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Abstract In an Ising linear chain of spins- 1
2 with the periodic conditions in NN and NNN

interactions as a two-ring structure of two different coupling constants, all or half spins
contribute to the NNN couplings, depending on whether the total number of spins is odd or
even. In this article, we formulate precise predictions on the values, degeneracy factors, and
the number of allowed energy levels for the two-ring Ising chains with any arbitrary number
of spins in two different forms for odd and even number of spins. We confirm the validity of
our formulations firstly by comparing them with the data obtained from the manual search for
small finite-size two-ring Ising chains. Secondly, the validity of the formulations is verified
by comparing the obtained partition functions by energy levels with the other forms obtained
from the change of variable method. We study analytically the ground levels and show
that they exhibit the maximal spin frustration when the ferromagnetic and antiferromagnetic
orders are demanded via the NN and NNN coupling constants, respectively. Finally, we show
that the low-temperature behavior of the entropy and specific heat capacity per spin in the
maximally frustrated regime matches with the analytical results.

1 Introduction

In statistical mechanics, a key step to calculate the thermodynamics properties of a system
in thermal equilibrium is evaluating the partition function, which is a sum of Boltzmann
factors over energy levels of the model by including the degeneracy of each energy level.
Every allowed energy level of a classical Ising chain specifies one or more microstates by
one or more spin configurations. Studies on the values, degeneracy factors, and the number
of allowed energy levels for Ising chains are of great importance; therefore, it has been
considered by several authors. In quantum statistical mechanics, this can be a much more
difficult issue to address, especially when Ising, Heisenberg and Heisenberg-Ising models in
different dimensions and lattices are considered. For this, many authors have to investigate the
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ground state energy of statistical systems in detail and discuss thermodynamics properties
at low temperatures. This is justified because the dominant contribution to the partition
function arises from the ground state, as the system is not gapless. For example, in Ref. [1],
upper and lower bounds have been considered for the ground-state energy of the rectangular
one-, two-, and three-dimensional lattices of the Heisenberg-Ising type with anisotropic
couplings between nearest neighbors (NNs). The authors have also shown that the ground-
state energy per NN pair is not decreased by increasing the dimension of the lattice. In
Ref. [2], spin configurations have been considered for the ground state of an Ising model
on a flat triangular lattice with the competing interactions between spins at the nearest and
next-nearest neighbors (NNNs) as well as a coupling between three spins at the vertices
of a NN triangle, and an external magnetic field. In Ref. [3], analytical expressions for the
eigenvalues and eigenstates of the Ising Hamiltonians in one-, two- and three-dimensional
lattices of arbitrary size have been derived in the absence of an external magnetic field using
unitary transformations and combinatorics. The authors have used transfer matrix properties
of which the models can include a magnetic field along the z-axis and generalize to a higher
number of spin components on each site. The accurate determination of the energy levels and
their degeneracy factors in the Ising chains with arbitrary sizes may be very complex, even
from the viewpoint of classical statistical mechanics. However, so many attempts have been
made to study the spectra of Ising chains, especially on the ground energies. For example,
in Ref. [4], the author has studied the degeneracy of the ground state for an open finite one-
dimensional chain of Ising spins- 1

2 with the ferromagnetic and antiferromagnetic competing
interactions for nearest neighbors and kth neighbors, respectively. He has shown that when the
magnitude of the ratio of the first coupling constant to the second one is k, the ground state is
highly degenerate with the residual entropy per spin. The existence of the ferromagnetic and
antiferromagnetic competing interactions in a chain causes all interactions not to be satisfied
simultaneously [5–7]. In this case, there is no way to simultaneously satisfy all interactions
and, consequently, the total energy of the chain cannot be minimized by minimizing all
the spin–spin interactions simultaneously. In other words, the ground-state becomes highly
degenerate, and some spins behave as free spins. Such a model is generally known in the
literature as a frustrated model, and the present paper aims to investigate spin frustration by
analyzing energy levels for a two-ring Ising chain with the NN and NNN coupling constants.
Some other relevant studies of both classical and quantum-mechanical viewpoints can be
mentioned through Refs. [8–16].

