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Abstract The functionally graded porous material is an emerging material that is able to
reduce structural weight and keeps the superiority of mechanical property of the structure.
Therefore, this work is devoted to the investigation of the dynamic behavior for the func-
tionally graded porous (FGP) shallow shells with variable curvature under forced vibrations.
First, the analysis method is derived based on the first-order shear deformation theory, the
virtual spring technology, the multi-segment partition technique, the third kind of Chebyshev
polynomials, the semi-analysis Rayleigh–Ritz approach, and the Newmark-Beta method.
Afterwards, the frequency parameters, modal shapes, and vibration responses are systemati-
cally calculated via the present model. Besides, the convergency and correctness of the present
model are verified, respectively. With the verified model, the forced vibration behaviors of
the FGP shallow shells with different parameters, such as porosity distribution types, porosity
ratios, boundary condition types, geometry parameters, and load types, are investigated in
detail.

1 Introduction

The shallow shell structure is widely employed in aeronautics, aircraft engineering, ship
engineering, petrochemical container, and other application fields due to its high specific
stiffness, excellent fatigue characteristics and good corrosion resistance [1–5]. However, the
structures are always exposed to a complex working environment. It is inevitable to generate
various failure modes [6–8]. Therefore, it is meaningful to improve the mechanical character-
istics and dynamic behaviors of the structure. The functionally graded porous (FGP) design
is an emerging strengthening technique and has been widely employed in industry fields due
to its excellent energy absorption, high-temperature resistance, and electrical conductivity
[9–11]. Therefore, the dynamic behaviors of the FGP shallow shells are investigated in this
work.

At present, the modeling method of the FGP structure has been widely investigated [12].
In light of the Timoshenko beam theory, Chen et al. [13] constructed a FGP beam model and
studied the elastic buckling and static bending behaviors of the beam. Chen et al. [14] studied
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the free and forced vibration behaviors of the FGP beam with non-uniform porosity distri-
bution. Wang et al. [15] built a FGP cylindrical shell model with different sets of immovable
boundary conditions and investigated the free vibration characteristics of the shell. Shi et al.
[16] focused on the free vibration analysis of the FGP shallow shell by adopting the improved
Fourier series method. Li et al. [17] studied the nonlinear vibration and the dynamic buckling
of the FGP graphene platelet reinforced sandwich plate resting on Winkler–Pasternak elastic
foundation. Based on the modified Fourier series, Zhao et al. [18] mainly investigated the
free vibration characteristics of the FGP double curve shallow shells. Chan et al. [12] studied
the nonlinear dynamic response and free vibration of the FGP truncated conical panel with
piezoelectric actuators in thermal environment. Based on the general third-order shear defor-
mation plate theory and the modified couple stress theory, a nonlinear finite element model
for FGP micro-plates was built by Genao et al. [19]. As mentioned above, few investigations
can be found on the dynamic behaviors of the FGP shallow shells under forced vibration.
However, the forced vibration was able to reflect the structural inherent characteristics, vibra-
tion suppression capacity [20–22], etc. Therefore, the dynamic characteristics analyses of
the FGP shallow shells with variable curvature under forced vibration are conducted in this
work.

Furthermore, the boundary condition shows a stronger impact on the dynamic character-
istics of structures [23–28], and the influence of the boundary conditions on structures has
been widely investigated. Hajianmaleki et al. [29] studied the static and vibration behaviors
of the thick, general laminated deep curved beams with different boundary conditions by
adopting the first-order shear deformation theory. Li et al. [30] calculated the natural fre-
quencies, mode shapes, and buckling loads of the laminated composite beams with general
boundary conditions. Song et al. [31] studied the free vibration characteristics of the sym-
metrically laminated composite cylindrical shells with arbitrary boundary conditions. Wang
et al. [32] proposed a unified solution for the orthotropic circular, annular and sector plates
and studied the free in-plane vibration of the structures with general boundary conditions.
Based on the first-order shear deformation theory, Wang et al. [5] investigated the free vibra-
tion characteristics of the FG carbon nanotube-reinforced composite shallow shells with
arbitrary boundary conditions. Chen et al. [33] studied the thermo-elastic vibration of FGM
beams with general boundary conditions. Kim et al. [34] constructed an analysis model to
investigate the vibration characteristics of the cracked laminated composite beam of uniform
rectangular cross section with arbitrary boundary conditions. Li et al. [35] investigated the
nonlinear vibration characteristics of the thin-walled cylindrical shell with point-supported
condition. As mentioned above, the nonclassical boundary conditions have attracted a lot of
interest. Therefore, the general boundary conditions are considered to thoroughly study its
effect on the dynamic behaviors of the FGP shallow shell structures with variable curvature
under forced vibration.

Motivated by the above analysis, it is of significance to investigate the effect of the porous
design and the general boundary conditions on the shallow shells with variable curvature
under forced vibration. Therefore, a unified formulation for forced vibration analysis of
the FGP shallow shell with variable curvature is employed. The main contribution of this
work is summarized as: (1) The admissible displacement function employs the third kind
of Chebyshev polynomials, which simplifies the programming for the dynamic analysis of
the FGP shallow shell to some extent; (2) The dynamic characteristics of the FGP shallow
shell under forced vibration are systematically studied. Furthermore, this work is divided into
three parts: The theoretical model is constructed first in Sect. 2. Then, numerical results of
the FGP shallow shell structures under the free vibration and the forced vibration are shown
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in Sect. 3, such as the convergency verification, the numerical validation, and the parametric
analysis. Finally, conclusions of this work are given in Sect. 4.

2 Theoretical formulation

2.1 Modeling of FGP shallow shells with variable curvature

The FGP shallow shell models with variable curvature are constructed at spherical coordinate
system o-xyz, as shown in Fig. 1. The symbols Rx and Ry stand for the principal radius of
curvature along x and y directions; a, b and h denote the length, width, and thickness of the
structures. Furthermore, Fig. 2 shows that the shallow shell is able to be transformed into
various shapes by adjusting the two radii of curvature, such as plate (Rx � Ry � ∞), spherical
shell (Rx � Ry � R), cylindrical shell (Rx � ∞, Ry � R) and hyperbolic paraboloidal shell
(Rx � − Ry � R).

