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Abstract We evidence the main theoretical properties determining that neutrino oscillations
appear as an interference between fully distinguishable particles. The source of the effect
is identified as the many-particle structure of space of states of a quantum field theory. It is
underlined that the space of states for neutrinos in the SM is the linear completion of the
direct product of the three neutrino Fock spaces. Then, this nature of the state space directly
makes clear that the neutrino oscillations become interference effects among non-identical
particles; which are exclusively generated by essentially many particle states being always
outside the direct product of the three neutrino Fock spaces. This cleanly many-particle effect
is then identified as the central reason breaking the usual single particle quantum mechanical
rule, not allowing the interference between distinguishable particles. The work also exam-
ines the connections with the Vitiello–Blasone analysis about the role of QFT in neutrino
oscillations. It is argued that their evaluation corresponds to a more natural representation of
the perturbative expansion for the applications in neutrino oscillations. However, the results
coincide with the usual and ours simpler evaluations, in the large momentum limit. One
conclusion of the work is that similar interference effects should be present in many physical
systems. By example, among them are all the ones described by a QFT including at least two
kinds of distinguishable particles having similar mass values. For illustrating this point, a
band model of a solid is presented which shows oscillations analogous to the neutrino ones,
but happening between two electron waves propagating in different bands.

1 Introduction

The interference effect between distinguishable particles had been observed long time ago
and started to be investigated in the original works [1–4]. The particular case of such inter-
ference effects: the neutrino oscillations, has been and continues to be a relevant theme of
research in Particle Physics. Since its prediction by B. Pontecorvo in references [4–6], the
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effect had been theoretically as well as experimentally intensively investigated. The discovery
of the real occurrence in nature of these oscillations, in super Kamiokande and Solar neutrino
observations, was a breakthrough step [7,8]. After it, an enormous amount of investigations
about this effect had been performed [9–17]. The oscillations had been studied either through
quantum mechanics (QM) and quantum field theory (QFT) methods [18–21]. In our view the
QFT methods had contributed to clarify some of the assumptions which have been done in
the QM approaches. In particular, the question about the possibility of defining a Fock space
for the flavor eigenfunctions for the electron, muon and tau neutrinos as expressed as linear
superpositions of the really stable propagating neutrino models, had been extensively dis-
cussed [21]. This aspect constitutes an example of a question related with neutrino oscillation
physics that today remain under discussions [22–24]. One point which in our view deserves
research attention is related with the fact that the neutrino oscillations look as an interference
effect, similar to the one occurring in the QM of a single particle, but occurring between fully
distinguishable fermion particles, each one of them described by a wavefunction being in a
separate Fock space [4]. This is a peculiar effect if we consider the idea often used in QM
presentations about that different (distinguishable) particles do not interfere between them.

Thus, it seems of interest to identify the basic reasons why the interference between
neutrinos oscillations violates this rule valid in single particle QM. Another motivating issue
is to understand how general these effects can be, in order to estimate the possibility of similar
realizations in other physical systems.

In this work we address these two questions. For this purpose a proper use of the space
of states in quantum field theory of the SM should be taken into account. A model involving
only two distinguishable types (flavors) of relativistic particles is considered for the sake
of clearness. In first place, it is argued that to describe interference between two fermion
flavors in analogy with the neutrino oscillations measurements, the space of states should
not be the direct product of the Fock spaces associated with the two fermion particles. This
conclusion is in complete agreement with the usual application of QFT to neutrino oscillations
today. This is because such a direct product space of states will be equivalent to impose a
superselection rule for defining the allowed physical states. But, such rules are not assumed
in the formulation of the SM actually employed to describe the neutrino physics.

Therefore, the space of the states of the SM model is considered here in the usual way:
as the linear completion of the direct product of the two neutrino Fock states. That is, after
assuming valid the superposition principle: the sum of physical states is also a physical state.
This implies that the linear combination with arbitrary coefficients of the external products
of the states in each of the two neutrino Fock spaces should be also a physical state. Further,
and in order to reproduce the usual results for neutrino oscillations, rotated flavor creation
and annihilation operators are defined in the usual way by linear combinations of the creation
and annihilation operators for stable propagating neutrino modes solving the Dirac equation.
As it is known, these rotated flavor fields at a given time, are linear combinations of the
propagating particles modes. Moreover, it is checked that under a measurement in such a
propagating states the probability of the initial state oscillates.

Further, we also discuss the connections of our discussion with the one of Vitiello and
Blasone in reference [20]. In general, it is shown that the generating functional of the Green
functions of the theory based in the propagating neutrinos coincides with the generating
functional constructed, by taking the mean value in the vacua defined for electron and muon
fields, of the evolution operator expressed in terms of these same fields fields (before the
infinite volume limit is taken) [20,25]. This shows that the analysis in [25] gives a most
natural representation of the perturbative expansion for applications in neutrino oscillations
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problems. However, their results coincide with the usual and ours simpler evaluations in
the required infinite momentum limit for the actual experimental observations.

Finally, we present a condensed matter model in which oscillation modes appear which
are associated with the interference between two electrons pertaining different bands of a
solid. The electrons are assumed to have a common quasimomenta and slightly different band
energies. The oscillation of the amplitude of measuring the defined superposition state after a
time interval is given by the same formula describing the neutrino oscillations. Remarks are
also given about a possible way of experimentally generating the considered superposition
of many body states. It is argued that creating a superposition of photon waves, being sin-
tonized each of them with the valence to conduction bands energy differences at the chosen
quasimomentum of the particles, could be expected to generate the superposed many body
states in first-order perturbation theory.

