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Abstract This paper investigates bending responses of three-phase multi-scale hybrid lam-
inated nanocomposite reinforced axisymmetric circular/annular plates based upon the three-
dimensional poroelasticity theory for various sets of boundary conditions. The two-parameter
elastic foundation (Pasternak type) is developed by taking into account the torsional inter-
action. Using compatibility conditions, the sandwich structure with two, three, five, and
seven layers is modeled. The state-space-based differential quadrature method is presented
to examine the bending behavior of the composite structure by considering various bound-
ary conditions. For prediction of the bulk material properties of the multi-scale composite,
Halpin–Tsai equations and fiber micromechanics are presented. The carbon nanotubes are
supposed to be randomly oriented and uniformly distributed through the matrix of epoxy
resin. Afterward, a parametric study is done to present the effects of stacking sequence, vari-
ous types of sandwich circular/annular plates, linear and torsional gradient elastic foundation,
and Biot’s coefficient on the bending characteristics of the composite structure. Results reveal
that the impact of external pressure on the hoop shear stress, radial stress, and radial shear
stress of the laminated circular plate becomes more considerable in the middle layers.

List of symbols

h, Ri, and Ro Thickness, the inner and outer radius of the disk,
respectively

CNTs Carbon-nanotubes
F and NCM Fiber and nanocomposite matrix, respectively

a e-mail: zhaohu987@163.com
b e-mail: wanglinghui0204@163.com (corresponding author)
c e-mail: alibek.issakhov@kaznu.kz
d e-mail: Hamed_safarpor@yahoo.com

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-01761-w&domain=pdf
http://orcid.org/0000-0001-7562-0704
mailto:zhaohu987@163.com
mailto:wanglinghui0204@163.com
mailto:alibek.issakhov@kaznu.kz
mailto:Hamed_safarpor@yahoo.com


  818 Page 2 of 44 Eur. Phys. J. Plus         (2021) 136:818 

VNCM, VF Volume fractions of nanocomposite matrix and fiber,
respectively

LCNT, TCNT, DCNT, ECNT and VCNT The length, thickness, diameter, Young’s module, and
volume fraction of carbon nanotubes, respectively

V*
CNT, WCNT Effective volume fraction and weight fraction of the

CNTs, respectively
Nt, VCNT Layer number and volume fraction of CNTs
γ , and P The Biot’s coefficient of effective stress and pore pres-

sure of disk, respectively
ψ , ε, K , Ku, k, kf, � The variation of fluid content, volumetric strain, Biots

Moduli, undrained bulk modulus, drained bulk mod-
ulus, bulk modulus of fluid, and porosity, respectively

� Denotes the foundation normal reaction per unit area
kw(r, θ, z), kp(r, θ, z) The coordinate dependent Winkler–Pasternak coeffi-

cients
kwo

(
N/m2 rad

)
, kpo

(
N/m2 rad

)
The elastic coefficients of the Winkler–Pasternak
foundation at the center of the bottom surface of the
plate

�r Denotes the foundation rotary (shear) reaction per unit
area

kr1(r, θ), kr2(r, θ) The coordinate dependent torsional stiffness of the
foundation

kr10
(
Nm/m2 rad

)
, kr20(Nm/m rad) The torsional coefficients of the foundation at the bot-

tom surface of the plate
f 1, F2, P1, and P2 Parameters describing variations of the normal and

shear tractions, respectively
�11, �22, and, �33 Young modulus of CNTs
G∗

12, G∗
13, andG∗

23 Shear modulus of CNTs
v12, v13, v23, v21, v31, and v32 Poison’s ratio of CNTs
ur, uθ and uz The displacements in radial-, circumferential- and

axial directions, respectively
εii and σ ii (i � r, θ , Z) The components of normal strains and normal

stresses
γrθ , γr z, and γzθ The components of a shear strains
τrθ , τr z, and τzθ The components of a shear stresses
Qij and Q̄ij Stiffness elements, stiffness elements relates to orien-

tation angle and the orientation angle, respectively
θ The lamination angle with respect to the R axis

