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Abstract In present work, we use an extended f(7) gravity namely f (T, 7) gravity, rep-
resenting the coupling of torsion scalar 7 and the trace of energy-momentum tensor 7. In
this framework, we find the exact interior anisotropic solutions of compact stars consid-
ering Krori—-Barua space-time under metric potentials, a(r) = Br2 4+ Cr3, b(r) = Ar3
(A, B, C are the unknown parameters), and applying a well-known model f(7,7) =
a1T"(r) + BT (r) + ¢, n > 1. To close the system of equations, we utilize an equation of
state for modified Chaplygin gas model. By the well-known matching conditions of exte-
rior and interior space-time, we evaluate the unknown model parameters. For four different
strange stars, PSR — J1614-2230, SAX — J1808.4-3658, 4U 1820-30 and Vela — X-12
(last two are added in “Appendix”), we made complete physical analysis by plotting trajec-
tories for energy conditions, square speed of sound, mass function, compactness factor and
surface redshift. It is observed that our results satisfy all the necessary and sufficient physical
conditions, hence physically viable.

1 Introduction

Modern cosmological observations indicate the accelerating expansion of our universe [1—
3]. To check the late-time cosmic acceleration, a number of observations have been made
toward its explanation. Although general relativity (GR) is a fairly successful theory and
it is worth noticing that this success is valid observationally below the solar system scale
and theoretically far away from the Planck scale. We can roughly say that GR has some
observational shortcomings at IR and theoretical shortcomings at UV scale. The enormous
efforts have been done in recent times to modify gravity [4—6] to solve the problem of non-
renormalizability [7,8] in (GR). The theoretical explanations for cosmic acceleration are
usually described in two ways: The first approach suggests modification in the energy budget
of the cosmos, presenting a dark energy (DE) region that is inspired either by a canonical
scalar field, a phantom field, or the combination of both fields in a unified model, and leading
toward more complicated developments [9, 10]. The second is focused on the modification of
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gravitational sector [11-13]. One may change it as a whole or partly from one way to another
by keeping the physical interpretations in mind, but the number of extra degrees of freedom
is definitely an essential feature [14]. So one can also use any of the forms mentioned above
in accordance with the gravitational and non-gravitational sector.

The reason of modification in gravitational theories is the generalization of Einstein—
Hilbert (EH) action, which is the one that may derive with gravity-curvature interpretation
in GR. Some promising modified gravitational theories (MGT) such as Gauss—Bonnet (GB)
theory and its extended versions [15-17], f(R) theory (R is the Ricci scalar) [18,19] and its
generalizations with minimal/non-minimal interactions among various fields (higher-order
curvature correction terms, matter and scalar fields as well as torsion scalar) like f(R, T)
[20-23] and f (R, T, Q) theories [24-27], scalar-tensor theories and its generalized versions
[28,29] and the famous teleparallel theory of gravity with its modifications [30-33].

The teleparallel approach to modify gravity is considerably interesting due to second-
order partial differential equations, consequently we get rid of higher-order equation problem
that exists in other MGT. The f(T') gravity is the most common and the best studied model,
where the generalized Lagrangian is presumed to be an arbitrary function of the torsion scalar
[34,35]. In teleparallel gravity, the Weitzenbock connection (WBC) is being used instead of
torsion-free Levi-Civita metric connection (LMC) on a Riemann—Cartan space-time. In GR,
the gravitational field intensity is verbalized by the torsion-less LMC so that the gravitational
field intensity is determined by curvature [36-38].

A recent modification in f(T') gravity is known as f(7, T) gravity [39-41], which is
inspired by f (R, 7) theory of gravity [42], where rather combining the Ricci scalar with
the trace of EMT, one couples it with the torsion scalar. The dependence of 7 may be
introduced by exotic imperfect fluids or quantum effects (conformal anomaly). In f (R, 7)
gravity, as a result of coupling between matter and geometry, motion of test particles is
non-geodesic and an extra acceleration is always present. In this gravity, cosmic acceleration
may result not only due to geometrical contribution to the total cosmic energy density but
it also depends on matter contents. Based on f (R, 7) gravity, the resulting f (7', 7) theory
is a new modification of gravity theory, since it is different from all the existing torsion or
curvature-based constructions. It also yields an interesting cosmological phenomenology as it
encompasses a unified description of the expansion history with an initial inflationary phase,
a subsequent non-accelerated, matter-dominated expansion and a final late-time accelerating
phase [43]. A detailed study of the scalar perturbations at the linear level revealed that the
resulting f (7T, 7) cosmology can be free of ghosts and instabilities for a wide class of ansatz
and model parameters.

In astrophysics, the exact solutions of Einstein field equations (EFEs) provide informa-
tion about fluid distribution inside stellar objects. Schwarzschild [44] calculated the spherical
solution for vacuum taking perfect fluid distribution in the exterior region. Several exact solu-
tions for perfect fluid have been computed by Tolman [45] including cosmological constant,
and junction conditions have been investigated. Lemaitre [46] suggested some possible ways
for the existence of anisotropic effects inside stellar objects, which may be due to “phase
transition, rotational motion, presence of magnetic field or mixture of bi-fluids”, etc. To
examine the salient properties of anisotropic distribution of fluid, a large number of feasible
solutions were obtained in relativistic gravity theories [47-53]. To get exact solutions for
interior geometry of a star taking anisotropic fluid distribution is a challenge because of the
nonlinear term in the evolution equations.