We estimate that the presented discussion clarifies how the usual QFT description of
neutrino oscillations allows to predict quantum interference between various distinguishable
particles. These conclusions emerge simply, because there is interference between two single
particle states being in different Fock spaces (associated with not identical particles). This
interference appears between two particles created in two different Fock spaces and added as
following the superposition principle for many-body states. Therefore, the neutrino interfer-
ence is evidenced as a clean and general many-body effect, invalidating the single-particle
quantum mechanical rule (Bargmann rule) which excludes the interference between non-
identical particles. The presented discussion indicates the validity of what can be evaluated
as an important property of any QFT generalization of the Quantum Mechanics: the opening
of the possibility for observing interference between many kinds of distinguishable particles.

The plan of the presentation is as follows. In Sect. 2, the two relativistic neutrino free QFT
is presented. The Hamiltonian is expressed in terms of the two fields, and the commutation
properties among these are written. This allows to define the creation and annihilation opera-
tors in momentum space for each of the two flavors and their commutation relations. Section 3
defines the space of states of the QFT associated with the model. Finally, Sect. 4 shows how
the many body nature of the space of states determines the oscillation between the two types
of neutrinos in the considered model. Next, in Sect. 5 the connection of the evaluation done
here and the ones in references [20,25] are discussed. The last Sect. 6 presents the condensed
matter model in which it is argued that oscillations modes being similar to the neutrino ones
could be measured. The summary reviews the discussion and results.

2 The relativistic two neutrino model

Let us consider the mentioned in the Introduction model of two free relativistic massive
fermions with flavor indices ν = 1, 2. We will start from the quantum theory defined by the
Hamiltonian operator

H =
∑

ν=1,2

∫
dx ψν(x,t)(−i γ.∇ + mν)ψν(x,t), (1)

expressed in terms of a four components r = 1, 2, 3, 4 fermion field ψ(x,t)

ψ(x,t) = ψr (x,t) ≡

⎛

⎜⎜⎝

ψ1(x,t)
ψ2(x,t)
ψ3(x,t)
ψ4(x,t)

⎞

⎟⎟⎠ . (2)
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The fields in terms of the annihilation and creation operators bν,s (p), b+
ν,s

(p) for the two
types of particles ν = 1, 2 having helicities s = ±1, and the corresponding annihilation and
creation operators for their antiparticles dν,s (p), d+

ν,s
(p), ν = 1, 2, have the usual expansions

ψν(x, t) =
∑

p,ν,s

(ων,s(p, x)bν,s (p)

+ vν,s(p, x)d+
ν,s

(p)), (3)

ψ+
ν (x, t) =

∑

p,ν,s

(ω∗
ν,s(p, x)b+

ν,r,s
(p)

+ v∗
ν,s(p, x)dν,s (p)), (4)

in which the ων,s(p) are the positive energy solutions of the Dirac equation with helicity
s = ±1 for each of the two flavors ν = 1, 2, defined as [26]

wν,+(p,x) = exp(ip.x)√
L3

√
2
√

2(n3 + 1)

√
εν(p) + mν

εν(p)

⎛

⎜⎜⎝

n3 + 1
n1 + in2

|p|
εν(p)+mν

(
n3 + 1
n1 + in2

)

⎞

⎟⎟⎠ , (5)

wν,−(p,x) = exp(ip.x)√
L3

√
2
√

2(n3 + 1)

√
εν(p) + mν

εν(p)

⎛

⎜⎜⎝

−n1 + in2

n3 + 1
|p|

εν(p)+mν

(−n1 + in2

n3 + 1

)

⎞

⎟⎟⎠ . (6)

The antiparticle functions vν,+(p) with helicity s = ±1 for each of the two flavors
ν = 1, 2, have the expressions

vν,+(p) = exp(−ip.x)√
L3

√
2
√

2(n3 + 1)

√
εν(p) + mν

εν(p)

⎛

⎜⎜⎝
− |p|

εν(p)+mν

(
n3 + 1
n1 + in2

)

n3 + 1
n1 + in2

⎞

⎟⎟⎠ , (7)

vν,−(p) = exp(−ip.x)√
L3

√
2
√

2(n3 + 1)

√
εν(p) + mν

εν(p)

⎛

⎜⎜⎝
− |p|

εν(p)+mν

(−n1 + in2

n3 + 1

)

−n1 + in2

n3 + 1

⎞

⎟⎟⎠ . (8)

The energies associated with the two types of particles are

εν(p) =
√
p2 + m2

ν, ν = 1, 2. (9)

The field operators and the creation and annihilation ones for the two kinds of particles
and antiparticles satisfy

[
ψν(x,t), ψ

+
ν′ (x′,t)

]
+ = I δν,ν′δ(x-x′), (10)

[
bν,s(p), b+

ν′,s′(p
′)
]

+ = δν,ν′δs,s′δ
(K )

p,p′ , (11)
[
dν,s(p), d+

ν′,s′(p
′)
]

+ = δν,ν′δs,s′δ
(K )

p,p′ , (12)
[
bν,s(p), bν′,s′(p

′)
]
+ = 0, (13)

[
b+
ν,s(p), b+

ν′,s′(p
′)
]

+ = 0, (14)
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[
dν,s(p), dν′,s′(p

′)
]
+ = 0, (15)

[
d+
ν,s(p), d+

ν′,s′(p
′)
]

+ = 0. (16)

where, δ
(K )

p,p′ is the Kronecker Delta

δ
(K )

p,p′ = 1 if p = p′
0 if p �= p′ , (17)

and p are the momenta satisfying periodicity conditions in a large cubic box having a length
size L and volume L3. That is, if L = Na and N is even, the components of the momenta
p = (p1, p2, p3) are given as

p1 = 2π

a

m1

N
,−N

2
≤ m1 <

N

2
,

p2 = 2π

a

m2

N
,−N

2
≤ m2 <

N

2
,

p3 = 2π

a

m3

N
,−N

2
≤ m3 <

N

2
.