The authors believe that many issues of analysis and optimization of complex systems
in the various fields such as biology, wireless communication, artificial intelligence can be
modeled with binary variables and mapped on the basic state of the Ising model. In these
papers, different Ising machines have been designated for finding the exact solutions to a
variety of hard instances Ising problems. In this regard, a physical system called the coherent
Ising machine was designed to calculate the ground states of the Ising-like networks [17–21].
This machine is based on a network of optical oscillators proposed for the Ising problem with
specific values of coupling. It calculates the basic states of similar Ising networks and provides
relatively accurate or approximate solutions with high accuracy to various Ising problems
with more than 100 spins with 10,000 spin-spin connections [22]. For example, in paper
[23], the authors simulated a 16-bit coherent Ising machine based on semi-classical models.
The 2000-bit system has also been studied in Ref [24]. The significance of this model also
has been mentioned in its applications for describing different 1D and quasi-1D systems of
various materials, such as a ferroelectric system composed of Ca3CoMnO6-type chains [25].
In the paper, the magneto-electric coupling of a material using the transfer matrix method
was investigated, and the consistency of the results with experience was confirmed. The
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work was done in the absence of a magnetic field, and the interactions of NN and NNN were
considered. The ferroelectric properties of Ca3Co2−xMnxO6, as an Ising chain magnet, have
been studied theoretically and experimentally in the works such as [24,26]. Ising chain also
has been found some applications in genetics [23]. In this work, a linear 1D Ising model was
studied, and the NN interactions were simulated. The results were comparable to complex
genetic algorithms. Ref. [27] is one of the papers in which the conformity of theory with
experience was well demonstrated, and the authors have proposed a theoretical approach to
obtain magnetic properties and simulate magnetic fields in single-ring magnetic compounds
based on spin-Ising rings with a limited number.

Analytical methods have been very useful in evaluating the statistical properties of clas-
sical Ising chains incisively. It must be emphasized that the two-ring Ising chains are very
well-known in the literature under different names, e.g., ANNNI chain, two-leg ladder, zig-
zag ladder, sawtooth chain, delta chain, decorated chain, and so on. Without the knowledge
of energy levels and their degeneracy factors, they have been comprehensively studied from
different perspectives—exact solutions through the change of variable method and transfer-
matrix approach, decoration-iteration transformation, disorder solution, ground-state anal-
ysis, frustration, etc. (see, for example, Refs. [28–36]). In a recent work [37], by using the
Hubbard–Stratonovich transformation without analyzing the energy levels and their degen-
eracy factors, the author has obtained an exact solution for the partition function of the Ising
model with an arbitrary number of spin- 1

2 sites and with a nonsingular coupling coefficients
matrix, whether there is a nonzero external field or not. This partition function is transformed
to Kramers–Wannier and Onsager solutions when the Ising model is considered as the z-
components of spins localized at the 1- and 2-dimensional lattice sites, respectively. We have
analyzed exactly all energy levels and the degeneracy factors for the two Ising models that are
the special cases of [37] and then obtained their partition functions, which are in agreement
with the above-mentioned reference. The cyclic chains of even- and odd-site spins- 1

2 with
the NN and NNN interactions have necessarily three- and two-ring structures, respectively.
It is expected that their behaviors will not be different from each other in the thermodynamic
limit. In Ref. [38], the contributions of all spin- 1

2 sites in the NN and NNN interactions have
been studied in the thermodynamic limit when the total number of spins is even. The authors
of the latter mentioned reference have used the partition function and analyzed the specific
heat capacity per spin in the thermodynamic limit to explain the close competition between
ferromagnetic NN and antiferromagnetic NNN interactions for when the value of spin frus-
tration parameter is 1

2 . This is in agreement with our analytical findings for the ground energy
levels in this work, the finite-size Ising chains of odd-site spins- 1

2 with the NN and NNN
interactions demonstrate the maximal frustration not only for the value 1

2 but also for the
value 1 of spin frustration parameter, which covers automatically the thermodynamic limit
mentioned in the above.