1 Introduction

In order to achieve desired thermo-mechanical properties, carbon and its derivatives are
accounted as the best choices to reinforce engineering structures [1–3]. Choosing the scale
of reinforcement widely depends on the purpose of the engineers [4–11]. Dynamic analysis
of composite structures is a key issue in engineering design. Up to now, it is revealed that
composites enriched by multi-scales hybrid laminated nanocomposites (MHLNC) are much
more beneficial in real engineering applications. So, the dynamic stability of the composites
reinforced by MHLNC is a significant area of study. Chakrapani et al. [12] presented a model
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of multiple size levels to survey the importance of fiber’s, and sequence of laminate’s direc-
tions on the CF-enriched composite beam’s forced oscillation response, which its viscoelas-
ticity was modeled via Kelvin–Voigt equation. Furthermore, they conducted experimental
research in order to confirm the accuracy of numerical results. In another study, Ref. [13] pre-
sented post-buckling and buckling analysis of the composite beam reinforced by fiber in the
hygro-thermal environment with the aid of Reddy’s theory. Also, enhancing the mechanical
properties of the composite structures using nano-scaled fiber instead of macro-sized ones
results in an increase in the mechanics of structures. However, many scientists are focusing
on the CNT-reinforced structures. For example, a FE model is applied in order to analyze car-
bon nanotube reinforced (CNTR) circular and annular plate’s buckling relied on higher-order
shear deformation theory (HSDT) by Maghamikia et al. [14]. They demonstrated that the
critical load determined by their method, when it comes to the buckling investigation, is less
than those calculated based on classical methods due to the result of taking into consideration
of shear strain terms. Vibration study of continuously graded thick CNTR annular plate lying
on an elastic foundation utilizing elasticity model is conducted by Ref. [15], while they used
a solution method known as differential quadrature method (DQM) in their research paper.
In another study, Tahouneh et al. [16] presented natural frequencies of continuously graded
CNTR annular plates lying on an elastic medium in which CNT’s weight fraction changes
through the plate’s thickness, while the elasticity model and DQ method are applied to obtain
motion equations and solve those equations, respectively. In both papers reported above,
in order to estimate the composite annular plate’s elastic properties, Eshelby–Mori–Tanaka
micro-scaled mechanics is applied. Ansari et al. [17] presented buckling and frequency anal-
ysis of functionally graded CNT-reinforced annular sector plate on the elastic substrate in
a thermal environment. This kind of composite structure can be used in many applications
[18–21]. In the field of analytical modeling of composite structures, Chen et al. [22] presented
buckling and frequency analysis of the FG porous plate via the Chebyshev–Ritz technique. In
their research, they showed that FG porosity and boundary conditions have a marvelous effect
on the buckling and frequency analysis of the FG porous plate. Frequency information of the
annular and circular plates made of 3D graphene foams with the aid of the Chebyshev–Ritz
technique was presented by Ref. [23]. Ritz method analysis of rectilinear orthotropic com-
posite circular plates undergoing in-plane bending and torsional moments was studied by
Belardi et al. [24]. Reference [25] examined the frequency performance of the conical shell
reinforced by CNTs using the kernel particle Ritz element-free method. Frequency informa-
tion of the membrane assemblies with general classical boundary conditions was presented
by Liu et al. [26]. In other work, Belardi et al. [27] studied the radial bending performance of
shear-deformable composite circular plates with rectilinear orthotropy. The elastic bending
analysis of transversely loaded shear-deformable rectilinear orthotropic composite annular
plates via first-order shear deformation (FSDT) was investigated by Ref. [28]. Buckling and
free vibration analysis of the highly anisotropic plates via the Ritz method was studied by
Vescovini et al. [29]. In their research, they demonstrated that different forms of elastic cou-
plings, boundary conditions, and amount of material anisotropy have important role on the
buckling and frequency information of the highly anisotropic plates. The analytical solutions
[30–33] and their features presented by Olia et al. [34] provided a fundamental, rational,