2.2 Material parameters of the FGP

Three types of porous distributions are considered in this work [14, 18, 36], including the
symmetric distribution T-1, non-symmetric distribution T-2, and uniform distribution T-3.
The material parameters of the FGP shallow shell along the z-axis are nonlinear since the
porous distribution is nonlinear. Therefore, the Young’s modulus E(z), shear modulus G(z),
and mass density ρ(z) of the FGP shallow shell are expressed as follows

E(z) � E1 λ(z) (1a)

G(z) � G1λ(z) (1b)

ρ(z) � ρ1η(z) (1c)

where E1 denotes the maximum values of Young’s modulus along the z-axis; G1 expresses
the maximum values of shear modulus along the z-axis; ρ1 is the maximum values of mass

Type1:Symmetric
 distribution

Type2:Non-symmetric
 distribution

Type3:Uniform
 distribution

Geometrical model Multi-segment partition Boundary constraint

Middle surface

Fig. 1 Structure modeling of the FGP shallow shell with general boundary conditions
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Fig. 2 Schematic diagram of the FGP shallow shell with various curvature

density along the z-axis; λ(z) and η(z) are the porous distribution function, which can be
defined as

λ(z) �

⎧
⎪⎪⎨

⎪⎪⎩

[
1 − e0 cos

(
π z
h

)]
Type1

[
1 − e0 cos

(
π z
2h + π

4

)]
Type2

[1 − e0α] Type3

(2a)

η(z) ��

⎧
⎪⎪⎨

⎪⎪⎩

[
1 − em cos

(
π z
h

)]
Type 1

[
1 − em cos

(
π z
2h + π

4

)]
Type 2

[1 − e0α] Type 3

(2b)

where α is the coefficient of uniform porosity distribution; e0 and em are the porosity coeffi-
cient, respectively, which can be given as

e0 � 1 − E2

E1
� 1 − G2

G1
, 0 ≤ e0 ≤ 1 (3a)

em � 1 − ρ2

ρ1
, 0 ≤ em ≤ 1 (3b)

where E2, G2, ρ2 denote the minimum values of Young’s modulus, shear modulus, and mass
density along the z-axis, respectively.

Based on the open-cell metal foam theory [37], the porosity coefficient e0, the mass
coefficient em, and the coefficient of uniform porosity distribution α can be calculated by the
following equation

em � 1 −√1 − e0 (4a)

α � 1

e0
− 1

e0

(
2

π

√
1 − e0 − 2

π
+ 1

)2

(4b)
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2.3 Kinematic relations and energy expression

Based on the first-shear deformation theory, the displacement fields (U, V , W ) of the shallow
shells on the (i, j)th are given as [38]

Ui , j (x , y, z, t) � ui , j0 (x , y, t) + zφi , j
x (x , y, t) (5a)

V i , j (x , y, z, t) � v
i , j
0 (x , y, t) + zφi , j

y (x , y, t) (5b)

Wi , j (x , y, z, t) � w
i , j
0 (x , y, t) (5c)

where ui , j0 , vi , j0 v0i,j and w
i , j
0 w0i,j are the middle surface displacements of the FGP shallow

shells along x, y and z directions; φxi,j φ
i , j
x and φ

i , j
y express the rotation about x and y

directions; t denotes the time variable. The superscripts ‘i’ and ‘j’ represent the segment
number. In addition, the strains in the cross section can be given as

ε
i , j
x � ε

0,i , j
x + zχ i , j

x , εy � ε
0,i , j
y + zχ i , j

y (6a)

γ
i , j
xy � γ

0,i , j
xy + zχ i , j

xy , γ i , j
xz � γ

0,i , j
xz , γ i , j

yz � γ
0,i , j
yz (6b)

where ε
0, i , j
x and ε

0, i , j
y represent the normal strains, and γ

0, i , j
xy is the shear strains; γ 0, i , j

xz and

γ
0, i , j
yz denote the transverse shear strains of the middle surface; χ

i , j
x and χ

i , j
y express the

curvature changes along x and y directions, and χ
i , j
xy stands for the twist change. Moreover,

the above strains of the middle surface can be substituted by the displacement field as follows

ε
0,i , j
x � ∂u0

∂x
+

w0

Rx
, ε0,i , j

y � ∂v0

∂y
+

w0

Ry
(7a)

χ
i , j
x � ∂φx

∂x
, χ i , j

y � ∂φy

∂y
, χ i , j

xy � ∂φy

∂x
+

∂φx

∂y
(7b)

γ
0,i , j
xz � ∂w0

∂x
− u0

Rx
+ φx , γ 0,i , j

yz � ∂w0

∂y
− v0

Ry
+ φy , γ 0,i , j

xy � ∂v0

∂x
− ∂u0

∂y
(7c)

Based on general Hooke’s law, the stresses of the structure can be expressed with the
following equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σrr

σθθ

τrθ

τr z

τθ z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�

⎡

⎢
⎢
⎢
⎢
⎣

Q11(z) Q12(z)
Q12(z) Q11(z)

Q66(z)
Q66(z)

Q66(z)

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εrr

εθθ

γrθ

γr z

γθ z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8)

in which

Q11(z) � E(z)

1 − v(z)2 , Q12(z) � v(z)E(z)

1 − v(z)2 , Q66(z) � E(z)

2(1 + v(z))
(9)
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By integrating the normal and shear stresses over the cross section of the FGP shallow
shells, the stress–strain relationship of Eq. (8) on the (i, j)th segment can be transformed as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ni , j
rr

N i , j
θθ

Ni , j
rθ

Mi , j
rr

Mi , j
θθ

Mi , j
rθ

Qi , j
rr

Qi , j
θθ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 0 B11 B12 0
A12 A11 0 B12 B11 0
0 0 A66 0 0 B66

B11 B12 0 D11 D12 0
B12 B11 0 D12 D11 0
0
0
0

0
0
0

B66

0
0

0
0
0

0
0
0

D66

0
0

0
0
0
0
0
0
κA66

0

0
0
0
0
0
0
0
κA66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε
0,i , j
rr

ε
0,i , j
θθ

γ
0,i , j
rθ

χ
i , j
rr

χ
i , j
θθ

χ
i , j
rθ

γ
0,i , j
r z

γ
0,i , j
θ z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

in which κ stands for the shear correction factor; Ai j , Bi j and Di j (i, j � 1, 2 and 6) denote
the extensional stiffness coefficients, coupling stiffness coefficients and the bending stiffness
coefficients, respectively. Besides, the stiffness coefficients can be calculated as

(
Ai j , Bi j , Di j

)
�
∫ h/2

−h/2
Qi j (1, z, z2)dz (11)

The energy of the structure can be divided into strain energy and kinetic energy. The
kinetic energy T i , j on the (i, j)th segment is expressed as

T i , j � 1

2

˚

V

{(
∂Ui , j

∂t

)2

+

(
∂V i , j

∂t

)2

+

(
∂Wi , j

∂t

)2
}

dV (12)

Substituting Eqs. (5a-c) into Eq. (12), the kinetic energy can be further expressed as