In Refs. [39,40] we have utilized the change of variable method to obtain the exact
expressions for the partition functions of the two- and three-ring Ising chains formed by the
NN and NNN coupling constants with an arbitrary number of spins- 1

2 in the absence of an
external magnetic field. In Ref. [40], we have formulated the allowed energy levels and their
degeneracy factors by aggregating data for small sizes of three-ring Ising chains. Then, the
standard energy-based method has been used to calculate the partition function of a three-ring
Ising chain with an arbitrary even number of spins- 1

2 , in addition to the method mentioned
above. Finally, the validity of our formulation has been justified by comparing partition
functions obtained from both methods. Now, the present article, in Sect. 2, formulates the
values, degeneracy factors, and the number of the allowed energy levels for the two-ring Ising
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chains introduced in Ref. [39]. Our analytical considerations in Sect. 3 confirm that the ground
levels demonstrate the maximal spin frustration via a competition between ferromagnetic NN
and antiferromagnetic NNN couplings in both two-ring Ising chains with any arbitrary (odd
and even) number of spins- 1

2 . We show that the ground levels of the two-ring chains with
the odd and even number of spins- 1

2 display the maximal frustration for both values 1
2 and

1, and only value 1 of the spin frustration parameter, respectively. Section 4 is devoted to
considering the low-temperature behavior of entropy and specific heat capacity per spin in
the maximally frustrated regime. Finally, Sect. 5 is devoted to summarizing the results of this
article.

2 The values, degeneracy factors and number of allowed energy levels for the two-ring
Ising chains

For a two-ring Ising spin- 1
2 chain with NN and NNN interactions, all and half spins contribute

to the second ones depending on whether the number of spins is odd or even, respectively.
Therefore, we will deal with two different types of formulation for the Hamiltonian and
consequently two distinct formulations for the energy spectrum with the odd and even number
of spins in the chain. Firstly, we are going to consider our ansatz on the formulation of the
energy spectrum for a two-ring Ising spin- 1

2 chain with the odd number of sites.

Remark 1 Let p be an integer number greater than or equal to 2. As illustrated in Fig. 1,
consider 2p+ 1 Ising spins S1, S2, · · · , S2p+1 (≡ ±1) on a one-dimensional two-ring chain
in which all spins contribute to the interaction with their NNs and NNNs via different coupling
constants J and K , respectively. Hamiltonian for the chain in Fig. 1 is

H2p+1
J,K = −J

2p+1∑

i=1

Si Si+1 − K

( p∑

i=0

S2i+1S2i+3 +
p∑

i=1

S2i S2i+2

)
, (1)

with the periodic boundary conditions S2p+2 ≡ S1 and S2p+3 ≡ S2. Let (m, n) be an
ordered pair of nonnegative integer numbers defined by n = 0 for m = 0 as well as n =[m+1

2

]
,
[m+1

2

] + 1,
[m+1

2

] + 2, · · · , p − [m
2

]
for m = 1, 2, 3, · · · , p, where the symbol [.]

denotes the integer part. Then, the allowed energy levels of the Hamiltonian (1) are

E2p+1
m,n (J, K ) = (4n − 2p − 1) J + (4m − 2p − 1) K . (2)

Fig. 1 Plot of the two-ring Ising
chain with the NN and NNN
coupling constants J and K for
the spins S1, S2, · · · , S2p+1

1
22p+1

2p 

2p-1

3

4

5

67

2p-2

K

J
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Table 1 The values, degeneracy factors and number of allowed energy levels for the two-ring Ising chains
p = 2, 3, 4, 5 of Remark 1

If we denote the degeneracy factor of the energy E2p+1
m,n as g2p+1

m,n , then we have

g2p+1
0,0 = 2, g2p+1

m,n = 2(2p + 1)

m
C2n−1
m−1 C2p−2n

m−1 . (3)

The symbol C: stands for the binomial coefficient. The total number of microstates acces-
sible to the two-ring chain in Fig. 1 is estimated by summation of all possible degeneracy
configurations:

22p+1 = g2p+1
0,0 +

p∑

m=1

p−[m
2

]
∑

n=
[
m+1

2

]
g2p+1
m,n

= 2 + 2
p∑

m=1

p−[m
2

]
∑

n=
[
m+1

2

]

2p + 1

m
C2n−1
m−1 C2p−2n

m−1 . (4)

Moreover, the number of allowed distinct values for energy is given by

N 2p+1 = 1 + 1

2
p(p + 1). (5)