mechanics-based framework for advancing the understanding of a load transfer mechanism
and soil–structure interaction in energy geostructures, thus contributing directly toward better
implementing these means of extracting renewable energy sources, which is step forward in
reducing the greenhouse gases. In the field of static, bending, and stress–strain responses of
the composite structures, Ref. [35] reported a research about the thermostatic information
of a simply supported doubly curved shell reinforced by graphene nanoplatelets (GPLs). In
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this reference, the state-space governing equations were obtained via 3D elasticity theory.
Shaban et al. [36] presented bending responses of an electrically panel that is integrated with
a piezoelectric layer. Also, they formulated the problem via elasticity theory and the energy
method and solved by using the state-space method. They demonstrated that the geometrical
parameters have an important role on the bending responses of an electrically panel. Ref.
[37] reported the static and stress–strain responses of an imperfect GPLs reinforced shell
via 3D elasticity theory, Halpin–Tsai, and rule of mixture. Their results show that porosity,
boundary conditions, and GPLs patterns have important effects on the bending behavior of
the inhomogeneous structure. In a comprehensive study, Safarpour et al. [38] had a focus on
the static and dynamic behaviors of the GPLs reinforced imperfect circular/annular systems.
They derived the formulations of the problem with the aid of the elasticity theory and the
Halpin–Tsai model. They employed a semi-numerical method as a solver to draw the results
of their paper. Also, Safarpour et al. [39] reported research about the static, bending, and
stress–strain responses of the GPLs reinforced cylindrical shell, conical shell, and disk via
elasticity theory and generalized differential quadrature (GDQ) method. Alibeigloo et al.
[40] presented a paper about the impact of functionally graded (FG) patterns and geometrical
parameters of an inhomogeneous shell on the dynamic and static properties via 3D-elasticity
theory and Fourier series analytical solution. Ref. [41] had a focus on the static bending
performance of the porous size-dependent FG shell via Hamilton’s principle and the GDQ
method. Their results showed that the length scale factor and imperfection factor have the
most remarkable impact on the bending and frequency of the inhomogeneous shell. Parand
et al. [42] employed 3D-elasticity theory and the Kelvin–Voigt model to formulate the bend-
ing and natural dynamic properties of the viscoelastic FG shell. They used the Fourier series
and DQ methods to solve the governing equation of the problem result to show the effect
of viscoelastic properties on the static and dynamic behaviors of the inhomogeneous shell.
Alibeigloo [43] reported research about the static, bending performance of the time-dependent
FG core sandwich simply supported plate under thermal shock. He employed Laplace method
to solve the equation of the problem. Do et al. [44] presented the impacts of GPLs patterns
on the bending, and dynamic behavior of the cylindrical and spherical panels with the aid of
Halpin–Tsai model, higher-order deformation theory, and isogeometric method. Poroelastic-
ity is a continuum theory for the analysis of a porous media consisting of an elastic matrix
containing interconnected fluid-saturated pores. In physical terms the theory postulates that
when a porous material is subjected to stress, the resulting matrix deformation leads to vol-
umetric changes in the pores. Since the pores are fluid filled, the presence of the fluid not
only acts as a stiffener of the material, but also results in the flow of the pore fluid (diffusion)
between regions of higher and lower pore pressure. If the fluid is viscous, the behavior of
the material system becomes time dependent. The basic phenomenological model for such
a material was proposed by Biot [45, 46]. His motivation (and the application of the theory
over the years) was concerned with soil consolidation (quasi-static) and wave propagation
(dynamic) problems in geomechanics. Rad et al. [47] presented the magneto-elastic analysis
of the asymmetric tapered porous FG circular plate on the elastic substrate via 3D elasticity
theory. They showed that boundary conditions and elastic foundation have an important role
in the stress and displacement fields of the asymmetric tapered porous FG circular plate on
the elastic substrate.