(18)

3 The space of states in the quantum field theory

After constructed the second quantization of the above defined simple non- relativistic two
massive neutrinos system, we will consider the main issue in this work: to investigate the
influence of the space of states of the theory, on the possibility for the description of the
interference between different distinguishable particles as it occurs between the measured
neutrino oscillations.

It can be started by remarking that in the literature, it has been discussed the possibility
that when you have distinguishable particles, the correct space of states of the combined
system could be the direct product of the Fock spaces which is associated with each of
the distinguishable particles. In connection with this view, it should be stressed that this
assumption is equivalent to establish a superselection rule not admitting the addition of
states of the different Fock species. The establishment of superselection rules in QFT is
allowed for sure in some cases [26]. That is the situation with respect to the electric charge
in which you can adopt to not allow the superposition of states showing different amounts
of electric charge. However, in such cases, the elimination of these type of superpositions is
“dynamically” implemented, since the interaction operators conserve the charge of the states
over which they act. Therefore, if we assume that the initial states over which the evolution
operator acts have a well-defined amount of electric charge, any state after acting over it with
evolution operator will have the same eigenvalue of the charge operator. However, in problems
where the interaction operators have no property restricting the resulting states to the same
physical subspace after their action, it seems not possible to impose such superselection
rules. Specifically, for the case of the SM, and in particular for its neutrino sector, there are
no superselection rules restricting the space of states.

Then, as it was mentioned, the space of states of the simple QFT model constructed here
will be examined. The aim is to determine the conditions for being able to describe the
observed neutrino oscillations. Below, in the context of the model constructed in the past
section, the space of states will be considered as the linear completion of the direct product
of the two Fock spaces, for each of the two distinguishable particles.
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Consider the two Fock spaces Fν , ν = 1, 2 generated by the before defined creation
operators for each of the two particles. The states of a complete basis in the Fock spaces of
each separate particles will be indicated as

∣∣	 fν

〉
Fν

, ν = 1, 2 where fν is an index for any
of the states in the Fock space of type ν . Then, the states in the direct product of the two
Fock spaces can be written as

|
〉F1⊗F2 =
∑

f1

∑

f2

C f1
C f2

∣∣	 f1

〉
F1

⊗ ∣∣	 f2

〉
F2

=
⎛

⎝
∑

f1

C f1

∣∣	 f1

〉
⎞

⎠⊗
⎛

⎝
∑

f2

C f2

∣∣	 f2

〉
F2

⎞

⎠ . (19)

But, as mentioned before, this class of states, for a and b different from zero constants,
excludes superpositions of the form

a
∣∣	 f1

〉
F1

⊗ ∣∣	 f2

〉
F2

+ b
∣∣∣	 f ′

1

〉

F1
⊗
∣∣∣	 f ′

2

〉

F2
,

if ( f1, f2) also differs form ( f ′
1, f ′

2). This exclusion is related with the fact that the direct
product of Fock states is what is required to implement a superselection rule. The scalar
product of two states pertaining to the direct product can be defined as

〈
 ∣∣
 ′〉
F1⊗F2

=
∑

f1,

C∗
f1,
C ′

f1,
×
∑

f2

C∗
f2
C ′

f2
, (20)

and normalized states for each component can be defined as separately satisfying
∑

f1,

C∗
f1,
C f1,

= 1, (21)

∑

f2

C∗
f2
C f2

= 1. (22)

However, the full space of states of the model is defined by the linear completion of
the formerly defined direct product space. This linear completion, that will be called as
C(F1 ⊗ F2) can be defined as the set of states generated by the arbitrary coefficients C f1, f2
in the superposition of the form

|
〉C(F1⊗F2) =
∑

f1, f2

C f1, f2

∣∣	 f1

〉
F1

⊗ ∣∣	 f2

〉
F2

. (23)

It is evident that such states cannot be always expressed in the form of a direct product of
linear spaces

⎛

⎝
∑

f1

C f1

∣∣	 f1

〉
⎞

⎠

F1

⊗
⎛

⎝
∑

f2

C f2

∣∣	 f2

〉
F2

⎞

⎠ . (24)

The scalar product, assumed that the basis states in both Fock spaces are normalized, is
defined as

〈
 ∣∣
 ′〉
C(F1⊗F2)

=
∑

f1, f2

C∗
f1, f2

C ′
f1, f2

. (25)
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Normalized states satisfy

1 =
∑

f1, f2

C∗
f1, f2

C ′
f1, f2

. (26)

Therefore, in general, and in the absence of superselection rules, the Fock space of any
QFT of a system of a number of n p distinguishable particles (being either bosons or fermions)
is interpreted as the whole set of states generated by the arbitrary coefficients C f1, f2,..., fn p

of
the form

|
〉C(F1⊗···⊗·Fn p ) =
∑

f1, f2,..., fn p

C f1, f2,..., fn p

∣∣	 f1

〉
F1

⊗ ∣∣	 f2

〉
F2

⊗ · · · ⊗
∣∣∣	 fn p

〉

Fn p

,

(27)
〈

|
 ′〉

C(F1⊗···⊗·Fn p )
=
∑

f1, f2

C∗
f1, f2,..., fn p

C ′
f1, f2,..., fn p

, (28)

1 =
∑

f1, f2

C∗
f1, f2,..., fn p

C ′
f1, f2,..., fn p

. (29)

4 Neutrino oscillations and the space of states

Let us now consider the QFT defined in Sect. 2. The space of the physical states of the theory
was already defined in past section. The many states only including one of the two types of
particles (let say of flavor ν = 1 or flavor ν = 2) are described by the Fock space (F1 or
F2) generated by the creation operators of the specific kind of flavor. Therefore, let us argue
below that in adopted space of states defined by the linear completion of the direct product of
the two Fock space C(F1 ⊗ F2) the neutrino-like oscillations can be effectively described.
Conversely, the oscillations cannot be directly explained if we would like to assume the direct
product of the two Fock space as defining the physical space of states for the system