We introduce two different pieces of evidence in order to confirm the correctness of
Remark 1. Firstly, its accuracy can be verified numerically as below. We can directly obtain
the values, degeneracy factors and number of allowed energy levels for p = 2, 3, 4, 5 as
shown in Table 1 by setting spin variables S1, S2, · · · , S2p+1 to the values +1 and −1 in all
different possible ways. For example, the given information in the first column (from the left
side) of Table 1 follows from all possible configurations, up and down, for spins S1, S2, S3,
S4 and S5 as shown in Table 2. The interaction energies given in this table are obtained by
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Table 2 All possible configurations (up and down) for a two-ring Ising chain of spins S1, S2, S3, S4 and S5
with the different exchange coupling constants J and K of NN and NNN interactions, respectively

E5
0,0 = −5J − 5K E5

1,1 = −J − K E5
2,1 = −J + 3K E5

1,2 = 3J − K

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↓
↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↓

↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓ ↑
↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↑
↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↑
↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓
↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↓
↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓
↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑
↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↑

setting the spin variables S1, S2, S3, S4 and S5 of the Hamiltonian H5
J,K to the values +1 and

−1 in all different possible ways. One can easily verify that the values, degeneracy factors
and the number of allowed energy levels listed in Table 1 are in full compatibility with those
found in Remark 1. Secondly, one can obtain the partition function Z2p+1

J,K exactly by using

E2p+1
m,n and g2p+1

m,n of Remark 1 as follows

Z2p+1
J,K = g2p+1

0,0 e−βE2p+1
0,0 (J,K ) +

p∑

m=1

p−[m
2

]
∑

n=
[
m+1

2

]
g2p+1
m,n e−βE2p+1

m,n (J,K )

= 2eβ(2p+1)(J+K )

⎛

⎜⎜⎝1 +
p∑

m=1

p−[m
2

]
∑

n=
[
m+1

2

]

2p + 1

m
C2n−1
m−1 C2p−2n

m−1 e−4β(nJ+mK )

⎞

⎟⎟⎠ ,

(6)

in which β = 1/kBT and kB denotes the Boltzmann’s constant. This formula is confirmed
when it is compared with the relation (1) of Ref. [39] for different values of p. This, in turn,
certifies the validity of our formulation in Remark 1 for the spectrum of two-ring Ising chain
drawn in Fig. 1.

Remark 2 (Decorated chain) Let p be an integer number greater than or equal to 3. Consider
2p Ising spins S1, S2, · · · , S2p (≡ ±1) on a one-dimensional chain in which NN spins
are coupled to each other by the constant J . Furthermore, we suppose that NNN spins
S1, S3, · · · , S2p−1 are coupled to each other by the exchange coupling constant K . It is also
assumed that the Ising chain is cyclic in both NN and NNN interactions via the boundary
condition S2p+1 ≡ S1 as shown in Fig. 2. Hamiltonian for two-ring Ising chain described by
Fig. 2 is

H2p
J,K = −J

2p∑

i=1

Si Si+1 − K
p∑

i=1

S2i−1S2i+1. (7)
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Fig. 2 Plot of the two-ring
(decorated) Ising chain with the
NN and NNN coupling constants
J and K for the spins
S1, S2, · · · , S2p and
S1, S3, · · · , S2p−1, respectively

K

1
22p

2p-1

2p-2

2p-3

3

4

5

6
7

2p-4

J

Consider ordered pairs (m, n) of nonnegative integer numbers defined by n = m,m +
1,m + 2, · · · , p−m for m = 0, 1, 2, · · · ,

[ p
2

]
. In this way, the allowed energy levels of the

Hamiltonian (7) are given by

E2p
m,n(J, K ) = (4n − 2p) J + (4m − p) K . (8)

Then, the degeneracy factor g2p
m,n for the energy E2p

m,n is given by

g2p
m,n = 22m+1C p

m+nC
m+n
2m . (9)

The total number of microstates accessible for the two-ring chain given in Fig. 2 is evaluated
by summation of all possible degeneracy configurations:

22p =
[ p

2

]
∑

m=0

p−m∑

n=m

g2p
m,n

=
[ p

2

]
∑

m=0

p−m∑

n=m

22m+1C p
m+nC

m+n
2m . (10)

Also, the number of allowed values of energy for the decorated chain is given by

N 2p =
([ p

2

]
+ 1

) (
p −

[ p

2

]
+ 1

)
. (11)

Again, our claims in Remark 2 about the values, degeneracy factors and the number of
allowed energy levels for the decorated two-ring Ising chain given in Fig. 2 with the even
number 2p of spins are verified by a direct calculation. For example, we have included the
results in Table 3 for p = 3, 4, 5, 6, where one can match data with the formulation of
Remark 2. Furthermore, the partition function Z2p