T i , j � 1

2

∫ yi+1

yi

∫ xi+1

xi

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I0

⎛

⎝

(
∂ui , j0

∂t

)2

+

(
∂v

i , j
0

∂t

)2

+

(
∂w

i , j
0

∂t

)2
⎞

⎠

+2I1

((
∂ui , j0

∂t

)(
∂φ

i , j
x

∂t

)

+

(
∂v

i , j
0

∂t

)(
∂φ

i , j
y

∂t

))

+I2

⎛

⎝

(
∂φ

i , j
x

∂t

)2

+

(
∂φ

i , j
y

∂t

)2
⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dxdy (13)

where

(I0, I1, I2) �
∫ h/2

−h/2
ρ(z)

(
1, z, z2)dz (14)

in which I0, I1 and I2 denote the inertial terms.
Besides, the strain energy U i, j

s on the (i, j)th of the FGP shallow shells is denoted as

Ui , j
s � 1

2

∫ yi+1

yi

∫ xi+1

xi

{
Ni , j
x ε

0,i , j
x + Ni , j

y ε
0,i , j
y + Ni , j

xy γ
0,i , j
xy + Mi , j

x χ
i , j
x +

Mi , j
y χ

i , j
y + Mi , j

xy χ
i , j
xy + Qi , j

x γ
0,i , j
xz + Qi , j

y γ
0,i , j
yz

}

dxdy (15)

The virtual spring technique is adopted in this work to simulate the general boundary
conditions. Those virtual springs are composed of three groups of linear springs (i.e., ku , kv ,
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kw) and two groups of turning springs (i.e., kx , ky). The potential energy of boundary springs
Ub has the following form

Ub � 1

2

∫ yi+1

yi

(
∑

K�
x0

ϑ2 +
∑

K�
x1

ϑ2

)

dy +
1

2

∫ x1

x0

(
∑

K�
y0

ϑ2 +
∑

K�
y1

ϑ2

)

dx

(16)

where K�
x0

, K�
x1

K�
y0

, K�
y1

(� � u, v, w, x , y) are the stiffness parameters of five sets of
degrees of freedom at x0, x1, y0 and y1 boundaries, respectively; the symbol ϑ stands for the
five groups of relative displacement (u, v, w, x , y).

Moreover, the continuity of each segment can be satisfied based on the virtual spring
technique, and the potential energy of convective springs Ui , j

c in each segment is denoted as

Ui , j
c � 1

2

∫ xi+1

xi

∑
K� (ϑ i , j − ϑ i , j+1)2 dx +

1

2

∫ yi+1

yi

∑

t
K� (ϑ i , j − ϑ i+1, j ) 2dy (17)

where K� (� � u, v, w, x , y) are the stiffness parameters of the convective spring.
To study the dynamic behaviors of the FGP structures under forced vibration, the integral

form of the work done caused by the external force can be given as

W�1

2

˚
V

(
fuu+ fvv+ fww+mφxφx+mφyφy

)
dV (18)

where f J (J � u, v, w) depicts the translational forces, and mJ (J � x , y) represents the
moments.

2.4 Admissible displacement function and solution process

To solve the dynamic equation, the admissible displacement function should be confirmed
first. According to the convergency and continuity, the third kind of Chebyshev polynomials
is adopted to simulate the unknown displacement functions [39]. Referring to [40–44], the
third kind of Chebyshev polynomials is generated from the range of ϕε[−1, 1] with following
recurrence formulations as

P0(ϕ) � 1 (19a)

P1(ϕ) � ϕ − 1 (19b)

Pk(ϕ) � ϕ(2 − 1

k
) Pk−1(ϕ) − (2k − 1)(2k − 3)

k(2k − 2)
Pk−2(ϕ) (19c)

where k � 2, 3, . . . , N .
Besides, the displacement expressions of the structures can be assumed as follows

u �
N∑

n�0

M∑

m�0

Ui , j
mn Pm(x)Pn(y)eiωt (20a)

v �
N∑

n�0

M∑

m�0

V i , j
mn Pm(x)Pn(y)eiωt (20b)

w �
N∑

n�0

M∑

m�0

Wi , j
mn Pm(x)Pn(y)eiωt (20c)

φx �
N∑

n�0

M∑

m�0

ς
i , j
mn Pm(x)Pn(y)eiωt (20d)
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Fig. 3 The sketch of load time domain curve: a Rectangular pulse; b Triangular pulse; c Half-sine pulse;
d Exponential pulse

φy �
N∑

n�0

M∑

m�0

ξ
i , j
mn Pm(x)Pn(y)eiωt (20e)

whereUi , j
mn , V i , j

mn , Wi , j
mn , ς i , j

mn , and ξ
i , j
mn are the unknown vibration amplitude parameters of the

assumed displacement function; subscript ‘m’ and ‘n’ stand for the Chebyshev polynomials
of degree along x and y directions, respectively; ω denotes the natural circular frequency; t
stands for the time variable; M and N are the defined truncated number.

Furthermore, the Lagrange equations L with the ideal constraint can be obtained as

L � Us + Ub + Uc − T − W (21)

Based on the minimum strain energy principle, the Lagrange equations can be transformed
as the following equation

∂L

∂℘
� 0(℘ � Umn , Vmn , Wmn , ςmn , ξmn) (22)

Substituting Eqs. (13, 15–17) into Eq. (22), the expression can be transformed to matrix
form as

(K − ω2M)q � F (23)

where K expresses the stiffness matrix of the FGP shallow shells; M stands for the mass
matrix of the structures, respectively; F denotes the external force vector; q stands for the
generalized solution vector.

As for the free vibration, the generalized eigenvalues and the generalized column vectors
are solved by the following equation as

(K − ω2M)q � 0 (24)
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Table 1 The effect of the convective stiffness on the convergency of the first four frequency parameters. (a �
b � 1 m, h � 0.1 m, e0 � 0.2, boundary condition: CCCC)

