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Abstract Renormalization group methods are applied to a scalar field within a finite, non-
local quantum field theory formulated perturbatively in Euclidean momentum space. It is
demonstrated that the triviality problem in scalar field theory, the Higgs boson mass hierar-
chy problem and the stability of the vacuum do not arise as issues in the theory. The scalar
Higgs field has no Landau pole.

1 Introduction

An alternative version of the standard model (SM), constructed using an ultraviolet finite
quantum field theory with nonlocal field operators, was investigated in previous work [1,2].
In place of Dirac delta functions, δ(x), the theory uses distributions E(x) based on finite-width
Gaussians. The Poincaré and gauge-invariant model adapts perturbative quantum field theory
(QFT), with a finite renormalization, to yield finite quantum loops. For the weak interactions,
SU (2)×U (1) is treated as an ab initio broken symmetry group with nonzero masses for the
W and Z intermediate vector bosons and for left and right quarks and leptons. The model
guarantees the stability of the vacuum. Two energy scales, �M and �H , were introduced;
the rate of asymptotic vanishing of all coupling strengths at vertices not involving the Higgs
boson is controlled by �M , while �H controls the vanishing of couplings to the Higgs.
Experimental tests of the model, using future linear or circular colliders, were proposed. The
present observations are consistent with �M ≥ 10 TeV. The Higgs boson mass hierarchy
problem will be solved if future experiments confirm the prediction �H � 1 TeV.

In the following, we will investigate the consequences of an application of renormalization
group (RG) methods for the perturbative finite renormalizable model. We will concentrate on
a nonlocal spin 0 scalar field φ = φH Lagrangian model which is perturbatively formulated
in Euclidean momentum space and might describe the Higgs boson field if nonlocality were
fundamental. The ultraviolet finite theory resolves the Higgs mass hierarchy problem, the
scalar field model triviality problem and removes the Landau pole singularity for the Higgs
field.
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2 Scalar field theory

The Lagrangian we consider for a real scalar field φ ≡ φH describing the Higgs boson in
Euclidean space is

LH = 1

2
(−φ�φ + m2

0φ
2) + 1

4!λ0φ
4. (1)

Using the formalism of [3], we assume that the vacuum expectation of the bare field φ

vanishes and write φ = Z1/2φr , where φr is the renormalized field. Expressed as series
expansions in powers of the physical coupling λ, mass m and energy scale �H , the field
strength renormalization constant Z and the bare parameters m0 and λ0 are given by:

Z = 1 + δZ(λ,m,�2
H ), (2)

Zm2
0 = m2 + δm2(λ,m,�2

H ), (3)

Z2λ0 = λ + δλ(λ,m,�2
H ). (4)

The propagator in Euclidean momentum space is given by

i�H (p) ≡ iE2(p)

p2 + m2 , (5)

where E(p) is the entire function:

E(p) = exp

[
−

(
p2 + m2

2�2
H

)]
. (6)

Evaluating the one-loop self-energy graph gives a constant shift to the Higgs boson bare
self-energy [3]:

− i�0 = −i Z−2λ

32π2 m2 	

(
−1,

m2

�2
H

)
, (7)

where 	(n, z) is the incomplete gamma function:

	(n, z) =
∫ ∞

z
dt tn−1 exp(−t) = (n − 1)	(n − 1, z) + zn−1 exp(−z). (8)

Setting n = 0 in (8) gives:

	(0, z) = E1(z) =
∫ ∞

z
dt

exp(−t)

t
= − ln(z) − γ −

∞∑
n=1

(−z)n

nn! , (9)

	(−1, z) = −	(0, z) + exp(−z)

z
. (10)

The renormalized one-loop self-energy �R(p2) can then be written in the form:

�R(p2) = δZ(p2 + m2) + δm2 + Z−1λ

32π2 m
2	

(
−1,

m2

�2
H

)
+ O(λ2). (11)

The renormalized mass and field strength are given by

δm2 = − λ

32π2 m
2	

(
−1,

m2

�H

)
+ O(λ2), (12)

δZ = O(λ2). (13)
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The expansion of the one-loop Higgs boson self-energy mass correction for m � �H is

δm2 = λ

32π2

[
−�2

H + m2 ln

(
�2

H

m2

)
+ m2(1 − γ ) + O

(
m2

�2
H

)]
+ O(λ2). (14)