J,K corresponding to two-ring Ising chain

of Fig. 2 is derived by using the values of E2p
m,n and g2p

m,n given in Remark 2 as follows

Z2p
J,K =

[ p
2

]
∑

m=0

p−m∑

n=m

g2p
m,ne

−βE2p
m,n(J,K )

= eβp(2J+K )

[ p
2

]
∑

m=0

p−m∑

n=m

22m+1C p
m+nC

m+n
2m e−4β(nJ+mK ). (12)
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Table 3 The values, degeneracy factors and number of allowed energy levels for the two-ring Ising chains
p = 3, 4, 5, 6 of Remark 2

However, we previously obtained another form for the partition function Z2p
J,K in the relation

(14) of Ref. [39] by the change of variable method. Finally, one can show that the above-
mentioned two expressions for the partition function Z2p

J,K are equal when p is fixed to
p = 3, 4, 5, 6, etc., which is another certification of the validity of Remark 2.

3 Spin frustration of ferromagnetic and antiferromagnetic orders

Let us set J and K equal to 1 and −α, in both two-ring Ising chains discussed above, and
use α > 0 as a spin frustration parameter for when the ferromagnetic and antiferromagnetic
interactions are carried out via the coupling constants J and K , respectively. This symbol-
ization allows us to consider the spin frustration effect on each of the models, separately, as
follows:

(a) Analysis of spin frustration effect on the two-ring Ising chain of Fig. 1: We show
analytically that the maximal spin frustration in the ground states at the low temperatures
occurs when the dimensionless parameter α takes both values 1

2 and 1. First, we need to get
the ground energies, which may sometimes depend on the evenness and oddness of p.

• Our considerations show that the inequality 2n ≥ m holds by all pairs (m, n) of Remark
1, whether p is even or odd. If we demand that E2p+1

0,0 (1,−α) with the degeneracy
factor 2 be the ground energy, then we obtain the inequality mα ≤ n that must be
satisfied by all pairs (m, n) belonging to 1 ≤ m ≤ p and

[m+1
2

] ≤ n ≤ p − [m
2

]
. By

comparison with 2n ≥ m, we conclude that, for α ≤ 1
2 , the ground energy of the two-ring

Ising spins- 1
2 chain corresponding to Fig. 1 for every p ≥ 2, whether even or odd, is

E2p+1
0,0 (1,−α) = (2p + 1)(α − 1).
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• An immediate consequence of 2n ≥ m is (
p
2 − n)/(p − m) ≤ 1

2 which, in turn, results
that the ground energy of the two-ring Ising model in Fig. 1 with p ≥ 2 as an even
number is E2p+1

p, p
2

(1,−α) = −1 − (2p − 1)α for α ≥ 1
2 , with the degeneracy factor

2(2p + 1).
• From Remark 1, for p as an arbitrary odd number, it becomes clear that E2p+1

p−1,
p−1

2

(1,−α)

will be the ground energy, provided that the inequality p−1
2 − n ≤ (p − m − 1)α is

satisfied by α. The satisfaction of this inequality requires that α obeys α ≥ 1
2 and α ≤ 1

for 0 ≤ m ≤ p − 3 and m = p, respectively. Moreover, it leads to α ≥ 0 for m = p − 2
while no condition is applied for m = p − 1. Therefore, for every odd integer p ≥ 3,
E2p+1

p−1,
p−1

2

(1,−α) = −3 − (2p − 5)α with the degeneracy factor 1
3 p(p + 1)(2p + 1)

is the ground energy of the two-ring Ising chain corresponding to Fig. 1 in the region
1
2 ≤ α ≤ 1.

• Here, we again assume that p is an odd integer number greater than or equal to 3. If
we demand that E2p+1

p, p+1
2

(1,−α) be the ground energy, we get α ≥ (p + 1)/2p and

p+1
2 − n ≤ (p −m)α. These inequalities are satisfied by all pairs (m, n) of Remark 1 if

inequality α ≥ 1 is satisfied. Therefore, E2p+1

p, p+1
2

(1,−α) = 1 − (2p − 1)α is the ground

energy for α ≥ 1 with the degeneracy factor 2(2p + 1).

