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Abstract We establish first-order Darboux transformations for the two-dimensional Dirac
equation with diagonal matrix potential. The potential is allowed to depend arbitrarily on
both variables. The systems we consider here include the scenario of a position-dependent
mass as well as the massless case. Our Darboux transformations are more general than their
existing counterparts (Pozdeeva and Schulze-Halberg in J Math Phys 51:113501, 2010).

1 Introduction

The synthesis of graphene [1] sparked a growing interest in Dirac materials [2,3]. These
materials share the remarkable property that their low-energy electrons behave like massless
relativistic particles. As such, the dynamics and in particular the confinement of these elec-
trons is governed by the massless Dirac equation. While the two-dimensional version of the
latter equation is sufficient when considering a monolayer of the Dirac material, multilayer
structures require a model beyond the Dirac equation, see for example [4] for the bilayer case
of graphene and [5] for the recently discovered twisted bilayer case. From a mathematical
viewpoint, even for the monolayer situation the mathematical task of solving the governing
two-dimensional Dirac equation is in general possible only by means of numerical approx-
imations. A common scenario that has been studied thoroughly is the particular case of the
system’s potential depending on a single variable only. Under these circumstances, the Dirac
equation can be decoupled into a scalar ordinary differential equation of second order that in
very few cases allows for closed-form solutions. This method has been used to study Dirac
systems coupled to magnetic fields [6–8], with purely electric fields [9,10], and including a
position-dependent mass [11,12], among a large amount of other applications. We remark
that the most general case of a Dirac equation with electromagnetic fields or a position-
dependent mass can be obtained by assuming the potential to be of general matrix form, as
it was done for example in [13]. The scarceness of Dirac systems that admit closed-form
solutions motivates the search for methods that can generate such systems. A particularly
useful class of methods is based on Darboux transformations. While upon its introduction
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the latter transformation was applicable to linear, second-order equations only [14–16], the
formalism has been generalized to work with a wide variety of linear and nonlinear models,
see [17] or [18] for an overview. These models include the Dirac equation, where Darboux
transformations were established for both the one-dimensional and the two-dimensional case.
In one dimension, Darboux transformations were first constructed for the Dirac equation as a
conjugate mapping to the Schrödinger scenario [19]. Further and recent applications include
a study of the Dirac Hamiltonian’s most general supersymmetric structure exhibited in the
time-dependent context [20], and in the stationary situation under the presence of coupling to
scalar and pseudoscalar interactions [21]. The two-dimensional case was derived in [22], and
applied in several scenarios, such as in Dirac systems coupled to magnetic fields [23,24], with
position-dependent mass [25], for a linear potential [26], and through a dynamical systems
approach [27], just to name a few examples. While in these applications the Dirac potential
depends on a single variable, the purpose of the present work is to overcome this limitation.
More precisely, we will adapt a first-order Darboux transformation for two-dimensional cou-
pled Korteweg-de Vries equations [28] to the two-dimensional Dirac equation with diagonal
matrix potential. We do not impose any restriction on the way the solutions or the potential
depends on the two variables. In Sect. 2 the for us relevant results from [28] are summarized.
The actual Darboux transformations are constructed in Sect. 3, while Sect. 4 is devoted to
applications.

2 Preliminaries

In order to make this work self-contained, we will now briefly review partial results from
[28]. Our starting point is the following equation in one dimension that can be related to
coupled Korteweg-de Vries systems:

χ ′′ − f χ ′ + λ f χ + e χ − λ2 χ = 0, (1)

where the functions e, f , and the solution χ depend on the real variable x . Furthermore,
the parameter λ is a complex-valued constant. In [28], Darboux transformations are defined
for equations of the form (1). These transformations can be adapted to the Dirac equation
[29] because after decoupling its form can be matched with (1). The latter equation can be
generalized to a two-dimensional version by assuming all quantities in the equation to depend
on two variables x and z. Furthermore, we make the formal replacements

′ → ∂

∂x
λ → ∂

∂z
.

Upon implementation of these settings we can write down an initial and a transformed two-
dimensional analogue of (1)

∂2χ

∂x2 − ∂2χ

∂z2 − f
∂χ

∂x
+ f

∂χ

∂z
+ e χ = 0 (2)

∂2χ̂

∂x2 − ∂2χ̂

∂z2 − f̂
∂χ̂

∂x
+ f̂

∂χ̂

∂z
+ ê χ̂ = 0. (3)

Note that for the sake of brevity we did not include arguments of the functions involved.
In fact, all quantities depend on the two real variables x and z. The functions e, ê and f, f̂
are arbitrary, while χ and χ̂ stand for solutions of the respective equations. It turns out that
we can connect the partner equations (2) and (3) by means of two Darboux transformations.
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To this end, let u be a solution of the initial equation (2), note that we will refer to u as
transformation function.

