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Abstract Gravity is attributed to the spacetime curvature in classical general relativity (GR).
But, other equivalent formulations or representations of GR, such as torsion or non-metricity,
have altered the perception. We consider the Weyl-type f (Q, T ) gravity, where Q represents
the non-metricity and T is the trace of energy momentum tensor, in which the vector field
ωμ determines the non-metricity Qμνα of the spacetime. In this work, we employ the well-
motivated f (Q, T ) = αQ+ β

6k2 T , where α and β are the model parameters. Furthermore, we
assume that the universe is dominated by the pressure-free matter, i.e., the case of dust (p = 0).
We obtain the solution of field equations similar to a power-law in Hubble parameter H(z). We
investigate the cosmological implications of the model by constraining the model parameter
α and β using the recent 57 points Hubble data and 1048 points Pantheon supernovae data. To
study various dark energy models, we use statefinder analysis to address the current cosmic
acceleration. We also observe the Om diagnostic describing various phases of the universe.
Finally, it is seen that the solution which mimics the power-law fits well with the Pantheon
data than the Hubble data.

1 Introduction

The accelerated expansion becomes a prominent theme in modern cosmology, confirming
various observable evidence such as type Ia supernovae observations [1–3], baryon acoustic
oscillations [4,5], and large-scale structure [6]. The incorporation of Riemann geometry
into general relativity (GR), the most successful theory, has provided a robust mathematical
framework for describing gravitational field properties. However, recent observational data
have raised some concerns about the classical GR absolute validity, which may still have
some limitations on large or solar system scales. The two significant challenges confronting
modern gravitational theories are the dark energy and dark matter problems, which aid in
the accelerated expansion of the universe. Modifying the gravitational part of the Einstein’s
equations is one of the approaches for explaining the acceleration. This approach is named as
the modified theory of gravity. So far, several modified theories of gravity beyond GR have
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been proposed such as the f (R) gravity [7–9], the f (R, T ) gravity [10–13], the f (R,G)

gravity [14,15], and the f (T, B) gravity [16,17].
Within the geometrical framework, the curvature is not the only geometrical object, torsion

and non-metricity are the other two fundamental objects related to the connection of a metric
space. There are three equivalent representations of GR. In the curvature representation, the
torsion and the non-metricity are zero. The second is the teleparallel representation based
entirely on the torsion. And there is the symmetric teleparallel representation, in which the
non-metricity is associated with gravity. Weyl suggested a Riemannian extension after GR in
an effort to combine gravity and electromagnetism [18]. The non-metricity of spacetime pro-
duces the electromagnetic field. Under parallel transport, both the orientation and the length of
vectors vary. The dilatational gauge vector, often known as the Weyl vector, is the new vector
part of the connection established. There is a scale transformation that transforms this vector
to zero when it is given by the gradient of a function. As a result, the lengths of parallel trans-
ported vectors through closed pathways return undisturbed, resulting in an integrable Weyl
geometry [19,20]. Higher symmetry techniques to gravity also use Weyl geometry. More-
over, Weizenböck constructed a geometry with torsion and zero Riemann curvature, another
essential mathematical breakthrough with applications [21]. The primary idea behind the
teleparallel formulation of gravity is to use tetrad vectors to replace the metric gμν of the
spacetime that describes the gravitational field. It is named as the teleparallel equivalent to
GR or f (T ) gravity, where T is the torsion [22]. In recent years, the f (T ) theory has yielded
some captivating cosmological behaviors, which have been studied in the literature [23–26].
The other geometrically equivalent to GR, known as the symmetric teleparallel gravity, was
also introduced and further developed into f (Q) gravity [27], where the non-metricity Q
of a Weyl geometry represents the basic geometrical variable describing the variation of the
length of a vector in the parallel transport. Lazkoz et al. [28] analyzed different forms of
f (Q) gravity to study an accelerated expansion of the universe with recent observations. The
behavior of cosmological solutions and growth index of matter perturbations in f (Q) gravity
has also been investigated in [29]. Mandal et al. [30] also studied cosmography in f (Q) grav-
ity. Another recent extension of f (Q) gravity known as f (Q, T ) gravity [31,32] includes a
non-minimal coupling in the gravitational action, in which the Lagrangian is replaced by an
arbitrary function f of the non-metricity Q and the trace of the energy-momentum tensor T .
Many studies have demonstrated that f (Q, T ) gravity is viable option for explaining current
cosmic acceleration and can provide a consistent solution to the dark energy problem. Arora
et al. [33] analyzed the feasibility of f (Q, T ) gravity by constraining an effective equation of
state explaining the dark sector of the universe. f (Q, T ) gravity also contributes significantly
to gravitational baryogenesis [34]. The energy conditions in f (Q, T ) gravity was studied
in [35]. In the context of proper Weyl geometry, Yixin et al. [32] explored f (Q, T ) gravity
and adopted the explicit equation for non-metricity Q that follows the non-conservation of
the metric tensor divergence. Furthermore, the field equations in the theory were derived
using the vanishing scalar curvature condition, which was then applied to the gravitational
action via the Lagrange multiplier. The Weyl-type f (Q, T ) gravity has been found to be an
alternate and effective way of describing accelerated and decelerated phases of the universe.
Studying variety of functional forms and model parameters, Weyl f (Q, T ) could provide a
strong alternative to the �CDM, especially giving the late-time de sitter phase generated by
Weyl geometry. Yang et al. [36] used the Weyl f (Q, T ) theory to derive the geodesic and
the Raychaudhuri equations. The analysis here aims to investigate whether the Weyl-type
f (Q, T ) gravity can be used to study the accelerated phases of the universe without intro-
ducing dark energy. We assumed the case of dust matter, i.e., p = 0 and the linear functional
form f (Q, T ) = αQ + β