Now, we are in an appropriate position to consider the maximal spin frustration effect for the
values α = 1

2 and α = 1:

• Maximal frustration at α = 1
2 for even values of p: For an even p ≥ 2, the two-ring

Ising chain in Fig. 1 takes the energy −p − 1
2 via two ground levels E2p+1

0,0 (1,− 1
2 ) and

E2p+1
p, p

2
(1,− 1

2 ) with the degeneracy factors 2 and 2(2p + 1), respectively. The sum of

the degeneracy factors at α = 1
2 is 4(p + 1) which is increasing linearly with p and

describes itself a type of frustration rate. This, in turn, implies that the chain becomes
more frustrated at α = 1

2 when p is increased.
• Maximal frustration at α = 1

2 for odd values of p: Again, the two ground levels

E2p+1
0,0 (1,− 1

2 ) and E2p+1

p−1,
p−1

2

(1,− 1
2 ) with the degeneracy factors 2 and 1

3 p(p+1)(2p+
1), respectively, take the same energy, named −p − 1

2 , for an odd p ≥ 3 in the chain of
Fig. 1. Despite the previous case, the sum of the degeneracy factors at α = 1

2 is a cubic
power of p which, in turn, means stronger frustrations for higher values of p.

• Maximal frustration at α = 1 for odd values of p: For an odd p ≥ 3, the two-ring
Ising chain in Fig. 1 takes the energy 2 − 2p via two ground levels E2p+1

p−1,
p−1

2

(1,− 1
2 )

and E2p+1

p, p+1
2

(1,− 1
2 ) with the degeneracy factors 1

3 p(p + 1)(2p + 1) and 2(2p + 1),

respectively. Therefore, there exists very stronger frustrations due to the fact that the
sum of the degeneracy factors not only is a cubic power of p but also is greater than the
previous case by 4p.

(b) Analysis of spin frustration effect on the two-ring Ising chain of Fig. 2: We first obtain
the ground-state energies as a function of the frustration parameter α and then show that the
maximal frustration occurs when it takes the value 1. Indeed, the classical ground energies
of the decorated Ising chain are determined depending upon which of the inequalities α ≤ 1
or α ≥ 1 is satisfied by the frustration parameter. Again, for α ≥ 1, the ground level has two
different forms in terms of the parameters p and α, depending on whether p is even or odd.
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• An immediate result from Remark 2 is 0 ≤ m ≤ [ p
2

]
and m ≤ n ≤ p −m. On the other

hand, in order to have a minimum value for energy via E2p
0,0(1,−α) with the degeneracy

factors 2, the inequality n ≥ mα must be satisfied by all pairs (m, n) of Remark 2. The last
inequality for n = m = 0 is fulfilled without imposing any restrictions on α. Otherwise,
the condition expression α ≤ n

m is evaluated. From this, together with n ≥ m, we deduce
that α ≤ 1. Therefore, for every p ≥ 2, whether even or odd, the ground energy of the
two-ring Ising spins- 1

2 chain in Fig. 2 is E2p
0,0(1,−α) = p(α − 2) in the case of α ≤ 1.

• Clearly, if we demand that E2p
p
2 ,

p
2
(1,−α) = −pα with the degeneracy factor 2p+1 for a

given even number p ≥ 2 be a ground level, then the inequality (
p
2 − m)α ≥ p

2 − n is
derived, which, is automatically satisfied by n = m = p

2 without any condition on α. This

inequality appears in the form of α ≥ p−2n
p−2m for the rest of pairs (m, n) of 1 ≤ m ≤ [ p

2

]

and m ≤ n ≤ p − m, satisfied by α ≥ 1.
• In the case of odd p ≥ 3, in computing the lowest level by E2p

p−1
2 ,

p−1
2

(1,−α) = −2 −
(p − 2)α with the degeneracy factor 2p p, it will be needed to satisfy the inequality
(
p−1

2 − m)α ≥ p−1
2 − n, which is trivially satisfied by n = m = p−1

2 . While, for the
other values of m and n in Remark 2 the inequality α ≥ 1 must be realized.

Now, we can explain the maximal spin frustration effect at α = 1 on the two-ring Ising chain
of Fig. 2 in two different forms for the even and odd values of p.