Mode Number K t � 10j

2 4 6 8 10 12 14 16

Rx � ∞, Ry � ∞
1 0.0751 0.0751 0.0763 0.0943 0.0976 0.0976 0.0976 0.0976

2 0.0751 0.0751 0.0771 0.1106 0.1816 0.1857 0.1857 0.1857

3 0.0751 0.0751 0.0771 0.1106 0.1816 0.1857 0.1857 0.1857

4 0.0751 0.0751 0.0779 0.1279 0.2508 0.2597 0.2597 0.2597

Rx � ∞, Ry � 2

1 0.0752 0.0753 0.0765 0.0945 0.1029 0.1065 0.1065 0.1065

2 0.0752 0.0753 0.0772 0.1105 0.1812 0.1856 0.1856 0.1856

3 0.0752 0.0753 0.0772 0.1107 0.1846 0.1906 0.1906 0.1906

4 0.0752 0.0753 0.0780 0.1278 0.2513 0.2610 0.2610 0.2610

Rx � 2, Ry � 2

1 0.0710 0.0710 0.0723 0.0913 0.1056 0.1151 0.1153 0.1153

2 0.0710 0.0710 0.0731 0.1078 0.1821 0.1892 0.1892 0.1892

3 0.0710 0.0710 0.0731 0.1078 0.1821 0.1892 0.1892 0.1892

4 0.0710 0.0710 0.0739 0.1253 0.2512 0.2627 0.2627 0.2627

Rx � 2, Ry � − 2

1 0.0796 0.0796 0.0807 0.0981 0.1100 0.1141 0.1141 0.1141

2 0.0796 0.0796 0.0814 0.1135 0.1862 0.1916 0.1916 0.1916

3 0.0796 0.0796 0.0814 0.1135 0.1862 0.1916 0.1916 0.1916

4 0.0796 0.0796 0.0822 0.1300 0.2522 0.2618 0.2618 0.2618

Therefore, the dynamic vibration solution, such as frequency parameters, vibration
responses, and mode shapes of the FGP shallow shells, can be achieved.

Besides, as for the forced vibration, four types of load time domain curves are considered,
as shown in Fig. 3, including the rectangular pulse, triangular pulse, half-sine pulse, and
exponential pulse. The four types of shock wave pulses can be defined by the mathematical
expression as follows

Rectangular pulse: f (t) �
{
ft 0 ≤ t ≤ τ

0 t > τ
(25a)

Triangular pulse: f (t) �
⎧
⎨

⎩

2t
τ
ft 0 ≤ t ≤ τ

2
ft − 2

τ

(
t − τ

2

)
ft

τ
2 ≤ t ≤ τ

0 t > τ

(25b)

Half-sine pulse: f (t) �
{
ft sin

(
π t
τ

)
0 ≤ t ≤ τ

0 t > τ
(25c)

Exponential pulse: f (t) �
{
ft e−ξ t 0 ≤ t ≤ τ

0 t > τ
(25d)

where t donates the time variable, τ stands for the pulse width, ft denotes the load amplitude.
Furthermore, the structural dynamic equilibrium equation can be expressed as

Mü + Cu̇ + Ku � F (26)
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Table 2 The effect of the number
of plate segments on the
convergency of the first seven
frequency parameters. (a � b �
1 m, h � 0.1 m, e0 � 0.2,
boundary condition: CCCC)

M ×N Mode Number

1 2 3 4 5 6 7

Rx � ∞, Ry � ∞
1 × 1 0.0977 0.1857 0.1857 0.2599 0.3099 0.3131 0.3604

2 × 2 0.0976 0.1856 0.1856 0.2598 0.3056 0.3086 0.3604

3 × 3 0.0976 0.1856 0.1856 0.2598 0.3056 0.3086 0.3604

4 × 4 0.0976 0.1856 0.1856 0.2598 0.3056 0.3086 0.3604

Rx � ∞, Ry � 2

1 × 1 0.0977 0.1857 0.1857 0.2599 0.3099 0.3131 0.3604

2 × 2 0.0976 0.1857 0.1857 0.2598 0.3057 0.3087 0.3604

3 × 3 0.0976 0.1857 0.1857 0.2598 0.3057 0.3087 0.3604

4 × 4 0.0976 0.1857 0.1857 0.2598 0.3057 0.3087 0.3604

Rx � 2, Ry � 2

1 × 1 0.1153 0.1894 0.1894 0.2629 0.3115 0.3163 0.3604

2 × 2 0.1153 0.1893 0.1893 0.2628 0.3074 0.3119 0.3600

3 × 3 0.1153 0.1893 0.1893 0.2628 0.3074 0.3119 0.3600

4 × 4 0.1153 0.1893 0.1893 0.2628 0.3074 0.3119 0.3600

Rx � 2, Ry � − 2

1 × 1 0.1142 0.1917 0.1917 0.2620 0.3140 0.3168 0.3613

2 × 2 0.1141 0.1917 0.1917 0.2619 0.3098 0.3125 0.3611

3 × 3 0.1141 0.1917 0.1917 0.2619 0.3098 0.3125 0.3611

4 × 4 0.1141 0.1917 0.1917 0.2619 0.3098 0.3125 0.3611

where ü expresses the acceleration vector; u̇ stands for the velocity vector; u is the displace-
ment vector; C represents the damping matrix, which can be defined byC � γ1M + γ2K ,

where γ1 and γ2 are the Rayleigh damping coefficients, γ1 � 2

(
ζ2

ω3
2

− ζ1

ω3
1

)

/

(
1
ω2

2
− 1

ω2
1

)

and

γ2 � 4

(
ζ2−ζ1

ω2
2−ω2

1

)

, where ζ1, ζ2 are the attenuation coefficients [45].

In light of the Newmark-Beta method [46], the transient response of the FGP shallow
shells can be calculated as follows

u̇t+�t � u̇t + [(1 − δ)üt + δüt+�t ]�t (27a)

ut+�t � ut + u̇t�t +

[(
1

2
− α

)

üt + αüt+�t

]

�t2 (27b)

where α and δ are set as 1/4 and 1/2, respectively.

3 Analysis and discussion

In Sect. 2, the unified formulation for forced vibration of the FGP shallow shells with variable
curvature and general boundary conditions is derived. Afterwards, the parametric analysis
can be further conducted in Sect. 3, and it is divided into three parts as: (1) The conver-
gency investigation of the numerical results is conducted; (2) the dynamic characteristics
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Fig. 4 The effect of the boundary spring stiffness on the convergency of frequency parameters

of the structure under free vibration are investigated; (3) the dynamic behaviors analysis
of the structure under forced vibration is conducted, including steady-state response and
transient-state response. In the following investigation, the dimensionless frequency parame-

ters ��ωh
√

ρ1
/
E1 are adopted to express the natural frequency of the structures uniformly.