4.1 Space of states C(F1 ⊗ F2)

As they are well defined in this space, we will examine the states of the form

|
〉C(F1⊗F2) =
∑

s=±
C1,s,b

+
1,+1 |0〉F1 ⊗ |0〉F2 + ∣∣	 f1

〉
F1

⊗ C f2,s b
+
2,+1 |0〉F2

=
∑

s=±

(
C1,s,b

+
1,+1(p) + C f2,s b

+
2,+1(p)

)
|0〉F1 ⊗ |0〉F2 , (30)

describing states in which a one particle state with negative helicity s = −1 is created in
the Fock space F1 (with zero particles in the Fock space F2) is superposed with a zero
particle created in F1 with one particle with helicity s = −1 created in F2 . Both particles
have the same momentum p. As it can be noted from the second line of the equation, these
states are generated by a linear combination of field operators describing two different flavor
modes both with a common value of the helicity and momentum. The form of these states
was selected in other to more closely represent the situation for the neutrino oscillation
measurement. The assumption of the physical nature of these states, then allow to define
physical quantities (Hermitian operators constructed in terms of the employed fields) in
terms of these superposition of fields, which create particles in different Fock spaces as the
above defined ones.
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4.2 Flavor rotated fields

It is possible to define now flavor rotated fields, as linear functions of the original fields
in terms of which it is possible to define sets of physical quantities as Hermitian operator
constructs. These definitions are here discussed in order to further consider measurements,
describing quantum oscillations of amplitudes. Let us define the flavor rotated electron and
muon like fields bνe,s(p), bνμ,s (p) (which are not the stable neutrino fields b1,s, b2,s) as

bνe,s (p) = (cos(θ)b1,s(p) + sin(θ)b2,s(p)
)
, (31)

b+
νe,s (p) =

(
cos(θ)b+

1,s(p) + sin(θ)b+
2,s(p)

)
, (32)

bνμ,s (p) = (− sin(θ)b1,s(p) + cos(θ)b2,s(p)
)
, (33)

b+
νμ,s (p) =

(
− sin(θ)b+

1,s(p) + cos(θ)b+
2,s(p)

)
. (34)

These operators, as the previous ones, also satisfy the following commutation relations
[
bνe,s(p), bνe,s′(p

′)
]
+ = δs,s′δ

(K )

p,p′ (35)
[
b+
νμ,s(p), b+

νμ,s′(p
′)
]

+ = 0. (36)

We will call bνe,,s(p) as the electron neutrino field of helicity s and the bνμ,,s(p) as the muon
neutrino of helicity s. The inverse transformation takes the form

b1,s (p) = (cos(θ)bνe,s(p) − sin(θ)bνμ,s(p)
)
, (37)

b+
1,s (p) =

(
cos(θ)b+

νe,s(p) − sin(θ)b+
νμ,s(p)

)
,

b2,s (p) = (sin(θ)bνe,,s(p) + cos(θ)bνμ,s(p)
)
,

b+
2,s (p) =

(
sin(θ)b+

νe,s(p) + cos(θ)b+
νμ,s(p)

)
. (38)

These new operators define creation and annihilation operators of the flavor rotated state
over the vacuum. By example, the creation of a single particle state with rotated flavor νe or
νμ , momentum p and helicity s are defined by

b+
νe,s(p) |0〉C(F1⊗F2) = b+

νe,s(p) |0〉F1 ⊗ |0〉F2 , (39)

b+
νμ,s(p) |0〉C(F1⊗F2) = b+

νμ,s(p) |0〉F1 ⊗ |0〉F2 . (40)

Now, it is possible to define the number of rotated flavor particles as the operator

�θ =
∑

p

∑

s=±1

(b+
νe,s(p)bνe,s(p) − b+

νμ,s(p)bνμ,s(p)), (41)

which has eigenvectors and eigenvalues

�θb
+
νe,s(p) |0〉C(F1⊗F2) = b+

νe,s(p) |0〉C(F1⊗F2) , (42)

�θb
+
νμ,s(p) |0〉C(F1⊗F2) = −b+

νμ,s(p) |0〉C(F1⊗F2) . (43)

Since the mentioned states are eigenfunctions of a physical observable (the Hermitian
operator �θ ), the result of the measurement of the rotated flavor eigenvalue should lead to
the contraction of the wave-packet to one of the eigenstates of �θ . Therefore, the probability
of the measurement will be the square of the amplitude defined by the scalar product of those
eigenstates and the eigenstate of the physical quantity being measured.
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It can be remarked that a similar transformation can be also implemented for the antiparticle
annihilation and creation operators dν,s(p) and d+

ν,s(p).

4.3 Neutrino oscillations description: νe → νe

Let assume that an electron neutrino with helicity s = −1 had been created over the
vacuum at time equal to zero defining the state

∣∣φνe,−1(0)
〉 = b+

νe,−1(p) |0〉C(F1⊗F2)

=
(

cos(θ)b+
1,s(p) + sin(θ)b+

2,s(p)
)

|0〉C(F1⊗F2) . (44)

Now, consider the evolution of the same electron neutrino state after a time t . Then,
acting with the evolution operator over the created state at zero time, gives for the state at
time t

∣∣φνe,−1(t,p)
〉 = U (t)

∣∣φνe,−1(0,p)
〉

= exp(−i Ht)
∣∣φνe,−1(0,p)