• We define a first Darboux transformation by means of

χ̂ = ∂χ

∂x
+ ∂χ

∂z
− 1

u

(
∂u

∂x
+ ∂u

∂z

)
χ. (4)

This function is a solution to our equation (3), provided the contraints

ê = e −
(

∂

∂x
− ∂

∂z

)[
− 1

u

(
∂u

∂x
+ ∂u

∂z

)]
(5)

f̂ = f +
(

∂

∂x
+ ∂

∂z

)
log

[
f − 1

u

(
∂u

∂x
+ ∂u

∂z

)]
. (6)

are met.
• A second Darboux transformation is obtained by defining the function

χ̂ = u

(
∂u

∂x
− ∂u

∂z

)−1 (
∂χ

∂x
− ∂χ

∂z

)
− χ, (7)

which solves equation (3) if the conditions

ê = e −
(

∂

∂x
− ∂

∂z

) [
e u

(
∂u

∂x
− ∂u

∂z

)−1
]

(8)

f̂ = f +
(

∂

∂x
+ ∂

∂z

)
log

[
u

(
∂u

∂x
− ∂u

∂z

)−1
]

, (9)

are satisfied. Observe that ê vanishes if its initial counterpart e vanishes, and that this
peculiar property does not occur in the first Darboux transformation.

In summary, both Darboux transformations (4)–(6) and (7)–(9) connect our two partner
equations (2) and (3).

3 Darboux transformations for the Dirac equation

In this section we will adapt the construction from [28] to the case of the two-dimensional
Dirac equation. Our starting point is the latter equation that can be written as

(
σx px + σy py + V

)
� = 0, (10)

where σx , σy are the usual Pauli matrices, px , py stand for the momentum operators, V =
diag(V11, V22) represents a diagonal 2 ×2 potential matrix, and � denotes a two-component
solution. Upon substituting the explicit form of the momentum operators, we obtain

− i σx
∂�

∂x
− i σy

∂�

∂y
+ V � = 0. (11)

Next, we split the solution into its component functions φ1 and φ2 via

� = (φ1, φ2)
T . (12)
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We plug this setting into our Dirac equation (11), the components of which become

− i
∂φ1

∂x
+ ∂φ1

∂y
+ V22 φ2 = 0 − i

∂φ2

∂x
− ∂φ2

∂y
+ V11 φ1 = 0. (13)

In the particular case that the potential functions V11 and V22 depend on the variable x only, we
can separate the y-dynamics off as a phase exp(i k y) in φ1 and φ2 for an arbitrary constant ky .
This is a common approach taken in the literature, as mentioned in Sect. 1. Decoupling of the
system (13) then leads to a second-order equation in the variable x . Darboux transformations
for this equation were defined and applied to the Dirac equation, see for example [25]. While
the latter method relies on a potential that depends on a single variable, here we assume that
the potential depends on both variables. Hence, in order to decouple our system (13), we
must now substitute one of the equations into the other. We have to distinguish three cases
here.

3.1 First case: V11 �= 0, V22 �= 0

We will now solve the left equation in (13) with respect to φ2. This gives

φ2 = 1

V22

(
i

∂φ1

∂x
− ∂φ1

∂y

)
, (14)

Upon inserting this result into the right equation from (13) and collecting terms, we arrive at

∂2φ1

∂x2 + ∂2φ1

∂y2 + 1

V22

(
−∂V22

∂x
+ i

∂V22

∂y

)
∂φ1

∂x

− 1

V22

(
i

∂V22

∂x
+ ∂V22

∂y

)
∂φ1

∂y
+ V11 V22 φ1 = 0. (15)

We will now demonstrate that equation (15) can be matched with the form (2). To this end,
we first introduce the coordinate scaling

y = − i z φ1(x, y) = χ(x, z). (16)

By means of the chain rule, the derivatives in (15) transform as follows

∂2

∂y2 = − ∂2

∂z2

∂

∂y
= i

∂

∂z
. (17)

We use these settings for implementing the coordinate switch (16) in our equation (15). For
the sake of simplicity we will not change the name of our potential components V11 and V22.
We find

∂2χ

∂x2 − ∂2χ

∂z2 − 1

V22

(
∂V22

∂x
+ ∂V22

∂z

)
∂χ

∂x
+ 1

V22

(
∂V22

∂x
+ ∂V22

∂z

)
∂χ

∂z
+ V11 V22 χ = 0, (18)

note that both derivatives of V22 and χ with respect to the second variable are affected by
the change of coordinate. Next, comparison of (18) with (2) brings up the following two
conditions for matching.

e = V11 V22 f = 1

V22

(
∂V22

∂x
+ ∂V22

∂z

)
. (19)
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This system can be solved in closed form for the potential components. The result reads

V11 = exp

⎡
⎣−

x∫
f (t,−x + z + t) dt

⎤
⎦ e

F(−x + z)