6k2 T , where α and β are model parameters. Also, high-precision
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cosmological data obtained observationally, such as Hubble data and Pantheon samples, have
been used to constrain the model parameters. We studied the evolution of the universe using
the two diagnostics: the statefinder diagnostics and the Om diagnostics.

The following are the portions of the present article: We presented a broad review of
the Weyl-type f (Q, T ) gravity theory and the gravitational action with its field equations in
Sect. 2. In Sect. 3, we used 57 points of the Hubble data points and 1048 Pantheon data points
to constrain the model parameters and compared our model with �CDM in error bar plots.
In Sect. 4, we observed the behavior of energy density and the statefinder diagnostics. We
also presented the geometrical Om(z) diagnostic in Sect. 5 to illustrate dark energy models.
Section 6 includes the summary of our results obtained.

2 Field equations of the Weyl-type f (Q, T ) gravity

The action in Weyl-type f (Q, T ) gravity is given as [32]

S =
∫

d4x
√−g

[
κ2 f (Q, T ) − 1

4
W νμ W νμ − 1

2
m2 wν wν + Lm

]
. (1)

Imposing the Lagrange multiplier λ in the gravitational action, we get

S =
∫

d4x
√−g

[
κ2 f (Q, T ) − 1

4
W νμ W νμ − 1

2
m2 wν wν

+λ
(
R + 6 ∇αwα − 6 wα wα

) + Lm
]
. (2)

where κ2 = 1
16πG , m represents the mass of the particle associated with the vector field wμ,

Lm is the matter Lagrangian, f is an arbitrary function of the non-metricity Q and the trace of
the matter-energy-momentum tensor T . The second term in the action is the standard kinetic
term and the third term is a mass term of the vector field. Also g = det (gνμ) and the scalar
non-metricity Q is given by

Q ≡ −gνμ
(
Lα

βμL
β
μα − Lα

βαL
β
νμ

)
, (3)

where Lλ
νμ is the deformation tensor defined as

Lλ
νμ = −1

2
gλγ

(
Q νγμ + Q μγν − Q γ νμ

)
. (4)

In the Riemannian geometry, the covariant derivative of metric tensor is zero, i.e., ∇αgνμ = 0.
But in Weyl geometry, the expression is represented as [37]