〉

=
(

exp(−iε1(p)t) cos(θ)a+
1,−1(p) + exp(−iε2(p)t) sin(θ)a+

2,−1(p)
)

|0〉C(F1⊗F2) ,

(45)

where ε1 and ε2 are the energies of the mass eigenvalue neutrinos.
We can now examine the projection amplitude of the above evolved state over the electron

neutrino state. Then, it is needed to evaluate the scalar product

C(F1⊗F2) 〈0| bνe,−1(p′)
∣∣φνe,−1(t,p)

〉 = C(F1⊗F2) 〈0| (cos(θ)a1,−1(p) + sin(θ)a2,−1(p)
)

×
(

exp(−iε1(p)t) cos(θ)a+
1,s(p)

+ exp(−iε2(p)t) sin(θ)a+
2,s(p)

)
|0〉C(F1⊗F2)

= cos(θ)2 exp(−iε1(p)t) + sin(θ)2 exp(−iε2(p)t).
(46)

Therefore, the probability for the detection of the electron neutrino mode at any time
instant after its creation at zero time, becomes

Pνe→νe (t) = ∣∣C(F1⊗F2) 〈0| bνe,−1(p′)
∣∣φνe,−1(t,p)

〉∣∣2

= ∣∣cos(θ)2 exp(−iε1(p)t) + sin(θ)2 exp(−iε2(p)t)
∣∣2

= (cos(θ)2)2 + (sin(θ)2)2

+ cos(θ)2 sin(θ)2(exp(−iε1(p)t + iε2(p)t)

+ exp(iε1(p)t − iε2(p)t))

= (cos(θ)2)2 + (sin(θ)2)2

+ 2 cos(θ)2 sin(θ)2 cos ((ε1(p) − ε2(p))t)

= 1 − 2 cos(θ)2 sin(θ)2 (1 − cos ((ε1(p) − ε2(p))t))

= 1 − sin(2θ)2

2
(1 − cos ((ε1(p) − ε2(p))t)) . (47)
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Let us consider now the relativistic approximation

|p|  m1,m2, (48)

which allows to derive the following relation

ε2(p) − ε1(p) =
√
m2

2 + p2 −
√
m2

1 + p2

= |p|
⎛

⎝
√

1 + m2
2

p2 −
√

1 + m2
1

p2

⎞

⎠

= 1

2|p| (m
2
2 − m2

1) + · · · (49)

Then, when the particles are ultra-relativistic, the propagation time for traveling along a
distance R is given as

t = R

c
= R, (50)

thanks to the natural units c = 1 being used. Henceforth, the probability formula for the
transition between an electron neutrino state into another electron neutrino state as a
function of the measurement distance R gets the form

Pνe→νe (t) = ∣∣C(F1⊗F2) 〈0| bνe,−1(p′)
∣∣φνe,−1(t,p)

〉∣∣2

= 1 − sin(2θ)2

2

(
1 − cos

(
− 1

2|p| (m
2
2 − m2

1)R

))

= 1 − sin(2θ)2

2

(
1 − cos

(
−2π

R

L

))
,

L = 4π |p|
m2

2 − m2
1

. (51)

which reproduces the usual formula for the neutrino oscillations in terms of the oscillation
and observation distances L and R , the momentum |p| and the neutrino masses m1,m2.

In a similar way it can be evaluated the probability of measuring a muon neutrino in the
same state resulting from creating an electron neutrino at zero time. The result is

Pνe→νμ(t) = ∣∣C(F1⊗F2) 〈0| bνμ,−1(p′)
∣∣φνe,−1(t,p)

〉∣∣2

= sin(2θ)2

2

(
1 − cos

(
−2π

R

L

))

= 1 − Pνe→νe (t). (52)

Therefore, the discussion presented indicates that the nature of the state space (being the
completion of the direct product of the two Fock spaces QFT) is a main reason allowing to
explain the interference between distinguishable particles, which neutrino oscillation exper-
iments show to exist. Therefore, the basic property allowing to break the usual single particle
quantum mechanical exclusion of the interference between non-identical particles, is essen-
tially the many-body character of the states that produce the oscillations. This many-body
nature follows, because the neutrino interfering states are always in two different Fock spaces,
which are able to interfere exclusively, because the assumed validity of general superposition
principle for many-body states in the associated QFT. Note that the effect cannot occur if the
space of states would be the direct product of the two Fock spaces.
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Therefore, the main conclusion of this work follows: all the physical systems showing a
space of states given by the linear completion of at least two Fock spaces corresponding to
non-identical particles, can exhibit analogous of the neutrino oscillations effects, reflecting
the interference between the participating distinguishable particles.

5 The link with the Vitiello–Blasone analysis

It is helpful to discuss the connection of the here investigated problems and the existing
discussion about the role of QFT in the neutrino oscillations effect [20,25]. In this section,
we will argue that the analysis in that works leads to a more natural representation of the
perturbative expansion for the applications to neutrino oscillations. However, although their
evaluation in general can be more precise, they coincide with the usual and ours simpler
calculations in the infinite momentum limit [20,25].

To start, consider the evolution operator associated with neutrinos with a well defined
momentum

U [ην, ην] = T

⎡

⎣exp

⎧
⎨

⎩i
∫ T

−T
dx
∑

ν=1,2

(
ην(x)
ν(x) + 
ν(x)ην(x)

)
⎫
⎬

⎭

⎤

⎦ , (53)

in which the fermion sources ην, ην associated with the propagating neutrino fields defined
in (3) and (4) are introduced, 2T is a large time interval difference between the period in with
the initial state is constituted in terms in free particle states and the final period in which the
scattered state is defined in terms of the out free states. But, the electron and muon fields can
be written in terms of the propagating fields by using the Pontecorvo transformation


e(x) = cos(θ)
1(x) + sin(θ)
2(x)

= G−1(θ, t)
1(x)G(θ, t), (54)


μ(x) = − sin(θ)
1(x) + cos(θ)
2(x)

= G−1(θ, t)
2(x)G(θ, t), (55)

in which G−1(θ, t) is the time-dependent operator generating those transformations as
defined in references [20,25].