V22 = exp

⎡
⎣

x∫
f (t,−x + z + t) dt

⎤
⎦ F(−x + z),

where F is an arbitrary function of its argument. Upon reverting the coordinate change (16),
we can write

V11 = exp

⎡
⎣−

x∫
f (t,−x + i y + t) dt

⎤
⎦ e

F(−x + i y)
(20)

V22 = exp

⎡
⎣

x∫
f (t,−x + i y + t) dt

⎤
⎦ F(−x + i y). (21)

Hence, if we choose the potential components in the form (20) and (21), our initial equation
(2) matches its counterpart (18). Since the latter equation is linked to the Dirac equation
(11) by means of (14) and (16), we can now adapt our Darboux transformations (4)–(6) and
(7)–(9) to the Dirac context.

• First Darboux transformation We implement the coordinate change (16) in (4)-(6). The
transformed solution is then obtained in the form

φ̂1 = ∂φ1

∂x
− i

∂φ1

∂y
− 1

u

(
∂u

∂x
− i

∂u

∂y

)
φ1. (22)

Similarly, the parameter functions ê and f̂ read

ê = e −
(

∂

∂x
+ i

∂

∂y

) [
− 1

u

(
∂u

∂x
− i

∂u

∂y

)]
(23)

f̂ = f +
(

∂

∂x
− i

∂

∂y

)
log

[
f − 1

u

(
∂u

∂x
− i

∂u

∂y

)]
. (24)

We can now determine the transformed Dirac potential matrix V̂ = diag(V̂11, V̂22)

from (20), (21) by replacing e and f with their transformed counterparts (23) and (24),
respectively. The diagonal components of the latter matrix are given by

V̂11 = exp

⎡
⎣−

x∫
f̂ (t,−x + i y + t) dt

⎤
⎦ ê

G(−x + i y)
(25)

V̂22 = exp

⎡
⎣

x∫
f̂ (t,−x + i y + t) dt

⎤
⎦G(−x + i y), (26)

note that G is an arbitrary function of its argument.
• Second Darboux transformation We now handle our second Darboux transformation

(7)-(9) in the same way as its counterpart by implementing the coordinate change (16).
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The transformed solution is expressed as

φ̂1 = u

(
∂u

∂x
+ i

∂u

∂y

)−1 (
∂φ1

∂x
+ i

∂φ1

∂y

)
− φ1. (27)

The associated parameter functions ê and f̂ take the form

ê = e −
(

∂

∂x
+ i

∂

∂y

) [
e u

(
∂u

∂x
+ i

∂u

∂y

)−1
]

(28)

f̂ = f +
(

∂

∂x
− i

∂

∂y

)
log

[
u

(
∂u

∂x
+ i

∂u

∂y

)−1
]

. (29)

We plug these expressions into (25) and (26) in order to obtain the components of the
transformed Dirac potential matrix.

In summary, our Darboux transformations are applied as follows: starting out from an initial
Dirac equation (11) with diagonal matrix potential V , we determine the parameter functions
e and f by means of the relations (19). If we want to apply the first Darboux transformation,
we calculate the transformed solution and parameters via (22) and (23), (24), respectively.
The potential matrix is then found through (25), (26), while the solution of the transformed
Dirac equation (

σx px + σy py + V̂
)

�̂ = 0, (30)

is obtained by first using the function (22) to determine the second component of the Dirac
solution as

φ̂2 = 1

V̂22

(
i

∂φ̂1

∂x
− ∂φ̂1

∂y

)
. (31)

The full solution of the transformed Dirac equation (30) is then given by

�̂ =
(
φ̂1, φ̂2

)T
. (32)

For applying the second Darboux transformation, we evaluate (27)–(29). In the next step, the
entries of the transformed potential matrix are found from (25), (26), and the corresponding
solution of the transformed Dirac equation is found by means of (31) and (32). Recall that
these results are only valid if both potential entries V11, V22 of the initial Dirac potential
matrix do not vanish.

3.2 Second case: V11 = 0, V22 �= 0

If the potential entry V11 equals zero, the system (13) changes in the second equation. We
have

− i
∂φ1

∂x
+ ∂φ1

∂y
+ V22 φ2 = 0 − i

∂φ2

∂x
− ∂φ2

∂y
= 0. (33)

Since now the second equation only depends on the solution component φ2, we can solve it.
This gives solutions of the form

φ2 = k2(i x + y), (34)
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where k2 is an arbitrary function of its argument. Next, we plug (34) into the first equation
of (33) and solve with respect to φ1. The result reads

φ1 = k1(−i x + y) − i

x∫
V22(t, i t − i x + y) k2(2 i t − i x + y) dt. (35)