Q ανμ ≡ ∇̃α gνμ = ∂αgνμ − �̃ρ
αν gρμ − �̃ρ

αμ gρν = 2wα gνμ, (5)

where �̃λ
νμ ≡ �λ

νμ + gνμ wλ − δλ
ν wμ − δλ

μ wν and �λ
νμ is the Christoffel symbol with

respect to the metric gνμ.
Putting Eq. (5) in Eq. (3), we get the relation

Q = −6w2. (6)

We get the generalized Proca equation explaining the field evolution by varying the action
with respect to the vector field,

∇ μW νμ − (
m2 + 12κ2 fQ + 12λ

)
wν = 6∇νλ. (7)
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We observe that the effective dynamical mass of the vector field when compared with the
standard Proca equation read as

m2
eff = m2 + 12κ2 fQ + 12λ. (8)

Variation of the gravitational action in Eq. (2) with to the metric tensor gives us the following
generalized gravitational field equation:

1

2

(
Tνμ + S νμ

) − κ2 fT
(
Tνμ + �νμ

)

= −κ2

2
gνμ − 6κ2 fQwνwμ + λ

(
R νμ − 6 wν wμ + 3 gνμ ∇ρ wρ

)
+3 gνμ wρ ∇ρ λ − 6 w(ν ∇μ) λ + gνμ �λ − ∇ν∇μλ. (9)

Here we define,

fT ≡ ∂ f (Q, T )

∂T
, fQ ≡ ∂ f (Q, T )

∂Q
, (10)

Tνμ ≡ − 2√−g

δ(
√−g Lm)

δgνμ
, (11)

respectively. Also we have defined the quantity �νμ

�νμ = gαβ δTαβ

δgμν

= gνμ Lm − 2 Tνμ − 2 gαβ δ2 Lm

δgνμ δgαβ
. (12)

The re-scaled energy momentum tensor Sνμ of the Proca field is defined as

S νμ = −1

4
gνμ W ρσ W ρσ + W νρ W ρ

μ − 1

2
m2 gνμ wρ wρ + m2 wν wμ, (13)

where
Wνμ = ∇μwν − ∇νwμ. (14)

We assume that the FLRW metric in the spatially flat, isotropic and homogeneous universe,
given by

ds2 = −dt2 + a2(t)δi j dx
i dx j , (15)

where a(t) is the scale factor. Because of spatial symmetry, the vector field is chosen in the
form of

wν = (ψ(t), 0, 0, 0) . (16)

Using the above equation, we get w2 = wνw
ν = −ψ2(t), with Q = −6w2 = 6ψ2(t).

So, uν∇μ = d
dt and H = ȧ

a . The Lagrangian of the perfect fluid is also assumed to be
Lm = p.

Now, we consider the energy momentum tensor for the perfect fluid given by

Tνμ = (ρ + p) uν uμ + p gνμ, (17)

where ρ and p are the energy density and the pressure, respectively, uν is the four velocity
vector satisfying the condition uν uν = −1. Hence, we have

T ν
μ = diag (−ρ, p, p, p) , (18)

and
�ν

μ = δ ν
μ p − 2T ν

μ = diag (2ρ + p,−p,−p,−p) . (19)
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In cosmological case, the constraint of flat space and the generalized Proca equation are
obtained as

ψ̇ = Ḣ + 2H2 + ψ2 − 3Hψ, (20)

λ̇ =
(

−1

6
m2 − 2κ2 fQ − 2 λ

)
ψ = −1

6
m2

effψ, (21)

∂iλ = 0. (22)

From Eq. (9), the generalized Friedmann equation read as

κ2 fT (ρ + p) + 1

2
ρ = κ2

2
f −

(
6κ2 fQ + 1

4
m2

)
ψ2

−3λ
(
ψ2 − H2) − 3λ̇ (ψ − H) , (23)

−1

2
p = κ2

2
f + m2ψ2

4
+ λ

(
3ψ2 + 3H2 + 2Ḣ

)

+ (3ψ + 2H) λ̇ + λ̈ (24)

where dot(·) represents the derivative with respect to time and fQ and fT represent differ-
entiation with respect to Q and T , respectively.