Unless otherwise stated, the material parameters of the FGP shallow shells are uniformly set
as: ρ1 � 2702 kg/m3, E1 � 70GPa, v � 0.3. Besides, the boundary spring stiffness under
different boundary conditions is set as follows

Clamped case (C): Ku � K v � Kw � K x � K y � 1014

Free case (F): Ku � K v � Kw � K x � K y � 0

Simply - support case (S): Ku � K x � 0, K v � Kw � K y � 1014

Elastic constraint 1 (E1): Ku � K v � 108, Kw � K x � K y � 1014
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Table 3 Comparison of the first frequency parameters of the FGP plate with various boundary conditions,
materials, and geometrical parameters

Boundary
conditions

a/b h/b Method p (gradient power-law exponent)

0 0.5 1 2 5 10 ∞

SSSS 1 0.10 Shi [47] 5.7693 5.1932 4.9504 4.7750 4.6315 4.5071 4.1352

Proposed 5.7693 5.1938 4.9504 4.7750 4.6315 4.5070 4.1352

0.02 Shi [47] 5.9647 5.3631 5.1135 4.9382 4.7988 4.6710 4.2753

Proposed 5.9646 5.3639 5.1136 4.9385 4.7988 4.6711 4.2751

2 0.10 Shi [47] 14.607 13.142 12.529 12.091 11.735 11.421 10.469

Proposed 14.607 13.144 12.529 12.091 11.735 11.421 10.469

0.02 Shi [47] 14.919 13.414 12.790 12.352 12.004 11.684 10.694

Proposed 14.919 13.412 12.791 12.352 12.003 11.683 10.705

CCCC 1 0.10 Shi [47] 9.8425 8.8831 8.4665 8.1474 7.8691 7.6511 7.0548

Proposed 9.8422 8.8839 8.4662 8.1472 7.8689 7.6510 7.0546

0.02 Shi [47] 10.841 9.7492 9.2954 8.9754 8.7198 8.4872 7.7705

Proposed 10.837 9.7490 9.2932 8.9732 8.7178 8.4855 7.7682

2 0.10 Shi [47] 27.588 24.879 23.715 22.839 22.087 21.479 19.774

Proposed 27.587 24.882 23.714 22.838 22.086 21.479 19.774

0.02 Shi [47] 29.659 26.671 25.429 24.555 23.858 23.222 21.259

Proposed 29.646 26.665 25.423 24.550 23.852 23.216 21.254

E1E2E1E2 1 0.10 Shi [47] 1.6260 1.6528 1.6666 1.6807 1.6951 1.7018 1.7098

Proposed 1.6260 1.6528 1.6666 1.6807 1.6951 1.7018 1.7098

0.02 Shi [47] 10.841 9.7492 9.2954 8.9754 8.7198 8.4872 7.7705

Proposed 10.839 9.7481 9.2933 8.9722 8.7179 8.4865 7.7694

2 0.10 Shi [47] 5.6307 5.7230 5.7706 5.8192 5.8686 5.8913 5.9186

Proposed 5.6307 5.7230 5.7706 5.8192 5.8686 5.8913 5.9186

0.02 Shi [47] 29.659 26.671 25.429 24.555 23.858 23.222 21.259

Proposed 29.652 26.667 25.422 24.550 23.853 23.218 21.254

E2E3E2E3 1 0.10 Shi [47] 1.6249 1.6514 1.6651 1.6790 1.6931 1.6995 1.7073

Proposed 1.6249 1.6514 1.6651 1.6790 1.6931 1.6995 1.7073

0.02 Shi [47] 10.411 9.4120 8.9917 8.6918 8.4499 8.2330 7.5680

Proposed 10.398 9.4046 8.9842 8.6842 8.4441 8.2266 7.5612

2 0.10 Shi [47] 5.6174 5.7067 5.7522 5.7982 5.8442 5.8650 5.8896

Proposed 5.6174 5.7067 5.7522 5.7982 5.8442 5.8650 5.8896

0.02 Shi [47] 27.429 25.018 23.987 23.250 22.656 22.110 20.397

Proposed 27.400 25.002 23.970 23.233 22.644 22.103 20.389

Elastic constraint 2 (E2): Ku � K v � K x � K y � 1014, Kw � 108

Elastic constraint 3 (E3): Ku � K v � Kw � 1014, K x � K y � 108

Elastic constraint 4 (E4): Ku � K v � Kw � K x � K y � 108
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Table 4 Comparison of the first frequency parameters of the FGP cylindrical and spherical shells with various
boundary conditions and geometrical parameters

Boundary conditions Method Cylindrical shell Spherical shell

h/b h/b

0.10 0.05 0.01 0.10 0.05 0.01

SSSS Shi [47] 4.8120 6.0590 14.0110 4.9250 7.4770 32.3510

Proposed 4.8434 6.0891 14.0523 5.0214 7.3334 30.7197

CSCS Shi [47] 7.2040 9.7420 22.1930 6.4090 9.1960 34.9260

Proposed 7.2054 9.7506 22.2192 6.7118 9.4082 33.8428

E1E2E1E2 Shi [47] 1.1080 3.1320 17.4240 1.3220 3.4150 24.6460

Proposed 1.1081 3.1319 18.1219 1.1402 3.2222 24.6086

E2CE2C Shi [47] 7.7340 8.8640 19.5520 7.2430 9.7470 33.1350

Proposed 7.7968 8.9283 19.6054 7.6598 9.9959 33.1683

Table 5 Comparison of the first six frequency parameters of the FGP hyperbolic paraboloidal shell with
various boundary conditions

Boundary conditions Method Mode

1 2 3 4 5 6

CCCC Zhao [18] 0.1014 0.1720 0.1728 0.2383 0.2835 0.2863

Proposed 0.1034 0.1729 0.1729 0.2366 0.2806 0.2829

CSCS Zhao [18] 0.0819 0.1372 0.1614 0.1893 0.2139 0.2387

Proposed 0.0873 0.1419 0.1654 0.1790 0.2176 0.2424

E2E2E2E2 Zhao [18] 0.0758 0.0894 0.0896 0.1262 0.1335 0.1476

Proposed 0.0704 0.0819 0.0819 0.1189 0.1394 0.1499

E3E3E3E3 Zhao [18] 0.0992 0.1676 0.1685 0.2328 0.2774 0.2799

Proposed 0.0997 0.1661 0.1661 0.2298 0.2749 0.2760

3.1 Convergency study

According to Ref. [39], the convergency of the final numerical results can be easily affected
by various influence factors, such as the convective spring stiffness values, plate segments,
and boundary spring stiffness values. Therefore, the convergency study is conducted via the
mentioned three parts.