Note that k2 is given in (35), and that k1 is an arbitrary function of its argument. Hence,
the functions φ1 and φ2, as defined in (34) and (35), provide a solution (12) of our initial
Dirac equation (11) for the case V11 = 0. Consequently, we can now apply our Darboux
transformations in the same way as in the previous case, taking into account that solutions
of our initial Dirac equation must have the form (34) and (35). Before we conclude this
paragraph, let us briefly focus on the second Darboux transformation, given by formulas (25)-
(29). More precisely, we will now show that application of the latter Darboux transformation
in the present case V11 = 0 leads to the results V̂11 = 0 and φ̂2 = 0. In other words, the top
left entry of the transformed potential matrix vanishes, and so does the transformed second
solution component. In order to derive these results, we start out with the observation that the
current setting V11 = 0 forces e = 0, see (19). Next, inspection of the transformed function
ê in (8) reveals that e = 0 implies ê = 0. Note that this implication does not hold for the first
Darboux transformation. Now, formula (25) dictates that V̂11 vanishes. Let us now focus on
the second component of the transformed solution that can be determined by means of (14).
We will show that the term in parenthesis equals zero if φ1 has the form (35). To this end,
we note that a transformation function for our Darboux transformation must have the same
form as (35), that is, it must read

u = ku(−i x + y) − i

x∫
V22(t, i t − i x + y) k2(2 i t − i x + y) dt, (36)

where ku is an arbitrary function of its argument. Now we plug the function (35) along
with (36) into the transformed solution (27). For the sake of simplicity we introduce an
abbreviation for the integral in (35) and (36) as

I = −i

x∫
V22(t, i t − i x + y) k2(2 i t − i x + y) dt.

Upon implementing this in (27), we note that the terms in parenthesis cancel because we
have

∂k1(−i x + y)

∂x
+ i

∂k1(−i x + y)

∂y
= ∂ku(−i x + y)

∂x
+ i

∂ku(−i x + y)

∂y
= 0.

Consequently, the transformed solution component (27) takes the form

φ̂1 = ku(−i x + y) − k1(−i x + y). (37)

We can now calculate the second component by inserting (37) into (14). This gives immedi-
ately φ̂2 = 0 because the term in parenthesis vanishes. As mentioned before, these findings
are true for the second Darboux transformation only.

3.3 Third case: V11 �= 0, V22 = 0

Upon implementing this setting in our Dirac system (13), we obtain

− i
∂φ1

∂x
+ ∂φ1

∂y
= 0 − i

∂φ2

∂x
− ∂φ2

∂y
+ V11 φ1 = 0. (38)
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We observe that the first equation depends on φ1 only and therefore permits solution. We
obtain

φ1 = k1(−i x + y), (39)

introducing a function k1 that depends arbitrarily on its argument. Upon insertion of (39) into
the second equation in (33) we can solve for φ2. This yields

φ2 = k2(i x + y) − i

x∫
V11(t,−i t + i x + y) k1(−2 i t + i x + y) dt. (40)

The functions (39) and (40) form a solution of our initial Dirac equation (11) for the case
V22 = 0. Let us now proceed with application of our Darboux transformations. To this end,
we first note that our approach leading to (15) does not work under the present setting V22 = 0
because it generates undefined expressions in the latter equation. In order to circumvent this
problem, we consider the Dirac system (38). Solving the second equation with respect to φ1

gives

φ1 = 1

V11

(
i

∂φ2

∂x
+ ∂φ2

∂y

)
.

Insertion of this result into the first equation of (38) leads to

∂2φ2

∂x2 + ∂2φ2

∂y2 − 1

V11

(
∂V11

∂x
+ i

∂V11

∂y

)
∂φ2

∂x
+ 1

V11

(
i

∂V11

∂x
− ∂V11

∂y

)
∂φ2

∂y
= 0.

(41)

In the next step we apply the change of coordinates

x = − i z φ2(x, y) = χ(x, z). (42)

In comparison to (16), this time we switch the coordinate x rather than y. Implementation of
(42) in our equation (41) gives

− ∂2χ

∂z2 + ∂2χ

∂y2 + 1

V11

(
∂V11

∂z
+ ∂V11

∂y

)
∂χ

∂z
− 1

V11

(
∂V11

∂z
+ ∂V11

∂y

)
∂χ

∂y
= 0, (43)

Now, in order to match this equation with the required form (2), we make the identifications

e = 0 f = 1

V11

(
∂V11

∂z
+ ∂V11

∂y

)
. (44)

Comparison of (43) with (2) shows that both equations match, provided we switch the coor-
dinates x and y. Consequently, our equations for the first Darboux transformation (4)-(6)
take the following form after reverting the coordinate change (42):