Generally, as a simplest case, perfect fluid (isotropic fluid) is assumed inside the stellar
object to study its interior structure and evolution. However, present observation shows that
the fluid pressure of the highly compact astrophysical objects becomes anisotropic in nature,
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which means the pressure can be resolved into two components namely radial pressure and the
transverse pressure. So to examine the anisotropy effects a parameter A = p; — p, has been
introduced known as the anisotropic factor. The anisotropy may arise for the different cases
such as the existence of solid core, in presence of type P superfluid, phase transition, rotation,
magnetic field, mixture of two fluids, and existence of external field. Paul and Dep [54] have
discovered suitable anisotropic solutions for compact objects. Sah and Deb [55] studied
the anisotropic interior solutions of quintessence strange stars in f(7") gravity using MCG
model. In f(R, T) theory of gravity, Zubair et al. [56] investigated the spherical solutions
admitting conformal killing vector field for both perfect and imperfect fluid distribution.
Some researchers worked in (7', 7") gravity to drive exact solutions of collapsing compact
objects [57,58]. In this context, Saleem et. al [59] found the interior isotropic solutions of
compact stars in f (7, 7) theory for KB metric using non-diagonal tetrad under Karmarkar
condition. Abbas et al. [60] discussed the solutions of anisotropic strange stars that correspond
to quintessence model via an EoS p = ap, 0 < o < 1 (p is pressure and p be the density
of fluid).

The electromagnetic field plays an important role in structure formation and equilibrium
of collapsing bodies. The electromagnetic forces are the main cause to generate the repulsive
effects that counterbalance the attractive gravitational force. Lobo and Arellano [61] con-
structed various gravastar models with nonlinear electrodynamics and studied their solutions
as well as some basic physical characteristics. Using MIT bag model, the effect of electro-
magnetic fields on anisotropic strange stars was investigated by different authors [62,63].
Horvat et al. [64] extended the gravastar built by anisotropic inhomogeneous fluid with a
particular behavior of radial pressure in the presence of an electrically charged component.
They solved Einstein-Maxwell field equations in asymptotically de Sitter interior, where a
source of electric field is coupled to the fluid’s energy density. Under charge, they evaluated
EoS, the speed of sound and the surface redshift for considered models.

In this paper, our target is to evaluate the exact spherical solutions taking anisotropic fluid
distribution with charge in the interior of strange stars within the background of f (7, 7T)
theory. To this end, we utilize an EoS for MCG model. In Sect. 2, we briefly describe the
mathematical development of f (T, 7') theory. In Sect. 3, we formulate the field equations for
KB metric taking anisotropic fluid distribution. Further, we solve the equations analytically
to derive the exact solutions choosing f(T,7) = a1 T"(r)+ BT (r) + ¢ (o1, B are arbitrary
real constants, ¢ = 2.036 x 10737 is the cosmological constant and n > 1) along with MCG
model. Section 4 is devoted to analyze the physical characteristics of the obtained results
via energy bounds, stability, mass function, compactness and surface redshift. By smooth
matching of considered interior metric with exterior Schwarzschild metric, we calculate the
unknown constants, which are further constraint for four different strange stars. The results
are interpreted graphically. The outcomes are discussed in Sect. 5.

2 Fundamentals of (T, T") theory of gravity

Since torsion-trace gravity is an extended form of f(7") theory, therefore based on the geom-
etry of WBC [65]. The torsion tensor can be given as [65,66]

T, =T}, -T], = e{'(aﬂei — 8"651)’ eY)
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here Greek letters u, v, 1, ... denote spacetime indices. While Latin indices i, j, k, ... rep-
resent the tangent Minkowski spaces. The contorsion tensor is defined as

1
Ko = =3 (T =T, = T,17). ()

The components of superpotential tensor, Sy

1
Sot = S (KMo + 85T g — 8;TP ). 3)

MV are defined as

The torsion scalar can be derived from the product of torsion and contorsion tensors as
follows

T = ST . “4)

One can extend f(T) to f(T, 7) gravity by defining the following action [39—41]

S d*xe[ f (T, T) + Lmariery@a)], Q)

T 22

where e = det (ef') = \/—¢, k2= 87:—2(; = 1 (G is well-known gravitational constant and ¢
is the speed of light), L (pas1er) is the matter Lagrangian density, and f (7', 7') be any arbitrary
functionof T and 7 = 8;1’];“ . By varying the action defined in Eq. (5) with respect to tetrad,
we get following set of field equations

ev; :
—Tlf + @ S fr + e T e Sy fr + e 9 (ee” i So™) fr 4+ €7 1So™ 3, T frr
fr

o (€T + pre's) + 7S fro = —dme Ty ©)
. a2 - a2 .
where fr = % frr = % fr = g—}; and frr = %, and spin connection, ij =0.
The EMT for anisotropic fluid can be written as
Tyo = (p 4 pi)uptty — piguv + (Pr — Pi)vpvy, @)

& . . § . . .
where u, = e2 62 is the four velocity, v, = €26 }L is the radial four vectors, p is the energy
density, p,, p; are the radial and tangential pressure components. The electromagnetic field
is described by EMT given under

1 1
E) = E(gstua FS =8 FawF5w>, ®)

where F,, is the Maxwell field tensor, which can be defined as

F,uv = ¢,u,v - ¢v,;¢a

and ¢,, is the four potential.