But, using the properties of the time ordering rule, the evolution operator can be expressed
as a product of ordered infinitesimal time evolution operators during small periods �t , in
the following form

U [ην, ην] = T

⎡

⎣exp

⎧
⎨

⎩i
∫ T

−T
dx
∑

ν=1,2

(
ην(x)
ν(x) + 
ν(x)ην(x)

)
⎫
⎬

⎭

⎤

⎦

=
N∏

n=0

exp

⎧
⎨

⎩i �t
∫

d−→x
∑

ν=1,2

(
ην(tn,

−→x )
ν(tn,
−→x ) + 
ν(tn,

−→x )ην(tn,
−→x )
)
⎫
⎬

⎭ ,

(56)

where the time interval 2T had been divided by N + 1 instants tn = −T + 2T
N n , n =

0, 1, . . . , N , with �t = 2T
N for a large integer value N . After using relations (54, 55) in (53),

the following expression can be written
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U [ην, ην ] = G(θ, T )G−1(θ, T )

N∏

n=0

G(θ, tn)G
−1(θ, tn) exp

⎧
⎨

⎩i�t
∫

d−→x
∑

ν=1,2

( ην(tn,
−→x )
ν(tn,

−→x )

+ 
ν(tn,
−→x )ην(tn,

−→x ) )
}
G(θ,−T )G−1(θ,−T )

= G(θ, T )

N∏

n=0

exp

⎧
⎨

⎩i �t
∫

d−→x
∑

ν=1,2

( ην(tn,
−→x )G−1(θ, tn)
ν(tn,

−→x )G(θ, tn−1)

+ G−1(θ, tn)
ν(tn,
−→x )G(θ, tn−1)ην(tn,

−→x ) )
}
G−1(θ,−T ). (57)

In order to allow approximating some generators associated with contiguous time instant
tn , the following relations will be considered

�t G−1(θ, tn ± �t) = �t G−1(θ, tn) + O(�t2), (58)

�t G(θ, tn ± �t) = �t G(θ, tn) + O(�t2). (59)

The terms being of second order in �t can be omitted after limit �t → 0 will be taken
for reproducing the time integral in formula (57).

Employing relations (58, 59) expression (57) can be rewritten as follows

U [ην, ην] = G(θ, T )

N∏

n=0

exp

⎧
⎨

⎩i �t
∫

d−→x
∑

ν=1,2

(ην(tn,
−→x )G−1(θ, tn)
ν(tn,

−→x )G(θ, tn)

+ G−1(θ, tn)
ν(tn,
−→x )G(θ, tn)ην(tn,

−→x ))
}
G−1(θ,−T )

= G(θ, T )

N∏

n=0

exp

{
i �t

∫
d−→x (η1(tn,

−→x )
e(x) + 
e(tn,
−→x )η1(tn,

−→x )

+ η2(tn,
−→x )
μ(x) + 
μ(tn,

−→x )η2(tn,
−→x ))

}
G−1(θ,−T ). (60)

The above expression leads to the following relation between the evolution operator as
expressed in terms of the propagating fields or in terms of the electron and muon fields:

U [ην, ην] = G(θ, T ) T

[
exp

{
i
∫

dx(η1(x)
e(x) + 
e(x)η1(tn,
−→x ) .

+ η2(x)
μ(x) + 
μ(x)η2(x))}]G−1(θ,−T ). (61)

Note that in expression (61), the auxiliary sources corresponding to the propagating fields
are now associated with the electron and muon fields as follows

η1 → 
e

η1 → 
e,

η2 → 
μ,

η2 → 
μ.

(62)

We can now also write the corresponding two expressions for Green’s functions generating
functional as follows. The functional is defined as the mean value in the vacuum of the
propagating neutrinos of the evolution operator as expressed in terms of the propagating
fields. The vacuum associated with the propagating neutrinos can be written as

|0〉1,2 =
∏

−→p

(
|0〉1,

−→p |0〉2,
−→p
)

, (63)
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and taking the mean value of the evolution operator and employing formula (61), the result
can be written in the form

Z [η1, η1, η2, η2] =1,2
〈
0|U [ην, ην ]|0

〉
1,2

=1,2 〈0|G(θ, T ) T

[
exp

{
i
∫

dx(η1(tn,
−→x )
e(x) + 
e(tn,

−→x )η1(tn,
−→x )

+ η2(tn,
−→x )
μ(x) + 
μ(tn,

−→x )η2(tn,
−→x ))]G−1(θ,−T ) |0〉1,2 . (64)

This expression shows that the evaluation of the oscillations done in reference [25], through
calculating the mean value of the time ordered product of field operators in the electron in
electron-muon vacuum state

|0, t〉e,μ = G−1(θ, t) |0〉1,2 , (65)

follows from a rearrangement of the original perturbative expansion which is most appro-
priate to consider neutrino oscillation effects. In our evaluation we have used a simpler, but
compatible method, of creating electron neutrino states in the propagating neutrino vacuum
and after evolving them in time. In ending, it should be remarked that the evaluation of the
oscillations in Sect. 4 and references [20,25], both give oscillation formulae for general val-
ues of the momenta, which might differ. However, as it is already noted in reference [25],
when the the large momentum approximation | −→p | >> m1,m2 is taken, their calculation
coincides with the usual evaluation, which is also equal to the one done in Sect. 4.