• Maximal frustration at α = 1 for even values of p: For an even p ≥ 2, the energy
of the two-ring Ising chain in Fig. 2 takes the value −p by ground levels E2p

0,0(1,−1)

and E2p
p
2 ,

p
2
(1,−1) with the degeneracy factors 2 and 2p+1, respectively. Furthermore, the

sum of the degeneracy factors at α = 1 is 2(1 + 2p) which is increasing in terms of p.
• Maximal frustration at α = 1 for odd values of p: Again, the lowest energy −p for

an odd p ≥ 3 in the chain of Fig. 2 is derived by two ground levels E2p
0,0(1,−1) and

E2p
p−1

2 ,
p−1

2

(1,−1) with the degeneracy factors 2 and 2p p, respectively. The sum of the

degeneracy factors at α = 1 is 2(1 + 2p−1 p) which, in turn, means a stronger frustration
for higher values of p, in comparison with the previous case.

4 The maximally frustrated regime: Low-temperature behavior of entropy and
specific heat capacity in the vicinity of the values 1

2 and 1 of frustration parameter

Now, we investigate the role of the spin frustration parameter α at the low-temperatures on

the entropy S = − ∂FN
α

∂T and the specific heat capacity C = ∂U
∂T with U = −T 2 ∂

∂T
FN

α

T as
internal energy that is obtained from the Helmholtz free energy per spin FN

α ≡ − 1
Nβ

ln ZN
1,−α .

The N refers to the number of spins in the Ising chains of Figs. 1 and 2, namely 2p + 1
and 2p, respectively. Therefore, the partition functions obtained in (6) and (12) are used to
evaluate the low-temperature behavior of entropy and specific heat capacity in the vicinity of
the values 1

2 and 1 of spin frustration parameter, corresponding to the maximally frustrated
regime. From now on, it is assumed that the NN and NNN exchange couplings are given in
terms of the unit kB × Kelvin = 1.3807 × 10−23 Joule, which will be omitted to simplify
both text and plots.

In Figs. 3 and 4, we have considered the behavior of the entropy and specific heat capacity
per spin as the function of spin frustration parameter 0 < α < 1.5 at the low-temperatures
T = 0.1K and 0.3K for the parameters p = 3, 4, 5, 6, 7, 8 of size of the two-ring Ising
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chains in Figs. 1 and 2. Due to the fact that the low-temperatures T = 0.1K and 0.3K
led to establishing the ground-state energies, the curves indicate the expected behaviors in
agreement with our analytical results on the maximally frustrated regime, presented in the
previous section. According to Fig. 3a–d for the Ising chains in Fig. 1, the maximum and
minimum values for the entropy and specific heat capacity per spin are shown, respectively,
in the vicinity of α = 1

2 , whether p is even or odd. Whilst, this happens only for odd values of
p in the vicinity of α = 1. These are in agreement with the maximal degeneracies 4(p + 1),
2 + 1

3 p(p + 1)(2p + 1) and (2p + 1)(2 + 1
3 p(p + 1)) for even p and α = 1

2 , odd p and
α = 1

2 , odd p and α = 1, respectively. Finally, according to Fig. 4a–d for the Ising chains
in Fig. 2, the maximum and minimum values for the entropy and specific heat capacity per
spin are exhibited, respectively, in the vicinity of only α = 1, for every p, whether even or
odd. This assertion is in agreement with the maximal degeneracies 2 + 2p+1 and 2 + 2p p
for even and odd p, respectively, in the vicinity of α = 1. We must point out that as it is seen
from Fig. 4a–d, there are no extreme values for the entropy and specific heat capacity per
spin in the vicinity of α = 1

2 which, in turn, is in agreement with our analytical results on
Remark 2 of the previous section.

5 Concluding remarks

As it has been shown in Fig. 1, a cyclic linear chain of the odd number 2p+1 of spins- 1
2 in the

NN and NNN interactions with coupling constants J and K , respectively, has to have a two-
ring structure so that all spins contribute to the interaction with their NNs and NNNs. Fig. 2
denotes a two-ring (decorated) chain of the even number 2p of spins- 1