Now, we consider the functional form f (Q, T ) = α Q+ β

6 κ2 T , where α and β are model

parameters. The functional form depends on three free parameters α, β and M2 = m2

κ2 , M is
the mass of the Weyl field, indicating the strengths of the Weyl geometry-matter coupling.
In this case, we have assumed M = 0.95. It is worth mentioning that β = 0 corresponds
to the f (Q, T ) = αQ, i.e., a case of the successful theory of general relativity (GR). Also,
T = 0, the case of vacuum, the theory reduces to f (Q) gravity, which is equivalent to
GR, that passes all solar system tests, considered in the vacuum. Furthermore, Yixin et al.
[31,32] also depicts that the universe experiences an accelerating expansion ending with a
de Sitter type evolution in the considered model. We study the model for bulk viscous fluid
in a non-relativistic case, i.e., p = 0. Using this in Eq. (23) and (24), we get,

(
12κ2α + m2 + 18

β
κ2α + 3

2β
m2

)
ψ2 + 3λ

(
4ψ2 + 2H2 + 2Ḣ

) + 3λ̇ (4ψ + H)

+6λ

β

(
3ψ2 + 3H2 + 2Ḣ

) + 6λ̇

β
(3ψ + 2H) + 3λ̈ + 6

β
λ̈ = 0, (25)

where α and β are constants and T = 3 p − ρ.
We try to solve the above equation by considering λ = κ2,

(
12 κ2α + m2 + 18

β
κ2α + 3

2β
m2

)
ψ2 + 3κ2 (

4ψ2 + 2H2 + 2Ḣ
)

+6κ2

β

(
3ψ2 + 3H2 + 2Ḣ

) = 0. (26)

Further simplifying the above equation,
(

(12β + 18) α +
(

β + 3

2

)
M2

)
ψ2 + 3β

(
4ψ2 + 2H2 + 2Ḣ

) + 6
(
3ψ2 + 3H2 + 2Ḣ

)

= 0 (27)
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Using the relation ∇λgνμ = −wλgνμ and Eq. (16), we obtain ψ = −6H and Eq. (27)
read as

A H2 + B Ḣ = 0 (28)

where A = 36
(
(12β + 18)α + (

β + 3
2

)
M2 + (12β + 18)

) + (6β + 18) and B = (6β + 12)

The obtained solution of differential equation given in (28) is,

H(t) = 1

k1 t − c1
(29)

where

k1 = A

B
=

[
36 (2β + 3) (α + 1)

(β + 2)
+ (6β + 9)

(β + 2 )
M2 + (β + 3)

(β + 2)

]

Solving eq. (29), the expression of the scale factor is obtained as

a(t) = c2 (k1t − c1)
1
k1 (30)

We shall write all cosmological parameter in term of redshift using the relation (taking
a(t0) = 1)

a(t) = 1

1 + z
(31)

The Hubble parameter and deceleration parameter in terms of redshift are

H(z) = H0(1 + z)k1 (32)

q(z) = (k1 − 1) (33)

where we have obtained the power law as the solutions of the field equations. Power-law
cosmology is an intriguing solution for dealing with some unusual challenges like flatness,
horizon problem, etc. The power law is well-motivated in the literature. Kumar [38] used
power law with Hz and SNe Ia data to analyze cosmological parameters. Rani et al. [39] also
examined the power-law cosmology with statefinder analysis.

3 Data interpretation

3.1 Hubble data

Numerous observations such as the cosmic microwave background (CMB) form the Wilkin-
son microwave anisotropy probe team [3,40,41] and Planck team [42,43], baryonic acoustic
oscillations (BAO) [4,44], type Ia supernovae (SNeIa) [1,2] have been used to constrain cos-
mological parameters. Many of these models rely on values that require Hubble parameter to
be integrated along the line of sight (the luminosity distance in SNe observations) to explore
overall expansion through time. The Hubble parameter H is intimately tied to the expansion
history of the universe and is defined as H = ȧ

a , where a signifies the cosmic scale factor
and ȧ as the rate of change about cosmic time. The expansion rate H(z) is obtained as