3 Exact solutions of the field equations in f (T, 7)) gravity

Here, we take KB metric [67] representing the interior geometry of a strange star

ds? = e Ddr? — PV ar? — r2do? — 12 sin 0d¢?, 9)
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where a(r) and b(r) are the metric potentials. We consider the non-diagonal tetrad given as
follows [59]

a(r)

ez 0 0 0
. LG, b(r) . . b(r)
o = 0 e 2 sinfcos¢ e 2 sinfsing ez cosé (10)
" 0 —rcosfcos¢p —rcosfsing rsin @

0 r sin 6 sin ¢ —siné cos ¢ 0

: an+be) o L .
where ¢ = det e;L = rZe” 2  sinf. substituting this vierbein into Eq.(4), we found the

torsion scalar 7' (r) and its derivative T (r) with respect to radial coordinate r, serving as the
basis of the theory, are given by

—b(r) b(r) br)
T@r) = T(ra/(r) —e 2 + 1)(1 —e2 ),

My — —b(r) (25 _ ‘

poler a0 e 2D o5 ey

r2 r
=b(r Ze_b(r) (T -1 %
+e%b’(r)> + #(%b’(n —ra"(r) —d'(r)). (12)
r

The corresponding field equations in f (7, 7) theory are obtained through Egs. (6), (8)
and (10) as

25 = -0 ) (BIT QAT (T2

r 2 \2 r2
71’)(1‘) 1_ b/
_];T(e(rzr(r))>+f+f7(p+pt)’ (13)
eib(r)(ra/(r) + 1) fr fr f
dmp, +2E? = <r—2 =+ 2>7 - e —p) -
—b(r
4rp; + 2B = %e,,,(,)(e ri +2 g) )(frﬂ’(r) T () — £ (14)

o (4L LY a Ir
+(e ((4+2r)(a(r) b'(r) + 2>+2>2 (15)

We use a viable model of f(T,7) theory given as f(T,7) = o1T"(r) + B7(r) + ¢.
Teleparallel gravity is being recovered for ¢y = n = 1, 8 = ¢ = 0. Harko et al. [39]
constructed cosmological solutions for a model f (7,7 V=a; T%(r) + BT (r). The trace of
EMT is defined as 7 = p — p, —2p;. In order to obtain the exact solutions of Eqs. (13)—(15),
the metric functions are considered to be

a(r) = Br2 +Cr3, b@r) = Ar3, (16)
along with an EoS for MCG model [68]

¢
pr==5&p — o a7
where £, « and ¢ are free model parameters. The MCG EoS has two parts, the first term
gives an ordinary fluid obeying a linear barotropic EoS and second term relates pressure to

some power of the inverse of energy density. However, it is possible to consider barotropic
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fluid with quadratic EoS or even with higher-order EoS. Therefore, it is interesting to extend
MCG EoS, which recovers at least barotropic fluid with quadratic EoS. From Egs. (13)—(15)
and taking « = 1, we obtain exact solutions of p, p,, p; and E 2 respectively, as

1 ! fintn = Den wa (o (20
p_Z((1+$)(8n—ﬁ)< r (mfz) (fz( r

3
3A 2 L; —Ar3
13472 S ) DA g —oc | | 4
r2 2 r2

n—1 2 1 fl
x ((fif2) (3Ar + 2B +3Cr))) + (((m (7

X"al(n—l)((flfz)n_z(ﬁ( f‘+3Ar( —ﬁ)))

3
3A 2 ATr —Ar3
el (” —4Br - 9Cr2)) + () A

r2 2

12B 4+ 3C +4§)>é (18)
S

_ & 1 fin(n — Day ne2 _2h
pr=35 ((1+S)(8ﬂ—ﬁ)< p ((flfz) <f2< ;.

3
fl 3Ar2e™s 2 e’Ar3n011
13482 S 2ATC T _apr—oc? || +
r2 2 r2

n—1 2 ! h
x ((f1f2) (3Ar +2B +3Cr))) + (((m <7

Xnoll(n—l)<(f1f2)"72 (fz <—i+3Ar ( —f1>>)

3
3A2% —Ar3
+ji; (”_4Br_9cﬂ))+e r”o“ ((Af)" " r?