2 while all and half spins
contribute to the NN and NNN interactions with coupling constants J and K , respectively.
Remarks 1 and 2 introduce explicitly the exact forms of the classical energy levels and
their corresponding degeneracy factors for these two-ring Ising chains without remarking
that the NN and NNN interactions are from which type, ferromagnetic or antiferromagnetic.
However, we know that the competing ferromagnetic and antiferromagnetic interactions lead
to frustration at the low temperatures, which can be measured in degenerate ground states
by the negative ratio of the coupling constants K and J , the so-called frustration parameter
α. Maximal frustration occurs when some ground levels for some values of α find the same
energy, and consequently, become more degenerated with respect to the other values in their
vicinity. In fact, the disorder in the spin orientations induced by competing interactions
increases in the ground levels at the last issues. In this work, we have shown that the ground
levels of the two-ring Ising spins- 1

2 chain corresponding to Fig. 1 with p as an even number

are E2p+1
0,0 (1,−α) = (2p + 1)(α − 1) and E2p+1

p, p
2

(1,−α) = −1 − (2p − 1)α for α < 1
2

and α > 1
2 with the degeneracy factors 2 and 2(2p + 1), respectively. Furthermore, the

ground levels of Fig. 1 with p as an odd number are E2p+1
0,0 (1,−α) = (2p + 1)(α − 1),

E2p+1

p−1,
p−1

2

(1,−α) = −3 − (2p − 5)α and E2p+1

p, p+1
2

(1,−α) = 1 − (2p − 1)α for α < 1
2 ,

1
2 < α < 1 and α > 1 with the degeneracy factors 2, 1

3 p(p + 1)(2p + 1) and 2(2p + 1),
respectively. These results demonstrate spin frustration effect by the ground levels of Fig. 1 at
the low temperatures in the presence of the competing ferromagnetic and antiferromagnetic
interactions. Moreover, maximal spin frustration occurs in the ground energy −p − 1

2 with
the degeneracy factors 4(p + 1) and 2 + 1

3 p(p + 1)(2p + 1) in the cases p even and
odd, respectively, at α = 1

2 , as well as in the ground energy 2 − 2p with the degeneracy
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Fig. 3 Plots of entropy and
specific heat capacity per spin
based on the partition function
(6) in the frustration parameter
range 0 < α < 1.5 at the
low-temperatures (a, b)
T = 0.1K and (c, d) T = 0.3K .
The parameter p of Fig. 1 with
the partition function (6) has been
chosen as p = 3, 4, 5, 6, 7, 8
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Fig. 4 Plots of entropy and
specific heat capacity per spin
based on the partition function
(12) in the frustration parameter
range 0 < α < 1.5 at the
low-temperatures (a, b)
T = 0.1K and (c, d) T = 0.3K .
The parameter p of Fig. 2 with
the partition function (12) has
been chosen as
p = 3, 4, 5, 6, 7, 8
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factor (2p + 1)(2 + 1
3 p(p + 1)) in case only p odd, at α = 1. The frustration effect

in the case of the two-ring Ising spin- 1
2 chain corresponding to Fig. 2 is simpler as we

deal with two ground levels whether p is even or odd. For α < 1, the ground level of
Fig. 2, with arbitrary p ≥ 2, whether even or odd, is E2p

0,0(1,−α) = p(α − 2) with the

degeneracy factor 2. Besides, for α > 1, the ground levels are E2p
p
2 ,

p
2
(1,−α) = −pα and

E2p
p−1

2 ,
p−1

2

(1,−α) = −2 − (p − 2)α with the degeneracy factors 2p+1 2p p, respectively.

Consequently, for energy −p corresponding to α = 1, we obtain the degeneracy factors
2(1 + 2p) and 2(1 + 2p−1 p) in cases p even and odd, respectively. Therefore, the two-ring
Ising chains in Fig. 2 for energy −p find maximal frustration due to competing ferromagnetic
and antiferromagnetic interactions. In Figs. 3 and 4, we have depicted plots of the entropy
and specific heat capacity per spin as the functions of the frustration parameter at the low-
temperatures T = 0.1K and 0.3K for p = 3, 4, 5, 6, 7, 8 of the two-ring Ising chains in
Figs. 1 and 2. These curves verify the analysis above. The entropy and specific heat capacity
per spin for the Ising chains in Fig. 1 take the maximum and minimum values in the vicinity
of α = 1

2 (α = 1), in both cases even and odd p (only for odd p). The plots of the entropy
and specific heat capacity per spin for the Ising chains in Fig. 2 involve the maximum and
minimum values, respectively, in the vicinity of only α = 1, in both cases even and odd p.

Data Availability Statement This manuscript is a theoretical research and has no associated data.
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