response tend to decrease and increase, respectively,
with the increase in the foundation stiffness. The effect of the Pasternak’s foundation on the
structural response is more than the Winkler’s foundation. An excellent agreement of the
results obtained by the proposed analytical and FE model is observed in all the problems.
Based on the results, it can be concluded that the present analytical and the FE formulations
are capable of modeling the deformation responses of advanced composite plates supported
on an elastic foundation.

Data availability The raw/processed data required to reproduce these findings cannot be shared at this time
as the data also form part of an ongoing study.
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Appendix 2

Partial differential equation terms of the primary variables
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δβ y:
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Appendix 3

The elements of matrix ‘[H]’
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0 0 1 0 0 z 0 0 p1 p2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 q1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 q2

⎤

⎥
⎥
⎥
⎥
⎦

The nonzero elements of matrix ‘[B]’ for the ith node are written as

B1,1i � B3,2i � B7,4i � B10,5i � B12,3i � ∂ Ni

∂x
;

B2,2i � B3,1i � B �8,5i � B9,4i � B11,3i � ∂ Ni

∂y
;

B4,6i � B6,7i � −∂ Ni

∂x
; B5,7i � B6,6i � −∂ Ni

∂y
;

B4,4i � 	x
∂ Ni

∂x
; B5,5i � 	y

∂ Ni

∂y
; B6,4i � 	y

∂ Ni

∂y
;

B6,5i � 	y
∂ Ni

∂x
; B12,4i � 	x Ni ; B11,5i � 	y Ni ;

B11,7i � B12,6i � −Ni ; B13,5i � B14,4i � Ni
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The elements of the vector ‘
[
ε
]
’

ε1 � ∂u0

∂x
, ε2 � ∂v0

∂y
, ε3 �

(
∂u0

∂y
+

∂v0

∂x

)

, ε4 � −
(

∂θx

∂x
+ 	x

∂βx

∂x

)

,

ε5 � −
(

∂θy

∂y
+ 	y

∂βy

∂y

)

, ε6 � −
((

∂θx

∂y
+

∂θy

∂x

)

+ 	x
∂βx

∂y
+ 	y

∂βy

∂x

)

,

ε7 � ∂βx

∂x
, ε8 � ∂βy

∂y
, ε9 � ∂βx

∂y
, ε10 � ∂βy

∂x
, ε11 �

(

−θy +
∂w0

∂y
+ 	yβy

)

,

ε12 �
(

−θx +
∂w0

∂x
+ 	xβx

)

, ε13 � βy, ε14 � βx
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