6 A condensed matter primer of oscillations

In this final section we intend to exemplify how the underlined Many Body nature of the
neutrino oscillations implies that similar effects should happen in Condensed Matter Physics
and more generally, in a variety of problems that can be described by using Many Body
theory. For this purpose, let us consider a semiconductor material showing a single filled
valence band and other two empty conduction bands. These energy bands are illustrated in
Fig. 1. The Hamiltonian of the model is

H =
∫

d−→x (
+
1 (

−→x ) ε1(−i
−→∇) 
1(

−→x )

+
+
2 (

−→x ) ε2(−i
−→∇) 
2(

−→x )

+
+
v (

−→x ) εv(−i
−→∇) 
v(

−→x )), (66)

in which the field operators are defined as


1(
−→x ) =

∑

−→p

1√
V

exp(i −→p .
−→x )a1(

−→p ), 
2(
−→x ) =

∑

−→p

1√
V

exp(i −→p .
−→x )a2(

−→p ),

(67)


+
1 (

−→x ) =
∑

−→p

1√
V

exp(−i −→p .
−→x )a+

1 (
−→p ), 
+

2 (
−→x ) =

∑

−→p

1√
V

exp(−i −→p .
−→x )a+

2 (
−→p ),

(68)
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Fig. 1 The figure illustrates the three bands of the model: the two empty conduction bands and the filled valence
one. Two electrons with the same momentum but moving in different conduction bands are considered


v(
−→x ) =

∑

−→p

1√
V

exp(i −→p .
−→x )a+

v (
−→p ), 
+

v (
−→x ) =

∑

−→p

1√
V

exp(−i −→p .
−→x )a+

v (
−→p ),

(69)

and for the dispersion relations of the bands, for definiteness, we will choose with the momen-
tum dependence defined as follows

ε1(
−→p ) =

√
m2

1 + −→p 2, (70)

ε2(
−→p ) =

√
m2

2 + −→p 2, m1 > m2, (71)

εv(
−→p ) = −

√
m2

v + −→p 2. (72)

The creation and annihilation operators for electrons in the empty and filled bands satisfy

[a+
1 (

−→p ), a1(
−→p ′)]+ = δK (

−→p ,
−→p ′), (73)

[a1(
−→p ), a1(

−→p ′)]+ = [a+
1 (

−→p ), a+
1 (

−→p ′)]+ = 0 (74)

[a+
2 (

−→p ), a2(
−→p ′)]+ = δK (

−→p ,
−→p ′), (75)

[a2(
−→p ), a2(

−→p ′)]+ = [a+
2 (

−→p ), a+
2 (

−→p ′)]+ = 0, (76)

[a+
v (

−→p ), av(
−→p ′)]+ = δK (

−→p ,
−→p ′), (77)

[av(
−→p ), av(

−→p ′)]+ = [a+
v (

−→p ), a+
v (

−→p ′)]+ = 0, (78)

and all the particular operators in a filled or empty band, anti-commute with all the other
types of operators in different bands.

In terms of the defined operators, the Hamiltonian becomes

H = 1

V

∑

−→p

(
a+

1 (
−→p ) ε1(

−→p ) a1(
−→p ) + a+

2 (
−→p ) ε2(

−→p ) a2(
−→p ) + a+

v (
−→p ) εv(

−→p ) av(
−→p )
)
.

(79)
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The ground state of the system corresponds to the whole valence band filled of electron
states and all the conduction bands states empty

|	G〉 =
∏

−→p

(
|0〉1,

−→p |0〉2,
−→p
)∏

−→p
a+
v (

−→p )|0〉v,
−→p . (80)

The construction above is chosen in the Dirac’s sea approach to quantization, in which all
the valence band electron states are filled.

Let us now consider a state defined at the initial time as

|	(0)〉osc = (cos(θ)a+
1 (

−→p ) + sin(θ)a+
2 (

−→p )) |	G〉 . (81)

That is, as a superposition of two states created each one by acting over the ground state
with a different electron creation operator: The creation of an electron of quasimomentum−→p in one of the two empty conduction bands and the creation of another electron with the
same momentum, but in other, closely laying in energy, conduction band.

This is a state that should be admitted in the Hilbert space of the physical states of the
problem. It corresponds with a well-defined charge two units larger than the ground state one.
Note that, if we had to define the state by using an electron a creation operator and an also
electron but annihilation operator, the application of the superselection rule for the electric
charge will not allow the chosen combination, because it superposes states with different
charges.

Then, consider the time evolution of the considered state as

|	(t)〉osc = exp(−i H t) (cos(θ)a+
1 (

−→p ) + sin(θ)a+
2 (

−→p )) |	G〉 . (82)

The matrix element determining the probability of measuring the initial state |�(0)〉osc
after the time interval t had passed is

osc 〈	(0) |	(t)〉osc =osc 〈	(0) | exp(−i H t) (cos(θ)a+
1 (

−→p ) + sin(θ)a+
1 (

−→p )) |	G〉
=osc 〈	(0) | exp(−i ε1(

−→p )t) cos(θ)a+
1 (

−→p )

+ exp(−i ε2(
−→p )t) sin(θ)a+

2 (
−→p ) |	G〉

=osc 〈	G |(cos(θ)a1(
−→p ) + sin(θ)a2(

−→p ))

× (exp(−i ε1(
−→p )t) cos(θ)a+

1 (
−→p ) + exp(−i ε2(

−→p )t) sin(θ)a+
2 (

−→p )) |	G〉
= (exp(−i ε1(

−→p )t) cos2(θ) + exp(−i ε2(
−→p )t) sin2(θ)). (83)

The evaluation of the squared modulus gives the probability

|osc 〈	(0) |	(t)〉osc |2 = exp(−i ε1(
−→p )t) cos2(θ) + exp(−i ε2(

−→p )t) sin2(θ)|2
= cos4(θ) + sin4(θ) + cos2(θ) sin2(θ)

× (exp(i(ε1(
−→p ) − ε2(

−→p ))t) + exp(−i(ε1(
−→p ) − ε2(

−→p ))t))