H(z) = − 1

1 + z

dz

dt
, (34)

where z is the redshift. Two procedures are commonly employed to estimate the value of
the H(z) at a certain redshift. One way is to extract H(z) from line-of-sight BAO data,
while another uses differential age methods. We used the revised set of 57 data points, which
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Fig. 1 Evolution of Hubble parameter with respect to redshift z. The blue dots represents error bars of 57
points, the red line is the curve obtained for our model, while black dashed line corresponds to �CDM model

comprises 31 points from the differential age (DA) approach and the left 26 points measured
using BAO and other redshift range 0.07 < z < 2.42. In addition for our investigation, we
use H0 = 67.8 km s−1 Mpc−1. The Chi-square function is defined to find the mean values of
the model parameters α and β.

χ2
Hubb(α, β) =

57∑
i=1

[
H th
i (α, β, zi ) − Hobs

i (zi )
]2

σ 2(zi )
(35)

where Hobs
i denotes the observed value, H th

i indicates the Hubble’s theoretical value, while
the standard error in the observed value is denoted by σ(zi ). We used error bars to represent
57 points of H(z) and compared our model with the well-accepted �CDM model in Fig. 1.
We considered H0 = 67.8 km s−1 Mpc−1, ��0 = 0.7 and �m0 = 0.3. The best fit values of
α and β are obtained through data as shown in triangle plot 2 with 1−σ and 2−σ confidence

intervals. The bounds from our analysis are α = −1.08448+0.00049
−0.00055 and β = 0.136+0.056

−0.110.

3.2 Pantheon data

We use the most recent compilation of Supernovae pantheon samples to constrain the model
parameters α and β. The Pantheon sample consists of 1048 SNe Ia in the range of 0.01 <

z < 2.26 [45,46]. The likelihood function is determined using the MCMC approach and
emcee Python’s library to calculate the posterior distributions of the model parameters. The
pantheon data are shown in (m, z) pairs, with m typically to be measured. The theoretical
distance modulus is defined as

μth = 5log10

(
DLH

−1
0

Mpc

)
+ 25, (36)

where we define

DL = (1 + z)c
∫ z

0

dz̄

H(z̄)
. (37)
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Fig. 2 Contour plot for model parameters α and β with 1 − σ and 2 − σ confidence regions. It also mentions
the best fit values of α and β using 57 Hubble data points

Here, H0 is the Hubble constant. The Chi-square function according to our considered model
is given as

χ2
Pan(α, β) =

1048∑
i=1

[
μth
i (α, β, zi ) − μobs

i (zi )
]2

σ 2(zi )
(38)

where σ 2(zi ) is the standard error, μth
i = m − M is the theoretical value with m and

M as the apparent and absolute magnitudes, respectively, and μobs
i is the observed val-

ues from data points. We used error bars to represent 1048 points of pantheon samples
and compared our model with the well-accepted �CDM model in Fig. 3. We considered
H0 = 67.8 km s−1Mpc−1, ��0 = 0.7 and �m0 = 0.3. The best fit values of α and β are
obtained through pantheon samples as shown in triangle plot 4 with 1−σ and 2−σ confidence
intervals. The bounds from our analysis are α = −1.09519+0.00060

−0.00068 and β = 0.137+0.058
−0.100.

4 Cosmological parameters

4.1 Density parameter

By solving Eqs. (23) and (24), we can obtain an expression for the density parameter ρ. The
behavior of density parameter is shown in Figs. 5 and 6 for the obtained α and β from Hubble
and Pantheon datasets, respectively. It can be observed that the density parameter for both
the datasets is showing a positive behavior with redshift z.
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Fig. 3 Plot of μ(z) with respect to redshift z. The blue dots represents error bars of 1048 pantheon points,
the red line is the curve obtained for our model while black dashed line corresponds to �CDM model

Fig. 4 Contour plot for model parameters α and β with 1 − σ and 2 − σ confidence regions. It also mentions
the best fit values of α and β using 1048 pantheon samples