φ̂2 = ∂φ2

∂y
− i

∂φ2

∂x
− 1

u

(
∂u

∂y
− i

∂u

∂x

)
φ2

ê = e −
(

∂

∂y
+ i

∂

∂x

) [
− 1

u

(
∂u

∂y
− i

∂u

∂x

)]

f̂ = f +
(

∂

∂y
− i

∂

∂x

)
log

[
f − 1

u

(
∂u

∂y
− i

∂u

∂x

)]
.
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In the same way we obtain the form of the second Darboux transformation (7)-(9). Reversion
of the coordinate change (42) leads to the following equations:

φ̂2 = u

(
∂u

∂y
+ i

∂u

∂x

)−1 (
∂φ2

∂y
+ i

∂φ2

∂x

)
− φ2

ê = e −
(

∂

∂y
+ i

∂

∂x

) [
e u

(
∂u

∂y
+ i

∂u

∂x

)−1
]

f̂ = f +
(

∂

∂y
− i

∂

∂x

)
log

[
u

(
∂u

∂y
+ i

∂u

∂x

)−1
]

.

It remains to determine the transformed entries of the Dirac potential matrix. We can obtain
them by switching variables in (25) and (26). This gives

V̂11 = exp

⎡
⎣

y∫
f̂ (−x + i y + t, t) dt

⎤
⎦G(−y + i x)

V̂22 = exp

⎡
⎣−

y∫
f̂ (−x + i y + t, t) dt

⎤
⎦ ê

G(−y + i x)
,

These equations conclude the construction of our Darboux transformations for the case
V22 = 0. Let us point out that if the second Darboux transformation is applied to the present
case, we obtain V̂22 = φ̂1 = 0. This follows from an argument analogous to the one given at
the end of the previous paragraph.

3.4 Comparison with former work

As mentioned in Sect. 1, Darboux transformations for the two-dimensional Dirac equation
(11) were introduced previously, see for example [22]. While a precise characterization of the
relation between the two types of Darboux transformations—presented in the aforementioned
reference and here, respectively—is beyond the scope of this work, we will use an argument
for a particular scenario to show that the present transformation type is more general than
its counterpart from [22]. To this end, let us consider the particular case of Dirac equations
(11), where the potential depends on a single variable, say x , only. As a consequence, the
y-dependency of the two-component solution (12) can be split off as exp(iky y) for a real-
valued constant ky . Within this scenario, it is known that the formalism considered in [22]
can be expressed through the standard Darboux (SUSY) transformation for the Schrödinger
equation [30]. In other words, Darboux transformations for the Dirac and the Schrödinger
equation are conjugate mappings that are connected through decoupling of the Dirac equation.
This result essentially goes back to a finding for the one-dimensional case [19]. In contrast,
the formalism introduced in this work reduces to Darboux transformations for a generalized
type of Schrödinger equation with quadratically energy-dependent potential [31]. The latter
Darboux transformations are more general than their standard (SUSY) counterparts, and
contain them as a special case [28,29]. Consequently, the Darboux transformations for the
two-dimensional Dirac equation considered here generalize the ones introduced in [22].
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4 Applications

In this section we will present two examples that demonstrate how our Darboux transforma-
tions can be used to generate solvable Dirac equations in two dimensions. In these examples
our initial and transformed Dirac potentials depend on both variables.

4.1 Exponential-type potential

We start out from our Dirac equation (11) that we equip with the matrix potential V , given
by

V =
(

30 exp(y) sech(x)2 0
0 exp(−y)

)
. (45)

Clearly, the diagonal entries of this matrix read

V11 = 30 exp(y) sech(x)2 V22 = exp(−y). (46)

Note that the numerical factor was chosen in order to shorten notation in subsequent calcula-
tions. In general, the choice of the potential matrix (45) is motivated mainly by the fact that
it admits elementary solutions of the Dirac equation, which keeps calculations transparent
and the results of the Darboux transformations manageable. Now, as a first preparation for
performing our Darboux transformations, we must determine a solution of our initial Dirac
equation (11) for the matrix potential (45). This can be done by substituting the latter potential
into the decoupled form (15) of our equation. This yields

∂2φ1

∂x2 + ∂2φ1

∂y2 − i
∂φ1

∂x
+ ∂φ1

∂y
+ 30 sech(x)2 φ1 = 0.