2

conr2m s+ 25)) ) < (s
[+¢ ‘L\arae—p

x(ifl”(”r‘”“l <(.f1fz)”’2<fz( 2f1+3Ar( —f1>>> ul

3
3A 2 A% —Ar3
x (r ¢ —4Br—9Cr2)) + N (e BAr
r

2

1 fin(n — Day
2B A3+ <<<(1 YOG —p) < A
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) an
xfz)”_z(fz( T2 a0 ( —f1)>) TEL) ELAE

_ A3
eAr

2
+ e (! 2(3Ar+23+3cr))>>

1 —1
4c \\?2
g +$>> )) , (19)

3
2 o —1) [ - L 2B+ 3Cr2 !
8t — B 2 r 2 r

x(<f1f2>"—2)<fz( f‘+3Ar< —ﬁ)))

—Ar3
LI [e23A e oe gg;@@£j<fm3

—4Br —9Cr?))

Pt =

r2 2 + 2

2Br +3Cr? 1 2B 4+ 6C
x ((% + 7) (2Br +3Cr2 = 3Ar2) + #>

2r 2
1.2 ar (f1/2)" ¢
TR B AU —E<p—pr>———2E2 , (20)
2 4 4
—Ar
_ ZBr +3Cr +1 1J2 O[](lz)n
r r 2 2
¢ B 3 — 167
- = _ , 21
> TPt > Pr 1)
where
3 5 02 300 -1
Ar? —2Br=—=3Cr°> —
fi=2eE T -, p=C ; .
P
The quantity g (r) shows an effective charge in a spherical system, defined as
4 r v
g == / PxneLar, £ =19, (22)
0

here x and E represent the surface charge density and electric field intensity, respectively.
So the net amount of charge inside a sphere is calculated by

—Ar? 2 3
q(r):r2<nal(f1f2)n71<e (2Br2 +3Cr3 +1) _i+M>

r2 r2 2

(23)

ail(fif) ¢ B 3p—l6m, \?
SR S L )
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Fig. 1 p versus r for different stars by varying 8 and n
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Fig. 3 p; versus r for different stars by varying g and n

4 Physical analysis
In this section, we will examine structural properties of the obtained anisotropic solutions,
i.e., behavior of density and pressure, anisotropic stress, charge, energy conditions, mass

function, compactness and surface redshift.

4.1 Behavior of density and components of pressure

To illustrate physical nature of above-mentioned physical quantities of anisotropic stellar
objects, we assign different numeric values to free involved model parameters.
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Fig. 4 ‘dj—f versus r for different stars by varying 8 and n
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Fig. 5 ‘%’ versus r for different stars by varying 8 and n
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Fig. 6 % versus r for different stars by varying 8 and n

Energy density distribution given in Eq. (18) is plotted in Fig. 1 for different values of the
involved parameters exhibiting positive decaying behavior with respect to radius r (km). It
is maximum at = 0 and goes on decreasing as we move away from the center. It can be
seen from Fig. 1 that the model’s energy density is sensitive for all the involved parameters.

The graphical description of radial pressure, which is obtained in Eq. (19) has been shown
in Fig. 2. We can see that the trajectories of p, — r lies in the negative region and attain the
peak value at the center and start to decrease toward the boundary of stellar object. Figure 3
is showing the behavior of tangential pressure with respect to r. It falls in positive region
throughout the stellar configuration and admits maximum values at the center then rolls
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Fig. 8 Anisotropic parameter versus r for different stars by varying 8 and n

down toward the boundary of star. It is noticed that p, vanishes at r = R whereas p; stays
in positive region.

Evolution of energy density is presented in Fig. 4, which fulfills the physical restriction,
‘;—f < 0 at specific values of the model parameters. The evolution of p, is plotted in Fig. 5

while second-order derivative of density with respect to r has been shown in Fig. 6. It is clear

from the figure that % < 0, which means that DE has large negative pressure and ZZT';’ <0,
which implies decaying behavior of energy density. The second derivative of p, with respect
to r has been plotted in Fig. 7, which lies in negative region and monotonically decreasing
function of radius. It has been checked that the quantities ‘[1127’5 and d;r’;’
physical behavior for different values of £ and ¢.

The anisotropic stress (A = p; — p, is shown in Fig. 8 for different values of 8 and n) has
extreme value in the interval [0.77, 0.81]. It is worthwhile to mention that A > Oif p; > p, is
an outward directed repulsive gravitational force, which counterbalance the gradients, and if
A < 0, then anisotropic stress shows an attractive gravitational force. At the central point, A
shows neither repulsive nor attractive forces because at this point, the components p, and p;
are stable. But as we approached to boundary of the star, these quantities float independently
and hence A adopts the increasing behavior.

exhibit the same

4.2 Energy conditions
The existence of the ordinary matter within stellar geometry is guaranteed by some energy

constraints. The obtained solutions must satisfy these constraints for the physical permis-
sibility of our models. These energy conditions are classified into, null energy condition
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PSR J 1614-2230 SAX J 1808.4-3658

Fig.9 E 2 versus r for different stars by varying 8 and n
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2
Fig. 10 p + 8ETT versus r for different stars by varying # and n
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Fig. 11 p + p, versus r for different stars by varying g and n

(NEC), weak energy condition (WEC), strong energy condition (SEC) and dominant energy
condition (DEC). At any interior point of the charged fluid sphere, the following inequalities
must be satisfied simultaneously:
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Fig. 14 p+ pr +2p: + f—n versus r for different stars by varying 8 and n

E2
NEC: p+—=>0,
8w
E2
WEC: p+pr>0, p—l—p;—i—EZO, (24)

EZ
SEC: p+pr+2p +— >0.
4

Figure 9 shows that effect of electric charge goes on decreasing with the increment in

radius. It is clear from the graphs plotted in Figs. 10, 11, 12, 13 and 14 that all of the energy
conditions are fully satisfied. It is worth noticing from Figs. 1 and 12 that p +3p, < 0, so we
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observed that EoS parameter lies in the interval —1 < @ < —%, hence it lies in quintessence
phase, which belongs to corresponding model.