As shown in Table 1, the effect of the convective stiffness on the convergency of the
first four frequency parameters is investigated. The geometrical and material parameters are
defined as: a � b � 1 m, e0 � 0.2; as for FGP plate, the radii of the structure are set as Rx

� ∞, Ry � ∞; for FGP cylindrical shell, the radii of the structure are set as Rx � ∞, Ry �
2 m; as for FGP spherical shell, the radii of the structure are set as Rx � 2 m, Ry � 2 m; as for
FGP hyperbolic paraboloidal shell, the radii of the structure are set as Rx � 2 m, Ry=− 2 m.
It can be observed that the first four frequency parameters show great convergency after the
convective stiffness arrives 1012 regardless of the type of structure. Therefore, to ensure the
convergency, the stiffness value of the convective spring is set as 1014. Furthermore, Table 2
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Table 6 The first six of the Type1 FGP shallow shells with respect to different boundary conditions. (a � b �
1 m, h � 0.1 m, e0 � 0.2)

Mode CCCC SSSS CFCF E1E1E1E1 E2E2E2E2 E3E3E3E3 E4E4E4E4

Rx � ∞, Ry � ∞
1 0.0976 0.0574 0.0620 0.0247 0.0242 0.0849 0.0240

2 0.1857 0.1367 0.0722 0.0247 0.0576 0.1668 0.0247

3 0.1857 0.1367 0.1157 0.0349 0.0576 0.1668 0.0247

4 0.2598 0.1884 0.1578 0.0976 0.1051 0.2379 0.0349

5 0.3057 0.1884 0.1708 0.1857 0.1288 0.2834 0.0511

6 0.3087 0.2094 0.1717 0.1857 0.1388 0.2849 0.0511

Rx � ∞, Ry � 2

1 0.1065 0.0617 0.0643 0.0246 0.0562 0.0955 0.0243

2 0.1856 0.1365 0.0724 0.0246 0.0638 0.1671 0.0246

3 0.1906 0.1416 0.1161 0.0349 0.0755 0.1725 0.0246

4 0.2611 0.1884 0.1600 0.0978 0.1125 0.2396 0.0349

5 0.3066 0.1884 0.1713 0.1852 0.1320 0.2841 0.0511

6 0.3110 0.2102 0.1717 0.1854 0.1446 0.2878 0.0511

Rx � 2, Ry � 2

1 0.1153 0.0688 0.0710 0.0247 0.0784 0.1059 0.0117

2 0.1893 0.1415 0.0782 0.0247 0.0784 0.1714 0.0246

3 0.1893 0.1415 0.1221 0.0349 0.0806 0.1714 0.0246

4 0.2628 0.1884 0.1555 0.0968 0.1199 0.2416 0.0349

5 0.3074 0.1884 0.1687 0.1840 0.1357 0.2854 0.0432

6 0.3119 0.2124 0.1720 0.1840 0.1456 0.2884 0.0432

Rx � 2, Ry � − 2

1 0.1142 0.0621 0.0804 0.0246 0.0704 0.1040 0.0246

2 0.1917 0.1412 0.0873 0.0246 0.0819 0.1739 0.0246

3 0.1917 0.1412 0.1253 0.0349 0.0819 0.1739 0.0349

4 0.2619 0.1884 0.1613 0.0989 0.1189 0.2408 0.0366

5 0.3098 0.1884 0.1716 0.1857 0.1394 0.2880 0.0578

6 0.3125 0.2096 0.1729 0.1857 0.1499 0.2891 0.0578

shows the effect of the number of plate segment numbers on the convergency of the first seven
frequency parameters. The preset parameters are the same with that in Table 1. Through the
comparison, the first seven frequency parameters show good consistency after the number
of plate segments is set as 2 × 2. Specially, the calculated time of the present model from
MATLAB software is sharply increased with the growth of the number of plate segments.
Therefore, to improve the computational efficiency and the accuracy of numerical results,
the number of plate segments is set as 2 × 2 in the following investigation.

Finally, Fig. 4 shows the effect of the boundary spring stiffness on the convergency of
frequency parameters, and the preset parameters are set as: a � 1 m, b � 1 m, h � 0.1 m, e0

� 0.5. It is assumed that every curve represents the stiffness change along the single degree
of freedom (DOF), and the boundary stiffnesses along the other DOFs are set as 1014. It can
be concluded that the frequency parameters have great convergency when the stiffness value
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Table 7 The first natural frequencies of the FGP shallow spherical shell with respect to different ratios of
thickness to length, porous distributions, and porosities. (a � b � 1 m, Rx � 3 m, Ry � 3 m, Boundary
condition CSSF)

Porosity
distribution

h/a e0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Type1 0.05 206.28 206.84 207.68 208.91 210.68 213.22 216.99 222.95 233.83

0.10 430.84 430.10 429.80 430.10 431.27 433.74 438.33 446.81 464.34

0.15 619.26 617.11 615.45 614.49 614.54 616.17 620.43 629.65 650.72

0.20 776.23 772.30 768.82 766.01 764.23 764.09 766.77 774.97 796.80

Type2 0.05 203.22 200.16 196.65 192.52 187.52 181.24 172.96 161.27 142.94

0.10 425.88 419.27 411.87 403.44 393.58 381.68 366.69 346.68 317.80

0.15 612.92 603.27 592.59 580.54 566.65 550.13 529.69 502.91 465.04

0.20 769.18 756.93 743.48 728.47 711.37 691.34 666.94 635.55 591.99

Type3 0.05 202.54 198.89 194.93 190.59 185.75 180.24 173.78 165.79 154.75

0.10 424.78 417.12 408.82 399.70 389.55 378.00 364.45 347.69 324.55

0.15 611.51 600.49 588.54 575.42 560.80 544.17 524.66 500.54 467.23

0.20 767.61 753.79 738.78 722.31 703.96 683.09 658.60 628.32 586.50

Table 8 The first natural frequencies of the FGP shallow cylindrical shell with respect to different ratios of
thickness to length, porous distributions, and porosities (a � b � 1 m, Rx � 3 m, Ry � Boundary condition
CSSF)

Porosity
distribution

h/a e0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Type1 0.05 249.59 248.65 247.94 247.54 247.62 248.43 250.45 254.68 264.12

0.10 452.59 451.21 450.24 449.84 450.28 452.01 455.87 463.64 480.64

0.15 635.50 632.93 630.83 629.41 629.00 630.16 633.96 642.75 663.56

0.20 790.26 786.01 782.20 779.05 776.91 776.42 778.78 786.68 808.36

Type2 0.05 247.13 243.25 238.96 234.16 228.64 222.14 214.19 204.01 190.35

0.10 447.85 440.82 433.03 424.22 414.05 401.95 386.96 367.41 340.18

0.15 629.25 619.29 608.29 595.95 581.78 565.05 544.50 517.87 480.89

0.20 783.24 770.70 756.96 741.66 724.28 703.99 679.41 648.02 604.98

Type3 0.05 246.57 242.12 237.30 232.01 226.12 219.42 211.55 201.83 188.39

0.10 446.79 438.74 430.01 420.42 409.74 397.59 383.34 365.71 341.37

0.15 627.89 616.57 604.30 590.83 575.82 558.75 538.71 513.94 479.74

0.20 781.73 767.64 752.36 735.59 716.90 695.65 670.71 639.87 597.28

of the boundary spring is up to 1011 regardless of the type of structure. Therefore, in this
work, the clamped boundary is defined as 1014.
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Table 9 The first natural frequencies of the FGP shallow hyperbolic paraboloidal shell with respect to different
ratios of thickness to length, porous distributions, and porosities. (a� b� 1 m, Rx � 3 m, Ry � 3 m, Boundary
condition CSSF)