We observe that this equation can be solved by separation of variables. For our purposes it
is sufficient to use this method for obtaining a particular solution that has the form

φ1 = exp

(
i x

2

)
P

1
2

√
4 k−1

5 [tanh(x)]

{
c1 exp

[
−

(
1

2
+ 1

2

√
4 k − 1

)
y

]
+

+c2 exp

[
−

(
1

2
− 1

2

√
4 k − 1

)
y

] }
, (47)

where P stands for a Legendre function of the first kind [32]. The function (47) is the first
component of the solution (12) to our initial Dirac equation (11) for the potential (45). The
remaining component is calculated via (14), we omit to state it here due to its excessive
length. Next, in order to apply any of the two Darboux transformations introduced in Sect. 3,
we must first determine the functions e and f that are defined in (19). Substitution of our
diagonal potential entries (46) gives the results

e = 30 sech(x)2 f = i. (48)

Note that for the sake of convenience we calculated these quantities using the y-coordinate,
while in (19) they are expressed through the z-coordinate. Recall that the two coordinates are
related to each other by means of the scaling (16) that connects first derivatives according to
(17). Next, we choose our transformation function u as the following particular case of our
solution (47)

u = (φ1)|c1=1,c2=0,k=n2+1/4 = exp

(
i x

2
− y

2
− i n y

)
Pn

5 [tanh(x)] . (49)
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At this point we are ready to perform our Darboux transformations.

First Darboux transformation The first Darboux transformation is given by equations (22)-
(26). In order to construct the potential matrix V̂ in our transformed Dirac equation, we
calculate the quantities ê and f̂ according to (23) and (24), respectively. We obtain by
substitution of (19) and (49)

ê = 1

Pn
5 [tanh(x)]2

{
− (n − 6)2 Pn

6 [tanh(x)]2 + (n − 7) (n − 6) Pn
7 [tanh(x)] Pn

5 [tanh(x)]

+36 Pn
5 [tanh(x)]2 sech(x)2 + (n − 6) Pn

6 [tanh(x)] Pn
5 [tanh(x)] tanh(x)

}
. (50)

Since the explicit form of f̂ is rather long, we omit to state it here. Instead, let us now give
particular cases for n = 5 and n = 4. In these two cases, the functions ê and f̂ become
elementary. For n = 5 these expressions simplify to

ê|n=5 = 25 sech(x)2 f̂|n=5 = 1 + i − tanh(x).

Substitution of n = 4 into (50) and into the corresponding function (24) yields

ê|n=4 = 25 sech(x)2 − 1

sinh(x)2

f̂|n=4 = i − 4 − 24

cotanh(x) − 5
− cotanh(x) − tanh(x).

In the next step we plug the functions ê and f̂ into the potential matrix entries (25) and (26).
Since the corresponding expressions are very long in their general form, we state particular
cases only. Let us first set n = 5, after simplifications we arrive at(

V̂11

)
|n=5

= 25 exp(y − x) sech(x) (51)
(
V̂22

)
|n=5

= exp(x − y) sech(x), (52)

where the arbitrary function G was chosen suitably in order to absorb complex terms. Figure
1 shows graphs of these potential entries.
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Fig. 1 Graphs of the potential entries (51) (left plot) and (52) (right plot)
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Next we take n = 4, resulting in

(
V̂11

)
|n=4

= 4 exp(y)
[
3 exp(2 x) − 2

]
1 − exp(4 x)(

V̂22

)
|n=4

= 4 exp(2 x − y)
[
2 exp(2 x) − 3

]
1 − exp(4 x)

.

As before, the function G absorbs complex-valued terms. We omit to show graphs of these
functions. Let us now proceed to determining a solution of the transformed Dirac equation (30)
for the potential matrix calculated above. To this end, we substitute (47) and the associated
component (14) along with our transformation function (49) into the general solution forms
(22) and (31). Since the resulting expressions are very long, we restrict ourselves to give a
special case for n = 5 and k = 101/4. The solution components read

φ̂1 = exp

[
i x

2
+

(
−1

2
+ 5 i

)
y

]
sech(x)5

φ̂2 = 1

1 + exp(2 x)
exp

[(
1 + i

2

)
x +

(
1

2
+ 5 i

)
y

]
sech(x)4.

These functions form the two-component solution (32) of the transformed Dirac equation
(30) for the diagonal potential matrix V̂ , the diagonal entries are given by (51), (52). Solutions
are visualized as probability densities |�̂|2 = |φ̂1|2 + |φ̂2|2 in Fig. 2.

Second Darboux transformation Our second Darboux transformation consists of equations
(25)-(29). In order to apply it, we first calculate the functions ê and f̂ from (23) and (24),
respectively, by substitution of (19) and (49). Since the resulting expressions are very long,
we will state particular cases only. Evaluation of (23) and (24) for n = 5 gives the following
elementary functions

ê|n=5 = 24 sech(x)2 f̂|n=5 = 1 + i + tanh(x).

In the same way we can generate another simple case if we substitute n = 4. This gives

ê|n=4 = 24 sech(x)2 − 24

[cosh(x) + 5 sinh(x)]2

Fig. 2 Graphs of probability densities associated with the initial solution (47), (14) (left plot), and its trans-
formed counterpart (22), (31) (right plot). Parameter settings are k = 37/4, and c1 = c2 = 1
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Fig. 3 Graphs of the potential entries (53) (left plot) and (54) (right plot)

f̂|n=4 = i − 4 + 24 sinh(x)

cosh(x) + 5 sinh(x)
+ cotanh(x) + tanh(x).