4.3 Calculation of unknown metric potentials by smooth matching conditions

In order to match the exterior solution with the interior one, several authors [59-69] have
focused on the matching conditions. The line element of Schwarzchild metric is given by

M oM\
ds* = —(1 -~ —)dﬂ + <1 - —) dr® +r*(d6* + sin0%dg?). (25)
r r
At the boundary r = R, the continuity of metric components yields
- _ dg,  ogh
G =i By =g = (26)

where —ve and +ve sign indicate the interior and exterior solutions. Now using Eq.(26) and
the metrics (9) and (25), we get the unknowns as follows

1 oM
A=——In(l—-——),
R3 R
3 oM oM oM\ !
B=—In(1-")-="(1-=22)
R2 R R3 R

oM oM\~ 2 oM
c=""(1-2") - Zmf1-22). 27
R* R R3 R

The parameter o1 can be evaluated considering p = 0 in Eq. (18) and turn out to be

= ! fin(n — 1) h2
o) = <4§<<(1+S)<(1+5)(8n—l3)< . ((flfz)

3
2 e 3Ar2e T
X <f2 (—%—i—SAr2 (eAT —f1>)>+% %—4&*

—Ar3

2
—ocr? | | + £ = 2 ((ﬁ £) ' (3Ar +2B + 3Cr)>)> )

1 fin(n —1) n—2 2f1
_((1+z§)(8n—ﬂ)< r (Ulfz) (A==

A3
e 4 p

r2

3
a 3Ar2° T
134727 — 1)) + %(%

—4Br — 9Cr2)) +

1

PNE NS
x ((fl ) ' (3Ar +2B + 3Cr)>)> ) ) . (28)
4.4 Stability criteria
Here the radial and transversal components of a physical quantity, i.e., square speed of sound
have been calculated. Herrera [70] proposed an important “cracking” concept to check the

stability of a stellar system having anisotropic fluid distribution. According to this technique,
the stability can be achieved if the speed of radial sound would be greater than the speed
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Fig. 15 u%, versus r for different stars by varying 8 and n
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Fig. 16 vle versus r for different stars by varying 8 and n
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Fig. 17 vszl — vfr versus r for different stars by varying 8 and n

of transversal sound otherwise the system will be unstable. The square speed of sound in
both directions must satisfy the given inequalities to attain stable strange stars, these are
0 <v2 <land0 < v <1, where v2, = ‘2’;’ vl = % represent radial and transversal
components of speed of sound, respectively.

From Figs. 15 and 16, it is clear that our obtained solutions fulfill the stability requirements
as vszr and vszt always lie in the positive region and below unity within stellar objects. Their
difference shows that radial sound speed is greater than the transversal sound speed. Also
Fig. 18 is in good agreement with the stability criteria, [v2, — v2,| < 1 [54]. Hence, our
developed strange star model with the help of MCG in f (7T, 7') gravity is potentially stable.
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Fig. 18 |v3t — vszrl versus r for different stars by varying g and n
5 Mass function, compactness factor and surface redshift

The mass and radius of anisotropic stellar objects are related to each other such that the
mass vanishes at r = 0 [54]. It can be seen that the mass function is regular at origin and
monotonically increasing with respect to radius. It is evaluated as

m(r) :/ 4nr2pdr,
0

" 1 —1
= (oo (G (M (o2 (2

3
2 3Ar2e T
X ( fl + 3Ar? ( f1>>> le % — 4Br —9Cr?

Ar3

eV nag 1
——

n—1 2 _
(fi.fo) (3Ar+28+3Cr))) ((((1 s yr—

x (7fln(nr— Day ((flfz)"*2 (fz( 2/1 + 3Ar? ( - f1)>>

_|_

3
3A 2 A% —Ar3
+ﬁ % — 4Br —9Cr? +ﬂ((f1f2)” 12 B3Ar
1
128430 4+ )) ))a (29)
r r.
1+¢&
The compactness of a star is defined by u(r) = (’) , where corresponding m(r) is given

in Eq.(29). The redshift function is given by
+1=(1—2u(r)7,

where u(r) can be evaluated from above expression. Figures 19 and 20 show that 2 (r) is a

significant tool to observe the compactness factor of the stellar objects. For static spherlcally
symmetric star under anisotropic fluid distribution, the mass—radius ratio for u(r) should not
exceed from a numeric value %, ie.,u(r) = % < %; (c = G = 1) [71]. In anisotropic fluid
distribution, the maximum value of possible gravitational redshift function is z; < 5 shown
in Fig. 21.
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PSR J 1614-2230 SAX J 1808.4-3658

r r

Fig. 19 m(r) versus r for different stars by varying 8 and n

PSR J 1614-2230 SAX J 1808.4-3658

u(r)