Porosity
distribution

h/a e0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Type1 0.05 315.79 313.05 310.44 308.07 306.09 304.76 304.59 306.72 314.50

0.10 491.29 488.74 486.54 484.86 483.97 484.32 486.76 493.16 509.03

0.15 662.55 659.15 656.18 653.85 652.50 652.68 655.49 663.31 683.33

0.20 811.19 806.30 801.82 797.97 795.12 793.88 795.48 802.65 823.74

Type2 0.05 313.85 308.77 303.33 297.43 290.96 283.75 275.58 266.20 255.82

0.10 486.94 479.19 470.70 461.27 450.57 438.13 423.17 404.40 379.91

0.15 656.57 646.09 634.59 621.79 607.23 590.25 569.71 543.67 508.72

0.20 804.35 791.39 777.23 761.55 743.83 723.32 698.71 667.71 626.23

Type3 0.05 313.38 307.73 301.60 294.88 287.39 278.87 268.87 256.51 239.44

0.10 485.96 477.20 467.70 457.28 445.66 432.45 416.94 397.77 371.30

0.15 655.28 643.47 630.66 616.60 600.94 583.12 562.21 536.36 500.67

0.20 802.91 788.45 772.75 755.52 736.33 714.50 688.88 657.21 613.47

3.2 Free vibration of the FGP annular and circular sector plates

In light of the verification of the convergency study for the present model, the dynamic
analysis under free vibration is able to be further carried out. This subsection is divided into
two parts, including correction verification and parameter analysis.

The first frequency parameters of the FGP plate with various boundary conditions, mate-
rial, and geometrical parameters are compared with the open literature [47], as shown in
Table 3. The preset parameters are the same with that of the literature. It can be concluded
that the first frequency parameters obtained from the present model and Ref. [47] show
good agreement, which verifies the correctness of the FGP plate under different boundary
conditions. Furthermore, Table 4 shows the comparison of the first frequency parameters of
the FGP cylindrical and spherical shells with various boundary conditions and geometrical
parameters, and the material and geometrical parameters are the same with that in Ref. [47].
From the comparison, it can be observed from Table 4 that the first frequency parameters of
the FGP cylindrical and spherical shells with various boundary conditions and geometrical
parameters have good consistency, which means that the correctness of the constructed FGP
cylindrical and spherical shell models is verified. Finally, Table 5 shows the comparison
of the first six frequency parameters of the FGP hyperbolic paraboloidal shell with various
boundary conditions, and the preset parameters are the same with that in Ref. [18]. It can be
found that the numerical results obtained from the present model and Ref. [18] show little dif-
ference. Therefore, the correctness of the FGP hyperbolic paraboloidal shell is also verified.
As mentioned above, the four types of shallow shells are verified via the comparison between
the calculated results obtained from the present model and the open literature. Therefore, the
parameter analysis can be conducted in the following investigation.

Table 6 shows the frequencies of the Type1 FGP shallow shells with different boundary
conditions, and the preset parameters are the same with that in Table 1. It can be concluded
that the boundary condition has a strong effect on the dynamic behavior of the structure
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Fig. 5 The first three mode shapes of the Type2 FGP shallow shell with CSCS boundary condition

regardless of the type of the shallow shell. Specially, the frequency parameters of the structure
with elastic boundary conditions are weakened as compared with the structure with classical
boundary conditions, which can be attributed to the weakening effect on the stiffness of the
structure caused by the elastic boundary conditions. Therefore, the dynamic characteristics of
the shallow shells can be improved by changing the principal radius of curvature. To further
investigate the effect of material and geometrical parameters on various types of shallow
shells, Tables 7, 8, and 9 show the first natural frequencies of the FGP shallow shells with
respect to different ratios of thickness to length, porous distributions, and porosities, and the
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Fig. 6 The first three mode shapes of the Type2 FGP shallow shell with E2E2E2E2 boundary condition

preset parameters are set as a� b� 1, Rx � 3, Ry � 3. A common nature can be summarized
as follows: (1) The frequencies of the FGP shallow shells gradually go up with the growth
of the ratio of thickness to length, which means that the increasing ratio of thickness to
length enhances the stiffness of the structure. (2) With the going up of the thickness, the
Type1 FGP shallow shells show different change trends as compared with other types of
porous distributions, that is, the first natural frequency goes down first and then goes up
with the growth of the porosities, which can be inferred that when the porosity increases to
a certain threshold, the increasing porosity not only decreases the mass of the structure but
also enhances the stiffness of the structure. Therefore, the Type1 functionally graded porous
distribution shows excellent mechanical capacity. (3) With the comparison of three types of
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Fig. 7 Comparison of the steady-state response of the Type 1 FGP spherical shell with CCCC boundary
condition. (a � 1 m, b � 1 m, h � 0.1 m, Rx � 2 m, Ry � 2 m, e0 � 0.5, Load position: (0.5, 0.5), f �
500–4000 Hz, �f � 2 Hz)

FGP distributions, the frequencies of Type1 shallow shells show the maximum. Therefore,
the FGP design is able to improve the dynamic behavior of the structure.

Furthermore, to further understand the dynamic performance of the four types of shallow
shells, Figs. 5 and 6 show the first three mode shapes of the Type2 FGP shallow shell with
general boundary conditions.

3.3 Forced vibration of the FGP annular and circular sector plates

In this work, the forced vibration characteristics of the shallow structures are investigated
from two aspects, including steady-state response and transient-state response. Steady-state
response expresses the output state of the system as time goes to infinity. Transient-state
response stands for the change process of system output from an initial state to a stable state
under the action of typical signal input.

3.3.1 Steady-state response

First, the correctness of the present model should be examined. As shown in Fig. 7, the steady-
state response of Type1 FGP spherical shell with CCCC boundary condition obtained from
the present model and the ABAQUS is compared, and the material and geometric parameters
are set as: a� 1 m, b� 1 m, h� 0.1 m, Rx � 2 m, Ry � 2 m, e0 � 0.5; load position is located
on (0.5, 0.5); observation points are set as (0.7, 0.5) and (0.9, 0.5); frequency range is set as
500–4000 Hz. It can be easily found that the numerical results show good consistency, which
means that the correctness of the present model is verified. Specially, the little difference
may attribute to the simplification of the present model. It is meaningful to mention that the
simplified approach is able to reduce the calculation burden, and then the complex calculation
task can be achieved with less time.