= (cos2(θ) + sin2(θ))2

+ 2 cos2(θ) sin2(θ)(cos((ε1(
−→p ) − ε2(

−→p ))t) − 1)

= 1 + 2 cos2(θ) sin2(θ)(cos((ε1(
−→p ) − ε2(

−→p ))t) − 1). (84)

Therefore, we arrive to the mentioned conclusion: the considered semiconductor systems
could show oscillation effects, being similar to the neutrino oscillations ones, between parti-
cles being in different conduction bands, assumed that some physical processes become able
to generate the states |	(t)〉osc.
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6.1 Possibilities for experimental generation of the states |	(t)〉osc

The examined problem involves two electron states. However, they are not the usual two
electron states which are generated by the action on the ground state of products of two
electron creation operators. On another hand they are analogous to the electron neutrino
states which are superpositions of states obtained by acting on the vacuum with two different
propagating neutrino creation operators. Thus, the question arises about how feasible could
be the creation of such states in the Condensed Matter Physics laboratories. Still we have not a
completely clear answer to this question. However, below we comment about one possibility
for generating such states.

Since those states are fermion ones, the interaction terms able to generate them in scattering
should be even in fermion operators. Let us assume that there is a superposition of two short
pulses of photon energy propagating through the considered solid in a given axis, and with
their two central photon energies of their energy spectra tuned at values

e1 = ε1(
−→p ) − εv(

−→p ), (85)

e2 = ε2(
−→p ) − εv(

−→p ). (86)

But, in the first approximation, each of the two photon pulses can be expected to separately
create states of the form

a+
1 (

−→p )av(
−→p ) |	G〉 , (87)

a+
1 (

−→p )av(
−→p ) |	G〉 . (88)

In one of the states an electron hole pair is created, with the conduction electron being in one
of the bands. In the other process, the electron of the created electron hole pair is propagating
in the other band.

Henceforth, using the superposition principle, the following state becomes an admissible
physical one

|�(0)〉 = a+
1 (

−→p )av(
−→p ) |	G〉 + a+

2 (
−→p )av(

−→p ) |	G〉 . (89)

Note that this state corresponds to a particular selection θ = π
4 in definition (81).

But, the state after evolving during an interval of time t , for afterwards being projected on
the same initial state, and also taken the square of the result, leads to the following probability
(for the measurement of the state created by the photon pulses after the time t)

| 〈�(0) |�(t)〉 |2 = | 〈�(0) | exp(i ε1(
−→p )t)a+

1 (
−→p )av(

−→p ) |	G〉
+ exp(iε2(

−→p )t)a+
2 (

−→p )av(
−→p ) |	G〉 |2

= | 〈	G |(a+
v (

−→p )(a1(
−→p ) + a2(

−→p )))

× (exp(i ε1(
−→p )t)a+

1 (
−→p )av(

−→p ) |	G〉 + exp(iε2(
−→p )t)a+

2 (
−→p )av(

−→p )) |	G〉 |2
= | 〈	G |(a1(

−→p ) + a2(
−→p ))(exp(i ε1(

−→p )t)a+
1 (

−→p )

+ exp(iε2(
−→p )t)a+

2 (
−→p )) |	G〉 |2

= 1 + 1

2
(cos((ε1(

−→p ) − ε2(
−→p ))t) − 1). (90)

Therefore, the considered electromagnetic excitation of the system during a short period
have the chance of creating the states having a similar effects as the neutrino oscillation.
The existence of this interference is determined by the assumption of the validity of the
superposition principle in a Many Body or QFT theory.
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Before, ending it is helpful to note that the same oscillation result can be obtained if the two
different electron bands considered are associated with completely different distinguishable
particles. The formal evaluations are almost the same. A slight difference is that in such a
case it should also be included two separate valence bands, one for each of the two kinds
of particles. Also, the photon excitation should be considered to create two types of particle
antiparticle states. We had preferred to present the discussion based on electrons, in order to
be closer with the possibility of experimental realization.

Summary

The discussion in this work reproduces the main properties of the neutrino oscillations. The
general aim of the exposition was to exhibit the properties of the theory that determine the
existence of the interference effects between distinguishable particles. The main conclusion
is that the oscillations can be attributed to the superposition principle in many body theories,
which allows interference effects between distinguishable particles if no superselection rules
act. The nature of these properties indicates that such interference effects should be present in a
large variety of physical systems described by a QFT and Many Body theory. For this to occur,
the theory should include at least two kinds of distinguishable particles, showing similar mass
values and non-exhibiting superselection rules. Therefore, oscillations associated with the
interference between non-identical particles should be expected to appear in a large number
of physical theories, in Particle as well as in Condensed Matter Physics.

The issue of the connection of the discussion done here with the analysis in reference
[20] about the role of QFT in determining the properties of the neutrino oscillations is
discussed. We presented a theoretical argue showing that the generating functional of the
Green function defined by the mean value (in the vacuum of propagating neutrinos) of the
usual evolution operator, coincides with the generating functional determined as the mean
value of the evolution operator in terms of the electron and muon operators, but taken in the
electron-muon vacua, defined in [25]. This conclusion expresses that the procedure discussed
in [25] is furnishing a most natural representation of the perturbative expansion associated
with neutrino oscillations. However, it is underlined that although their evaluation of the
effect might be more accurate for general values of the momenta, the consideration of large
momentum limit reproduces the usual formula for the oscillations, also calculated by us.

Finally, in order to illustrate the argued relevance of the discussion for Condensed Matter
Physics, we present a derivation of an oscillation formula between electrons in two different
conduction bands. Therefore, it is argued that superposition principle in Many Body theory
allows to define interference effects analogous to the neutrino’s ones in Condensed Matter
systems. Of special interest in this sense looks to be graphene-like materials where even
relativistic-like equations become valid.
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