Fig. 20 u(r) versus r for different stars by varying g and n

PSR J 1614-2230 SAX J 1808.4-3658

Fig. 21 z versus r for different stars by varying § and n

6 Final outcomes

This work can be an important contribution in studying the exact stellar solutions of EFEs
using EoS of DE for anisotropic fluid distribution within f (7', 7) gravity. For investigation,
we have considered the accessible data from current literature of four compact stars PSRJ
1614-2230 and SAX J 1808.4-3658 while the graphical analysis of 4U 1820-30, Vela X-12
is added in “Appendix.” In order to find the solutions of solar system constraints that cannot
be interpreted in the presence of diagonal tetrad field in f(7") gravity, we use off-diagonal
tetrad fieldin f (7', 7') theory. For better configuration of obtained results, we use the arbitrary
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Table 1 Numerical values of the obtained constants A, B, C and « for some strange stars fixing 8 =n =

3,0=2,6=3

Strange stars M(Mg) R(Km) A(Km™2) B(Km™2) C(Km2) «

SAX J 1808.4-3658  1.435 7.07 0.0001473  —0.044926  0.0048810  2.50999 x 100
4U 1820-30 10 0.0005978  —0.026116  0.0020138  2.53662 x 10°
Vela X-12 9.99 0.0004389  —0.018169  0.0014281  5.07433 x 10°
PSR J 1614-2230 103 0.0004412  —0.018169  0.0014493  3.78274 x 10°

Table 2 Measurement of «| for different values of 8 and n and fixing § = { = 1 for some strange stars. In
the similar manner, we can evaluate o1 for others values of the parameters

Strange stars

=1, n=2

B=1,n=3

B=1,n=4

SAXJ 1808.4-3658
4U 1820-30

Vela X-12

PSR J 1614-2230

o] = 6.55026 x 10°
o) = 4.06816 x 103
o) =7.58289 x 10°
o) = 3.75813 x 10°

o) = 1.67594 x 10°
oy = 1.69372 x 103
o] =3.38818 x 10°
o) = 2.52577 x 10°

o] = 8.37945 x 10°
o) = 8.4669 x 10%

o = 1.69372 x 10°
o) = 1.26052 x 10°

function (T, T) = a1 T"(r)+ B7 (r) + ¢, physically acceptable function in f (7, 7) theory
along with an EoS for MCG. By applying the exterior and interior matching conditions, we
calculate the numeric values of unknowns involved in the chosen metric potentials, i.e.,
a(r) = Br? 4+ Cr3, b(r) = Ar3, are shown in Table 1. We derived analytical solutions and
addressed their stability and different physical features of compact objects under anisotropic
fluid distribution in f (T, 7") theory.

Figures 1, 2 and 3 ensure that energy density and components of pressure fulfill the
physical criteria that both are monotonically decreasing as we approach toward boundary
(Table 2).

The gradients of p, p, are showing negative trend in the interior of stars as shown in
Figs. 4,5, 6 and 7. We have also checked that the EoS parameter w lies in the quintessence
region.

Figure 8 depicts that A > 0, which shows expansion. It means that there exists repulsive
gravitational force, which is the attestation to escape the compact stellar objects from
gravitational collapse to a singularity. From Fig. 9, it is clear that the effect of electric
field in stellar objects is decreasing as we move toward the boundary.

Figures 10, 11, 12, 13 and 14 verified that all the energy conditions are fully satisfied. The
energy density remains positive and attains maximum value at the center and declined
toward boundary of stellar object.

Figures 15, 16, 17 and 18 advocate the physical stability of attained solutions as they
satisfy the casuality conditions (0 < v, v? < 1) and Abrue Conditions (0 < |v?, —
vsztl < 1).

The corresponding mass function is regular as shown in Fig. 19. It vanishes for vanishing
radius, then monotonically increasing to attain physical mass range. Compactness factor
also satisfies the Buchdahl condition (% < g) for our model (Fig. 20). The gravitational
redshift factor also admits the proposed range z; < 5 (Fig. 21).
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It is worthy to mention here that fora;y = n = 1, 8 = 0, the results reduced to [55]. Also,
this work is an extension of our previous work [59] in which we found the interior isotropic
solutions of compact stars in f (7', 7') theory under Karmarkar condition. This work has more
complex analysis due to anisotropic distribution of the fluid along with more general metric
potentials as compared to [59]. Generally, we conclude that the stellar solutions evaluated in
this manuscript are physically viable and graphically stable.