The one-loop vertex correction is given by

δλ = 3λ2

16π2

∫ 1/2

0
dx 	

(
0,

1

1 − x

m2

�2
H

)
+ O(λ3). (15)

For m � �H , this can be expanded for the Higgs boson to give

δλ = 3λ2

16π2

[
1

2
ln

(
�2

H

m2

)
+ 1

2
(ln(2) − 1 − γ ) + O

(
m2

�2
H

)]
+ O(λ3). (16)

3 Callan–Symanzik equation and running of λ

Let us consider the Callan–Symanzik equations [4–7] satisfied with our energy (length) scales
�i playing the roles of finite renormalization scales. In finite QFT theory, the equations for
the regularized amplitudes 	(n)(x − x ′) are[

�i
∂

∂�i
+ β(gi )

∂

∂gi
− 2γ (gi )

]
	(n) = 0, (17)

where gi are the running coupling constants associated with diagram vertices. The correlation
functions will satisfy this equation for the nth-order 	(n) for the Gell-Mann–Low functions
β(gi ) and the anomalous dimensions in nth-loop order.

For the Higgs field, the RG equation is given by[
�H

∂

∂�H
+ β(λ)

∂

∂λ
− 2γ (λ)

]
	H = 0. (18)

where the coupling λ runs with �H . Neglecting the anomalous dimension term γ (λ) and
replacing the measured Higgs mass m by the RG scaling mass μ yields the equation:

β(λ) = − dλ

d ln
(

�H
μ

) . (19)

We obtain from (15) the Higgs field β function:

β(λ) = 3λ2

16π2 I (μ
2/�2

H ) + O(λ3), (20)

where

I (μ2/�2
H ) =

∫ 1/2

0
dx 	

(
0,

1

1 − x

μ2

�2
H

)
. (21)

Using the identities 	(0, y) = E1(y) = −Ei(−y) yields:

I (μ2/�2
H ) = −

∫ 1/2

0
dx Ei

(
− 1

1 − x

μ2

�2
H

)

= 1

2

(
exp

(
−2μ2

�2
H

)
+

(
1 + 2μ2

�2
H

)
Ei

(
−2μ2

�2
H

))
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− exp

(
−μ2

�2
H

)
−

(
1 + μ2

�2
H

)
Ei

(
−μ2

�2
H

)
. (22)

We have λ = λ0 + δλ and

dλ

d
(

�H
μ

) = dδλ

d ln
(

�H
μ

) = −β(λ). (23)

From (20), we obtain
dλ

λ2 = − 3

16π2 d I (μ
2/�2

H ). (24)

Integrating this equation, we get

1

λ
= 1

λ0
+ J (μ2/�2

H ), (25)

where

J (μ2/�2
H ) = 3

16π2

∫
d�H

�H
I (μ2/�2

H ). (26)

Evaluating the integral for J (μ2/�2
H ), using x = μ2

�2
H

, gives

J (x) = 3

128π2

(−2 exp(−2x) + 4 exp(−x) + π2 − (2 + 4x)Ei(−2x) + (4 + 4x)Ei(−x)

+4x 3F3(1, 1, 1; 2, 2, 2;−2x) − 4x 3F3(1, 1, 1; 2, 2, 2;−x)

− ln(2)2 − ln(4)γ + 2(γ − ln(2)) ln(x) + ln(x)2) , (27)

where pFq(a1, . . . , ap; b1, . . . , bq ; z) is a generalized hypergeometric function.
From (25), we obtain:

λ = λ0

1 + λ0 J (μ2/�2
H )

, (28)

or

λ0 = λ

1 − λJ (μ2/�2
H )

. (29)

We can compare (25) with the equation obtained in SM:

1

λ
= 1

λ0
+ 3

16π2 ln

(
�C

μ

)
, (30)

or

λ = λ0

1 + 3λ0
16π2 ln

(
�C
μ

) , (31)

and

λ0 = λ

1 − 3λ
16π2 ln

(
�C
μ

) . (32)

In the SM, the λφ4 model is renormalizable and produces finite scattering amplitudes and
cross sections, but renormalization theory demands that the cutoff �C must be taken to
infinity, �C → ∞ [8,9]. Then, from (30), the renormalized coupling constant λ = 0. This
is known as the triviality problem [10–15]. This result holds even in the limit λ0 → ∞:

1

λ
∼ 3

16π2 ln

(
�C

μ

)
. (33)
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Fig. 1 Running of λ versus �H /μ for finite QFT

In the earlier paper [16], it was demonstrated that the triviality problem for the scalar
field field could be resolved in the finite QFT theory. Because �H = 1/H is a fundamental
constant to be measured, it cannot be taken to infinity as in the case of infinite renormalization
theory. Thus, we cannot take the limit H → 0 corresponding to the δ-function limit. From
Fig. 1, we observe that when we choose �H � 1 TeV, the Higgs mass hierarchy problem
is resolved, for we have δm2/m2 ∼ O(1) where m = 125 GeV. From Fig. 1, we observe
that for �H > 1

2μ, we avoid a Landau pole and, in particular, for 700 < �H < 1 TeV,
we resolve the triviality problem for the scalar Higgs field and the Higgs mass fine-tuning
hierarchy problem.

Choosing an energy μ0 above �H as a measurement probe of the running of λ is attempting
to make a measurement within the finite Gaussian distribution length size H [1] and is
prohibited within the perturbation approximations we have assumed. The results obtained
for the running of λ are for a single Higgs particle interacting with another Higgs particle.
This cannot describe a fully realistic situation, for the Higgs coupling to other particles such
as the top quark (the top quark-Higgs coupling λt ∼ O(1)) may play an important role.

The above one-loop calculations have employed a perturbative formulation in Euclidean
momentum space and rely on analytic continuation to obtain corresponding Lorentzian
results. At tree level, the theory is completely equivalent to the classical field theory with
the same Lagrangian, provided that spacetime Fourier transforms exist. Although loop dia-
grams should be finite at all levels, convergence of the quantum perturbative formalism has
not been demonstrated. Because the Fourier transform to momentum space is generally not
well-defined in curved spacetime, no claims can be made about whether or how the theory
might be applied in the context of an expanding universe; the energy scales �M , �H may
well-depend on emergent and evolving properties of the classical universe (e.g., entropy
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density), thus bridging the gap between quantum and classical. Whether a nonperturbative
quantum formulation can be developed remains to be determined.

Acknowledgements Research at the Perimeter Institute for Theoretical Physics is supported by the Govern-
ment of Canada through industry Canada and by the Province of Ontario through the Ministry of Research
and Innovation (MRI).

Data Availability Statement This manuscript has no associated data or the data will not be deposited.
[Authors’ comment: There are no associated data available.]

References

1. J.W. Moffat, Eur. Phys. J. Plus 134, 443 (2019). arXiv:1812.01986
2. J.W. Moffat, Eur. Phys. J. Plus 136, 601 (2021). arXiv:2009.10145
3. G. Kleppe, R.P. Woodard, Ann. Phys. 221, 106 (1993)
4. C. Callan, Phys. Rev. D 2, 1541 (1970)
5. K. Symanzik, Commun. Math. Phys. 18, 227 (1970)
6. K. Symanzik, Commun. Math. Phys. 23, 49 (1971)
7. M.E. Peskin, D.V. Schroeder, An Introxuction to Quantum Field Theory, Addison-Wesley, Reading 1995,

2nd edn. (Westview Press, 2015)
8. F.J. Dyson, Phys. Rev. 75, 486 (1949)
9. F.J. Dyson, Phys. Rev. 85, 631 (1952)

10. L. D. Landau, Niels Bohr and the Development of Physics, London, Pergamon Press LTD, p. 52, (1955)
11. L.D. Landau, I. Ya Pomeranchuk, Dokl. Akad. Nauk SSSR 102, 489 (1955)
12. L.D. Landau, A. Abrikosov, L. Halatnikov, Suppplemento AL, 111. Il Nuovo Cimento (1956)
13. D.J.E. Callaway, R. Petronzio, Nucl. Phys. B 277, 50 (1986)
14. D.J.E. Callaway, Phys. Rep. 167, 241 (1998)
15. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)
16. J.W. Moffat, Phys. Rev. D 41, 1177 (1990)

123

http://arxiv.org/abs/1812.01986
http://arxiv.org/abs/2009.10145

	Finite quantum field theory and renormalization group
	Abstract
	1 Introduction
	2 Scalar field theory
	3 Callan–Symanzik equation and running of λ
	Acknowledgements
	References