Figure 8 shows the effect of the boundary stiffness coefficients on the steady-state of Type
2 FGP shallow shell, and the preset parameters are the same with that in Fig. 7. It can be seen
that the boundary stiffnesses along u, v and x directions cannot easily affect the stability of the
steady-state response of the structure. On the contrary, the boundary stiffnesses along w and
y directions show a strong influence on the steady-state response of the structure. Moreover,
the number of resonance peaks decreases with the growth of the boundary spring stiffness.
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Fig. 8 The effect of the boundary stiffness coefficient on the steady-state responses of the Type 2 FGP shallow
shell. (Load position: (0.5, 0.5), Observation location (0.7, 0.5), f � 500–4000 Hz, �f � 2 Hz)

It means that the steady-state response of the structure can be improved by changing the
boundary stiffness. Besides, to investigate the effect of geometric parameters on the steady-
state response, Fig. 9 shows the effect of the ratio of thickness to radius Rx on the steady-state
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Fig. 9 The effect of the ratio of thickness to radius Rx on the steady-state response of the FGP shallow shells
with SSSS boundary condition

response of the FGP shallow shell with SSSS boundary condition, and the preset parameters
are the same with Fig. 7. It can be concluded as follows: (1) The increasing ratio of thickness
to radius enhances the stiffness of the structure, which can be inferred from that the steady-
state curve moves to the right with the growth of the ratio of thickness to radius. Moreover,
the displacement under the resonance state gradually goes down with the growth of the ratio
of thickness to radius, which means that the vibration suppression capacity of the structure is
improved to some extent. (2) Under the condition of the small ratio of thickness to radius, the
curvature of the shallow shell cannot easily affect the stability of the steady-state response.
It is implied that the larger ratio of thickness to radius has more sensitive to the type of
the shallow shell. From Fig. 9, the influence of FGP distribution type on the steady-state
response is not apparent. Therefore, for further investigating the effect of different FGP
distributions, Fig. 10 shows the effect of porosity ratio on the steady-state response of the
FGP shallow shell with SSSS boundary condition. The preset parameters are the same with
that in Fig. 7. It can be easily seen that the Type1 FGP shallow shells show good stability with
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Fig. 10 The effect of the porosity ratio on the steady-state response of FGP shallow shell with SSSS boundary
condition

the change of porosity as compared with the other two types of FGP shallow shells. Specially,
the improvement of the Type1 porous distribution on dynamic characteristics of the shallow
shell is further verified via the steady-state response, that is, the steady-state curve moves
right when the porosity arrives at a threshold value.

3.3.2 Transient-state response

To ensure the correctness of the transient-state response of the present model, Fig. 11 shows
the calculated results of the transient-state response of the Type1 FGP spherical shell with
CCCC boundary condition obtained from the present model and the ABAQUS, and the preset
parameters are set as: a � 1 m, b � 1 m, h � 0.1 m, Rx � 2 m, Ry � 2 m, e0 � 0.5; load
position is located on (0.5, 0.5); pulse width is defined as 10 ms. It can be easily concluded
that the results obtained from the present model have good agreement with those obtained
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Fig. 11 Comparison of the transient-state response of the Type 1 FGP spherical shell with CCCC boundary
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Fig. 12 The effect of the ratio of thickness to radius Rx on the trainset-state response of the FGP shallows
shell with SSSS boundary condition
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Fig. 13 The effect of the porosity ratio on the transient-state response of the FGP shallow shell with CSCS
boundary condition

from the ABAQUS. Therefore, the correctness of the present model under transient-state
response is examined, and then the parameter analysis can be further investigated.

As shown in Fig. 12, the effect of the ratio of thickness to radius Rx on the transient-
state of the FGP shallow shell with SSSS boundary condition is studied, and the preset
parameters are set as: a � 1 m, b � 1 m, e0 � 0.2; Load position is located on (0.5, 0.5);
Observation location is set as (0.7, 0.5). It can be concluded that the ratio of thickness to
radius has a strong effect on the transient-state response. With the increase of the ratio of
thickness to radius, the displacement of the structures is significantly decreased, which means
that the increasing thickness can greatly improve the vibration suppression capacity of the
structure under the transient-state response. Besides, with the comparison of the four types
of shallow shells, the spherical shallow shell shows great vibration suppression capacity. To
investigate the influence of porous distribution, Fig. 13 shows the effect of porosity rations
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Fig. 14 The effect of the load types on the transient-state response of the FGP shallow shell with E2E2E2E2
boundary condition

on the transient-state response of the FGP shallow shell with CSCS boundary conditions,
and the preset parameters are the same with that in Fig. 12. Compared with Fig. 9, the Type1
FGP distribution also shows the stability on the transient response. Therefore, the Type1 can
improve the stability of the dynamic characteristics of the structure to some extent.

In addition, Fig. 14 shows the effect of load types on the transient-state response of the
FGP shallow shell with E2E2E2E2 boundary condition, and the preset parameters are the
same with that in Fig. 12. It can be found that the displacement of the FGP shallow shells
under transient-state response can be obviously changed via the load types, which means
that the load types have a strong influence on the transient-state response of the structure.
Specially, the types of triangular and half-sine show a great effect on vibration suppression
regardless of the structure type. Therefore, the transient-state response can be further adjusted
via the load type.
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4 Conclusions

A unified formulation for the functionally graded porous shallow shells with variable cur-
vature under forced vibration was proposed in this work. The effect of various geometric
parameters, material parameters, boundary conditions, and load types was discussed. Some
conclusions can be drawn as follows:

(1) The geometric parameters have a strong effect on the forced vibration behaviors of the
FGP shallow shells. That is, the increasing ratio of thickness to radius enhances the
stiffness of the structure, and thus the vibration suppression capacity of the structures
is enhanced. Specially, the stability of the steady-state response of the structures cannot
be easily affected by the type of shallow shell under the condition of the small ratio of
thickness to radius.

(2) The porous design shows a great improvement on the dynamic characteristics of the
shallow shells. Specially, Type1 FGP distribution shows significant stability on the
steady-state response and the transient-state response with the increase of the porosity
e0. Therefore, the Type1 FGP distribution has great potential to further improve the
forced vibration performance of the shallow shells.

(3) The boundary conditions and the load types have a greater effect on the forced vibration
behaviors of the FGP shallow shells. For example, the stiffnesses of the structures and
displacement under forced vibration have a close relationship with the boundary stiffness
value. The displacement of the transient-state response can be changed via the load type.
Therefore, the forced behaviors can be adjusted by changing the types of boundary
conditions or load types.
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