Appendix: Graphical analysis of Vela — X-12 and 4U1820-30

In this Appendix, we present the graphical analysis of the specific strange stars namely,
Vela— X-12 and 4U 1820-30. Our results are consistent and stable for all physical parameters
as shown in Figs. 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
and 42.
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Fig. 22 p versus r for different stars by varying g and n
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Fig. 23 p, versus r for different stars by varying B and n

@ Springer



Eur. Phys. J. Plus (2021) 136:1078 Page 19 0of 25 1078

0.7 0.8 0.9 1.0 11 1.2 0.7 08 0.9 1.0 11 1.2

Fig. 24 p; versus r for different stars by varying B and n

0.0

-0.2-

dp
dr

0.4

0.54

r r

0.46 0.48

Fig. 25 Z—f versus r for different stars by varying 8 and n

-5

— n=4

0.46 0.48 0.50 0.52
r r

Fig. 26 ‘%’ versus r for different stars by varying 8 and n

o0z -0.01
-0.02
Q Ql
s | % -0.04 |5
-0.03
-0.06
-0.04
-0.08 . . . |
0.0 02 04 06 0.8 1.0
r r

2
Fig. 27 ‘;Tg versus r for different stars by varying § and n

@ Springer



1078  Page 20 of 25 Eur. Phys. J. Plus (2021) 136:1078

0.00 0.00
-0.05
-0.05
010
S a
1% <|% -010
0415
-0.20 0415
-0.25
R A L -0.20
0.0 0.2 0.4 06 08 10
r r

2
Fig. 28 d drg’ versus r for different stars by varying 8 and n

400

300

< 200

100

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r r

Fig. 29 Anisotropic parameter versus r for different stars by varying 8 and n

100 -

0.6

0.4

0.2

0.50 0.55 0.60 0.65 0.70
r r

2
Fig. 31 p+ g—n versus r for different stars by varying 8 and n

@ Springer



Eur. Phys. J. Plus

(2021) 136:1078

Page 21 of 25 1078

0.80

0.85

0.95

1.00

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Fig. 32 p + p, versus r for different stars by varying g and n

-0.85

-0.90

-0.95

-1.00

P+3p;

-1.05

-1.10

-1.15

12

prpr—
an

R
0.54

0.56

0.58

r

0.62

-0.90

-0.95

-1.00

-1.05

P+3p;

-1.10

-1.15

-1.20 .

pro—
47
>

T NN
0.52 0.54 0.56 0.58 0.60 0.62

2
Fig.34 p+ pr + f—ﬂ versus r for different stars by varying g and n

45

E?

PHP+2per——
an
IS
3

35-

0.52

0.56

0.58
r

0.60

0.62

E?

P+PA2PH—
4

0.52 0.54 0.56 0.58 0.60 0.62

2
Fig.35 p+ pr +2p: + 457 versus r for different stars by varying 8 and n

@ Springer



1078 Page 22 of 25 Eur. Phys. J. Plus (2021) 136:1078

0.609 0.806
0.608 -
0.805
0.607
0.606
- .. 0.804
A v
0.605
0.604 0.803
0.603
0.802
0602 L L L L L L L
0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.62 0.64 0.66 0.68 0.70 0.72 0.74
r r

Fig. 36 u%, versus r for different stars by varying 8 and n

08~
07-
05
o.si— — n=3

04"

03~

0.64 0.66 0.68 0.70 0.72 0.74 0.64 0.66 0.68 0.70 0.72 0.74

r r

Fig. 37 v%, versus r for different stars by varying 8 and n

-0.14[
-0.16 -0.05
018y -0.10 -
o o
1 -0.20 &
¢ r ¢ b
[ =015
-0.22
~0.24 -0.20 -
-0.26 . . . , , L . " . |
0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.60 0.62 0.64 0.66 0.68 0.70 0.72
r r

Fig. 38 UXZ, — vszr versus r for different stars by varying 8 and n

— n=3

0.15
—— n=4

- - - A— FE— N N - - A— .
0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.60 0.62 0.64 0.66 0.68 0.70 0.72
r r

Fig. 39 |vs2t - vszrl versus r for different stars by varying 8 and n

@ Springer



Eur. Phys. J. Plus (2021) 136:1078 Page 23 of 25 1078

m(r)

r r

Fig. 40 m(r) versus r for different stars by varying 8 and n

u(r)
u(r)

Fig. 41 u(r) versus r for different stars by varying g and n

r r

Fig. 42 z, versus r for different stars by varying 8 and n

References

A.G. Riess et al., Astron. J. 116, 1009 (1998)

S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

S. Perlmutter et al., ibid 598, 102 (2003)

S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70, 043528 (2004)
K. Uddin, J.E. Lidsey, R. Tavakol, Gen. Rel. Gravit. 41, 2725 (2009)

S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

K.S. Stelle, Phys. Rev. D 16, 953 (1977)

T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012)
J.C. Edmund, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

O XN R WD =

@ Springer



1078  Page 24 of 25 Eur. Phys. J. Plus (2021) 136:1078

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Y.F. Cai, E.N. Saridakis, M.R. Setare, J.Q. Xia, Phys. Rep. 493, 1 (2010)

S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

S.I. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15, 2015 (2006)

S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

G. Cognola et al., Phys. Rev. D 73, 084007 (2006)

K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010)
S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology
and Astrophysics (Springer, New York, 2011)

T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)
M.J.S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)

F.G. Alvarenga, Phys. Rev. D 87, 103526 (2013)