We can now determine the entries of the transformed potential matrix V̂ that enters in the
Dirac equation (30). To this end, we evaluate (25) and (26) for the present settings. For the
sake of brevity we state the explicit form of the particular case n = 5 only. We get

(
V̂11

)
|n=5

= 96 exp(x + y) sech(x)
(
V̂22

)
|n=5

= exp(x − y) cosh(x).

Note that the arbitrary function G was chosen suitably in order to render the potential matrix
entries real-valued. Let us present one more case for the setting n = 4. We obtain

(
V̂11

)
|n=4

= 240 exp(2 x + y)
[−3 + 7 exp(2 x)

]
[
1 + exp(2 x)

]3 [−2 + 3 exp(2 x)
] (53)

(
V̂22

)
|n=4

= exp(−y)
[
exp(4 x) − 1

]
6 exp(2 x) − 4

, (54)

where as before we chose G chosen such as to absorb complex terms. Graphs of the functions
(53) and (54) are shown in Fig. 3.

In the last step we will determine a solution to our transformed Dirac equation (30). To
this end, we substitute our solution (47) and transformation function (49) into (27) and the
remaining component (31). For n = 5 and k = 101/4 we obtain the explicit form

φ̂1 = exp

[
i x

2
+

(
−1

2
+ 5 i

)
y

]
sech(x)4 [cosh(x) + sinh(x)]

φ̂2 = 1[
1 + exp(2 x)

]6 exp

[(
7 + i

2

)
x +

(
1

2
+ 5 i

)
y

]
sech(x)8.

Figure 4 shows graphs of probability densities |�̂|2 = |φ̂1|2 +|φ̂2|2 associated with solutions
of the initial and transformed Dirac equations.
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Fig. 4 Graphs of probability densities associated with the initial solution (47), (14) (left plot), and its trans-
formed counterpart (22), (31) (right plot). Parameter settings are k = 5/4, and c1 = c2 = 1

4.2 Radially symmetric potential

In our next example we consider the initial Dirac equation (11) for the matrix potential

V =
(

κ − x2 − y2 0
0 1

)
, (55)

where κ is a constant. We can read the diagonal entries off our potential matrix as

V11 = κ − x2 − y2 V22 = 1. (56)

As in the previous example, we observe that our potential depends on both variables. We
substitute the entries (56) into the second-order equation (15) resulting from decoupling (11).
This gives

∂2φ1

∂x2 + ∂2φ1

∂y2 + (κ − x2 − y2) φ1 = 0.

Using the technique of variable separation, we find the following solution to our equation

φ1 =
{
c1 exp

(
− x2

2

)
H κ1−1

2
(x) + c2 exp

(
x2

2

)
H−κ1−1

2
(i x)

}

×
{
c3 exp

(
− y2

2

)
H κ2−1

2
(y) + c4 exp

(
y2

2

)
H−κ2−1

2
(i y)

}
, (57)

where H stands for the Hermite function [32]. Furthermore, we introduce arbitrary constants
c1, c2, c3, c4, and κ1, κ2. The last two constants must satisfy the constraint κ = κ1 + κ2.
Recall that (57) gives the first component of the solution (12) to our initial Dirac equation
(11), while the second component is found by means of (14). For the sake of brevity we omit
to state the explicit form of this component here. Next, we will determine the functions e and
f by means of (19). Insertion of our potential entries from (56) gives

e = κ − x2 − y2 f = 0. (58)
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Before we can proceed with our Darboux transformations, we need to define a transformation
function. We will take a particular case of (57), given by

u = (φ1)c1=c4=0,c2=c3=1,κ1=−κ2=−1 = exp

(
x2 − y2

2

)
. (59)

We have now gathered all data in order to perform our Darboux transformations. In the
following we will consider the first Darboux transformation (22)-(26) only. We start out by
calculating the quantities ê and f̂ from (23) and (24), respectively. Substitution of the initial
data (58) and the transformation function (59) gives

ê = κ − x2 − y2 f̂ = 2

x + i y
. (60)

We observe that ê equals its initial counterpart e from (58). We can now determine the entries
of the transformed Dirac matrix potential by plugging (60) into (25) and (26). We obtain

V̂11 = − (2 C − x + i y) (−κ + x2 + y2)

(x + i y) G(i x + y)
(61)

V̂22 = (x + i y) G(i x + y)

2 C − x + i y
, (62)

where C is a constant of integration from (26), and G is an arbitrary function of its argument.
While in the general form the potential entries (61) and (62) are complex-valued, we can
choose G such that it absorbs the imaginary parts of both entries. Note that in the previous
example we did this without actually showing the explicit form of G. Here we set

G(x) = x2 − 2 i C x,

which renders the entries of our transformed Dirac potential in the real-valued form