4.2 Statefinder diagnostics

Numerous DE models can be used to describe cosmic acceleration. Another reliable diagnos-
tic exists to distinguish between many cosmological models involving dark energy. Sahni et al.
[47,48] proposed a new dark energy diagnostic known as statefinder diagnostics, dependent
on the second and third derivatives of the scale factor. It is defined with the help of well-
known geometrical parameters, namely the Hubble parameter H = ȧ

a and the deceleration
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Fig. 5 Behavior of density parameter for α = −1.08448 and β = 0.136 obtained from Hubble data

Fig. 6 Behavior of density parameter for α = −1.09519 and β = 0.137 obtained from Pantheon data

parameter q = − ä
aH2 . The statefinder parameter pair r − s is defined as

r =
...
a

a H3 (39)

s = r − 1

3 (q − 1
2 )

(40)

The plot of s − r is shown in Fig. 7. The statefinder parameter s − r can be an admirable
diagnostic for describing significant dark energy model characteristics. According to the
trajectories in s − r plane, the point (0, 1) corresponds to the �CDM model, Chaplygin gas
lies to the left of the �CDM model, whereas quintessence lie to the right of the �CDM. The
evolution of q − r is shown in Fig. 8. It is observed the point (q, r) = (0.5, 1) corresponds
to SCDM (i.e., matter dominated universe), with the de-sitter (dS) expansion pointing to
(q, r) = (−1, 1) in the future. As a result, the statefinder diagnostics can successfully
distinguish between various dark energy models.

It is worth noting that in the obtained model, the �CDM statefinder pair (0, 1) and cor-
respondingly the dS point (−1, 1) acts as an attractor. The constraints on statefinder from

Hubble data and Pantheon data are obtained as r = −0.039+0.009
−0.009, s = 0.637+0.0075

−0.0075 and
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Fig. 7 Behavior of s − r plane with β = 0.136 and β = 0.137 and varied α

Fig. 8 Behavior of q − r plane with β = 0.136 and β = 0.137 and varied α

r = −0.105+0.008
−0.011, s = 0.434+0.023

−0.012, respectively, [38,39]. It is observed that the model fits
well with Pantheon datasets rather than the Hubble data.

5 Om Diagnostics

The Om diagnostic can be studied as a simplest diagnostic than the statefinder diagnostic
[49,50] because it uses only the first-order time derivative of scale factor, i.e., involving the
Hubble parameter. It is used to clarify various dark energy (DE) models by differentiating �

CDM model. For spatially flat universe, the Om(z) diagnostic is defined as

Om (z) =
(
H(z)
H0

)2 − 1

(1 + z)3 − 1
(41)
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Fig. 9 Behavior of Om vs redshift z with α = −1.08448, β = 0.136 and α = −1.09519, β = 0.137
constrained by Hubble and Pantheon datasets respectively

where H0 is the Hubble constant. According to the behavior of Om(z), different dark energy
models can be described. Phantom type, i.e., ω < −1 corresponds to the positive slope of
Om(z), quintessence type ω > −1 corresponding to negative slope of Om(z). The constant
behavior of Om(z) depicts the �CDM model. In Fig. 9, the Om(z) has a negative slope,
showing quintessence-like behavior indicating the accelerated expansion. As a result, the
model may not resolve the Hubble tension at present. The study in references [51,52] reveals
that a phantom-like component with effective equation of state ω = −1.29 can solve the
current tension between the Planck data set and other prior in an extended �CDM scenario.
It is also worth noting from [53] that the lower tension is attributable to a change in the value
of H0 and an increase in its uncertainty owing to degeneracy with more physics, further
confounding the picture and indicating the need for more probes. While no single idea stands
out as very plausible or superior to all other, solutions including early or dynamical dark
energy, interacting cosmologies and modified gravity are the best alternatives until a better
one emerges.