M. Zubair, H. Azmat, I. Noureen, Int. J. Mod. Phys. D 27, 1850047 (2018)

Z. Haghani et al., Phys. Rev. D 88, 044023 (2013)

S.D. Odintsov, D. Saez-Gomez, Phys. Lett. B 725, 437 (2013)

M. Sharif, M. Zubair, JCAP 11, 042 (2013)

M. Sharif, M. Zubair, JHEP 12, 079 (2013)

V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic Publishers, New York, 2004)
M. Zubair, F. Kousar, S. Bahamonde, Phys. Dark Univ. 14, 116 (2016)

R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

E.V. Linder, Phys. Rev. D 81, 127301 (2010)

T. Wang, Phys. Rev. D 84, 024042 (2011)

S. Bahamonde, C.G. Bohmer, Eur. Phys. J. C 76, 578 (2016)

R.J. Yang, Europhys. Lett. 93, 60001 (2011)

Y.F. Cai et al., Rep. Prog. Phys. 79, 106901 (2016)

A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1928, 217 (1928)

A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1929, 156 (1929)

. V.C. De Andrade, L.C.T. Guillen, J.G. Pereira. arXiv:grqc/0011087

. T. Harko, S.N.L. Francisco, G. Otalora, E.N. Saridakis, J. Cosmol. Astropart. Phys. 12, 021 (2014)
. G.I. Salako et al., Astrophys. Space Sci. 358, 13 (2015)

. B.S. Nassur et al., Astrophys. Space Sci. 360, 60 (2015)

. Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)
. D. Momeni, R. Myrzakulov, Int. J. Geom. Meth. Mod. Phys. 11, 1450077 (2014)

. K. Schwarzschild, KI. Math. Phys. 24, 424 (1916)

. R.C. Tolman, Phys. Rev. 55, 364 (1939)

. G. Lemaitre, Ann. Soc. Sci. Bruxells A 53, 51 (1933)

. R. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972)

. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

. G. Abbas et al., Astrophys. Space Sci. 357, 158 (2015)

. S.K. Tripathy, B. Mishra, Eur. Phys. J. Plus 131, 273 (2016)

. MLH. Murad, Astrophys. Space Sci. 20, 361 (2016)

. S.K. Maurya, S.D. Maharaj, Eur. Phys. J. C 77, 328 (2017)

. D.K. Matondo, S.D. Maharaj, S. Ray, Eur. Phys. J. C 78, 437 (2018)

. B.C. Paul, R. Deb, Astrophys. Space Sci. 354, 421 (2014)

. P. Saha, U. Debnath, Adv. High Energy Phys. 2018, 3901790 (2018)

. M. Zubair, I.H. Sardar, F. Rahaman, G. Abbas, Astrophys. Space Sci. 361, 238 (2016)

. T. Harko, E.S. Lobo, G. Otalora, E.N. Saridakis, J. Cosmol. Astropart. Phys. 12, 021 (2014)
. M.G. Ganiou, I.G. Salako, M.J.S. Houndjo, J. Tossa, Astrophys. Space Sci. 361, 57 (2016)
. R. Saleem, F. Kramat, M. Zubair, Phys. Dark Univ. 30, 100592 (2020)

. G. Abbas, M. Zubair, G. Mustafa, Astrophys. Space Sci. 358, 26 (2015)

. ES. Lobo, A.V. Arellano, Class. Quant. Gravit. 24, 1069 (2007)

. S.K. Maurya et al., Eur. Phys. J. C 75, 389 (2015)

. S.K. Maurya et al., Astrophys. Space Sci. 361, 163 (2016)

. D. Horvat, S. Ilijic, A. Marunovic, Class. Quant. Gravit. 26, 025003 (2008)

. R. Weitzenbock, Invarianten-Theories (Nordhoff, Groningen, 1923)

. G. Farrugia, J. Levi Said, M.L. Ruggiero, Phys. Rev. D 93, 104034 (2016)

. C.G. Boehmer, A. Mussa, N. Tamanini, Class. Quant. Gravit. 28, 245020 (2011)

. H.B. Benaoum, Adv. High Energy Phys. 2012, 357802 (2012)

@ Springer


http://arxiv.org/abs/grqc/0011087

Eur. Phys. J. Plus (2021) 136:1078 Page 25 of 25 1078

69. G. Abbas et al., Iran J. Sci. Technol. A 42, 1659 (2018)
70. L. Herrera, Phys. Lett. A 165, 206 (1992)
71. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

@ Springer



	Charged anisotropic compact stellar solutions in torsion-trace gravity via modified chaplygin gas model
	Abstract
	1 Introduction
	2 Fundamentals of f(T,mathcalT) theory of gravity
	3 Exact solutions of the field equations in f(T,mathcalT) gravity
	4 Physical analysis
	4.1 Behavior of density and components of pressure
	4.2 Energy conditions
	4.3 Calculation of unknown metric potentials by smooth matching conditions
	4.4 Stability criteria

	5 Mass function, compactness factor and surface redshift
	6 Final outcomes
	Appendix: Graphical analysis of Vela-X-12 and 4U1820-30
	References