V̂11 = κ

x2 + y2 − 1 V̂22 = x2 + y2. (63)

We can now find a solution to our transformed Dirac equation (30) for the potential V̂
featuring the diagonal entries (61) and (62). This solution is obtained by substituting our first
solution component (57), its counterpart (14), and the transformation function (59) into (22)
and (31). Since the resulting components of (32) have a very long explicit form, we restrict
ourselves to show the particular case obtained for κ1 = −κ2 = −1. It is given by

φ̂1 = −1

2
exp

(
− x2 + y2

2

) {
c4 exp

(
x2 + y2) [

2 c2 + c1
√

π erfc(x)

]

+c1

[
2 c3 + c4

√
π − i c4

√
π erfi(y)

]}
(64)

φ̂2 = 1

2 G(i x + y)
exp

(
− x2 + y2

2

)
(−2 i C + i x + y)

{
c4 exp

(
x2 + y2)

×
[

2 c2 + c1
√

π erfc(x)

]
− c1

[
2 c3 + c4

√
π − i c4

√
π erfi(y)

]}
, (65)

where erfc and erfi stand for the complementary and the imaginary error function, respectively
[32]. We observe that the probability density |�̂|2 = |φ̂1|2 + |φ̂2|2 associated with the
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Fig. 5 Left plot: graphs of probability densities associated with the transformed solution components (66),
(67) for G = 1 and C = 0. Right plot: graphs of probability densities associated with transformed solution
components generated for the settings in (59) except κ2 = 3. We also have C = 0 and G = 1/x

components (64) and (65) is in general unbounded except if we choose c4 = 0. In this case
the above components read

φ̂1 = − exp

(
− x2 + y2

2

)
(66)

φ̂2 = − 1

G(i x + y)
exp

(
− x2 + y2

2

)
(−2 i C + i x + y), (67)

where for the sake of simplicity we also chose c2 = 0. The left plot in Fig. 5 shows a graph
of the probability density associated with these functions, where C = 0 and G = 1. We can
construct different transformed potentials and the associated solutions of our Dirac equation
(30) by modifying our transformation function (59). As an example, if we choose the same
parameters in the latter function except for setting κ2 = 3, we obtain a probability density
that is visualized in the right plot of Fig. 5. Since the expressions generated by our Darboux
transformation are very long, we omit to show them here.

4.3 The position-dependent mass scenario

We will now demonstrate that a two-dimensional Dirac system with a diagonal matrix poten-
tial can be interpreted as featuring a position-dependent mass and a scalar potential function.
To this end, let us recall that the corresponding two-dimensional Dirac equation reads

(
σx px + σy py + m σz +U

)
� = 0, (68)

where σz stands for the third Pauli matrix, m is the position-dependent mass function, and U
represents a scalar potential. After substituting the momentum operators and summarizing
terms, we can rewrite (68) in our form (11) with the following matrix potential

V =
(
U + m 0
0 U − m

)
. (69)

Consequently, any Dirac system with position-dependent mass m and scalar potential U can
be written in standard form (11) with diagonal matrix potential (69). We can also reverse this
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statement by considering our Dirac equation (11) and imposing the constraint(
V11 0
0 V22

)
=

(
U + m 0
0 U − m

)
. (70)

Upon solving this equation with respect to the position-dependent mass m and the scalar
potential U we obtain

m = V11 − V22

2
U = V11 + V22

2
. (71)

Therefore, any diagonal matrix potential can be seen as a combination of a position-dependent
mass and a scalar potential according to (71). As an example, let us consider the transformed
potential entries in (63). Upon substituting them into (71) and choosing κ1, κ2 such that
κ = κ1 + κ2 = 0, we find the following position dependent mass and scalar potential
functions

m = x2 + y2 + 1

2
U = 1 − x2 − y2

2
.

Instead of a scalar potential U we could also include the more general case of a matrix
potential, which would generate additional free parameters in our equation (70).

5 Concluding remarks

The Darboux transformations introduced in the present work yield more general results than
their formerly defined counterparts [22], and they overcome the common restriction of the
Dirac potential depending on a single variable only. Despite these advantages, there are several
technical issues that require further refinement in future research. For example, the potential
matrix cannot have off-diagonal elements in order for our decoupled Dirac equation (15) to
match the required form (2). The entries of the transformed potential matrix are determined
through integration, see for example (25) and (26), where the integrals are hard to find in
closed form because their integrand f is typically expressed through special functions. Also,
at this point we do not have conditions for reality of the transformed potential or for regularity
of the transformed solutions. A further point concerns solutions of the initial Dirac equation:
due to the two-dimensional nature of the decoupled equation (15) it is difficult to find seed
solutions for the generation of new solvable systems. Finally, a higher-order version of our
Darboux transformations should be established. As mentioned above, this is subject to future
research.
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