6 Conclusion

In this study, we considered an extension of the third equivalent representation of GR (the
symmetric teleparallel formulation) called f (Q, T ) gravity, where the non-metricity Q is
non-minimally coupled to the trace T of energy-momentum tensor. We examined the Weyl-
type f (Q, T ) gravity, in which the product of the metric and the Weyl vector determines the
covariant divergence of the metric tensor. As a result, the Weyl vector and metric tensor is
responsible for the geometrical features of the theory. We have considered the case of dust
and obtained the solutions of the field equations. The Hubble parameter is found to be similar
to the power-law form in redshift z. We used the most recent 57 Hubble data sets and 1048
Pantheon supernovae datasets to constrain the model parameters α and β. The model is also
compared to �CDM model shown in the error bar plots. According to the constraints values
of α and β, the deceleration parameter q is seen to be negative. The nature of cosmic evolution
in the Weyl f (Q, T ) gravity is greatly reliant on the values of the functional form of f and
the model parameters involved. As a result, we used the statefinder diagnostics s−r and q−r
and the Om diagnostic analysis for the model to study the nature of dark energy models.
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The constrained values of r and s are obtained as r = −0.039+0.009
−0.009, s = 0.637+0.0075

−0.0075

and r = −0.105+0.008
−0.011, s = 0.434+0.023

−0.012 for Hubble and Pantheon data, respectively. It is
observed that the model fits well with Pantheon SNeIa data than the Hz data. The obtained
model is proven to be helpful in describing the acceleration of present universe in the context
of current observations of Hz and SNeIa. However, it fails to provide redshift transition
from deceleration to acceleration due to the constant value of the deceleration parameter.
Hence, there are many other possibilities to check the viability of Weyl f (Q, T ) theory, such
as considering of the scalar field to study inflation, a theoretical study in the presence of
coupling between geometry and matter, etc.
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Appendix

Here, Table 1 contains the 57 points of Hubble parameter values H(z) with errors σH from
differential age (31 points), and BAO and other (26 points) approaches, along with references.

Table 1 H(z) datasets consisting of 57 data points

z H(z) σH Ref. z H(z) σH Ref.

DA method (31 points)

0.070 69 19.6 [54] 0.4783 80 99 [58]

0.90 69 12 [55] 0.480 97 62 [54]

0.120 68.6 26.2 [54] 0.593 104 13 [56]

0.170 83 8 [55] 0.6797 92 8 [56]

0.1791 75 4 [56] 0.7812 105 12 [56]

0.1993 75 5 [56] 0.8754 125 17 [56]

0.200 72.9 29.6 [57] 0.880 90 40 [54]

0.270 77 14 [55] 0.900 117 23 [55]

0.280 88.8 36.6 [57] 1.037 154 20 [56]

0.3519 83 14 [56] 1.300 168 17 [55]

0.3802 83 13.5 [58] 1.363 160 33.6 [60]

0.400 95 17 [55] 1.430 177 18 [55]

0.4004 77 10.2 [58] 1.530 140 14 [55]

0.4247 87.1 11.2 [58] 1.750 202 40 [55]

0.4497 92.8 12.9 [58] 1.965 186.5 50.4 [60]

0.470 89 34 [59]
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Table 1 continued

z H(z) σH Ref. z H(z) σH Ref.

From BAO and other method (26 points)

0.24 79.69 2.99 [61] 0.52 94.35 2.64 [63]

0.30 81.7 6.22 [62] 0.56 93.34 2.3 [63]

0.31 78.18 4.74 [63] 0.57 87.6 7.8 [67]

0.34 83.8 3.66 [61] 0.57 96.8 3.4 [68]

0.35 82.7 9.1 [64] 0.59 98.48 3.18 [63]

0.36 79.94 3.38 [63] 0.60 87.9 6.1 [66]

0.38 81.5 1.9 [65] 0.61 97.3 2.1 [65]

0.40 82.04 2.03 [63] 0.64 98.82 2.98 [63]

0.43 86.45 3.97 [61] 0.73 97.3 7.0 [66]

0.44 82.6 7.8 [66] 2.30 224 8.6 [69]

0.44 84.81 1.83 [63] 2.33 224 8 [70]

0.48 87.79 2.03 [63] 2.34 222 8.5 [71]

0.51 90.4 1.9 [65] 2.36 226 9.3 [72]
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