According to the best scientific reports, the bending behavior of the MHLNC rein-
forced axisymmetric circular/annular plates resting on linear and torsional elastic foun-
dation based on three-dimensional poroelasticity theory is not explored yet. In our work,
the rule of the mixture and modified Halpin–Tsai model are engaged to provide the
effective material constant of the MHLNC reinforced axisymmetric circular/annular plates
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(MHLNCRACP/MHLNCRAAP). With the aid of compatibility conditions, the sandwich
structure with two, three, five, and seven layers is modeled. The state-space-based dif-
ferential quadrature method (SS-DQM) is presented to examine the bending behavior of
MHLNCRACP/MHLNCRAAP with different boundary conditions. Consequently, a para-
metric study is done to present the effects of stacking sequence, CNT’s distribution pattern,
linear and torsional gradient elastic foundation, and Biot’s coefficient on the bending char-
acteristics of the sandwich structure.

2 Mathematical modeling

2.1 The homogenization process of MHLNC

For improving the mechanical properties of the structure, we can use of nanoreinforce-
ments [48–52]. The procedure of homogenization is made of two main steps based upon the
Halpin–Tsai model [53], together with a micromechanical theory [54], as shown in Fig. 1. The
first stage is engaged with computing the effective characteristics of the composite reinforced
with CFs as follows [55]

�11 � V F�F
11 + VNCM�NCM (1a)

1

�22
� V F

�F
22

+
VNCM

�NCM − V FVNCM

×
(vF )2�NCM

�F
22

+
(vNCM)2�F

22
�M − 2vFvNCM

V F�F
22 + VNCM�NCM

(1b)

�33 � �22 (1c)

1

G∗
12

� V F

GF
12

+
VNCM

GNCM , G∗
23 � G∗

12, G∗
13 � G∗

12 (1d)

ν12 � V FvF + VNCMvNCM (1e)

v21 � �22

�11
v12, v13 � v12, v31 � v21, v32 � v21, v23 � v32 (1f)

The relation between VF and VNCM is as follows [55]:

V F + VNCM � 1 (2)

Fig. 1 Distribution patterns of CNT through the thickness of the MHLNC
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The second step is organized to obtain the effective characteristics of the nanocomposite
matrix reinforced with CNTs with the aid of the extended Halpin–Tsai micromechanics as
follows [56]:

�NCM � �M
(

5

8

(
1 + 2ξddVCNT

1 − ξddVCNT

)

+
3

8

(
1 + 2(lCNT/dCNT)ξdlVCNT

1 − ξdlV CNT

))
(3)

Here ξdd and ξdl are computed as the following expressions:

ξdl � (�CNT
11 /�M) − (DCNT/4TCNT)

(�CNT
11 /�M) + (LCNT/2TCNT)

,

ξdd � (�CNT
11 /�M) − (DCNT/4TCNT)

(�CNT
11 /�M) + (DE/2TCNT)

(4)

the volume fraction of CNTs can be formulated as follows [57]:

VCNT∗ � WCNT

WCNT + ( ρCNT

ρM )(1 − WCNT)
(5)

Also, MHLNC distribution, along with thickness direction, can be given by [58]:

V CNT � V CNT∗ (6)

In addition, the relation between VM and VCNT is as follows [59]:

VCNT + VM � 1 (7)

Finally, the mechanical properties of the nanocomposite structure can be given by [59]:

νNCM � νM (8a)

GNCM � �NCM

2
(
1 + νNCM

) (8b)

3 Formulation of basic equations

Consider an MHLNCRACP/MHLNCRAAP as shown in Fig. 2. Three-dimensional govern-
ing differential equation of motion in the absence of body forces is [60]

σr,r + τr z,z + r−1τrθ,θ + (σr − σθ )r
−1 � 0 (9a)

τrθ,r + τθ z,z + r−1σθ,θ + 2r−1τrθ � 0 (9b)

τr z,r + σz,z + r−1τθ z,θ + r−1τr z � 0 (9c)
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Fig. 2 Schematic view of the MHLNC

Poroelasticity is a continuum theory for the analysis of porous media consisting of an
elastic matrix containing interconnected fluid-saturated pores. Stress–strain relations of MHC
cross-ply laminated circular/annular plates of poroelasticity can be written as follows [61]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σrr
σθθ

σzz
τzθ
τr z
τrθ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�

⎡

⎢
⎢
⎢⎢⎢⎢
⎣

Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0

Q44 0 0
sym. 0 Q55 0

0 0 Q66

⎤

⎥
⎥
⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εrr
εθθ

εzz
γzθ
γr z
γrθ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ P
γ P
γ P
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(10)

where [61]

Q11 � α4Q22 + 2α2β2(Q12 + 2Q66) + β4Q11 (11a)

Q12 � (
α4 + β4)Q12 + α2β2(Q22 + Q11 − 4Q66) (11b)

Q13 � α2Q23 + β2Q13, Q22 � α4Q11 + β4Q22 + 2α2β2(Q12 + 2Q66) (11c)

Q23 � β2Q23 + α2Q13, Q33 � Q33, Q44 � α2Q55 + β2Q44 (11d)

Q55 � α2Q44 − 2αβQ45 + β2Q55,

Q66 � Q66
(
β2 − α2)2 − 4α2β2(2Q12 − Q11 − Q22)

(11e)

where α � sin(θ), and β � cos(θ). Also [62–67]

Q11 � (1 − v32v23)

ϒ
�11 , Q12 � (v21 + v23v31)

ϒ
�11 ,

Q13 � (v31 + v32v21)

ϒ
�11,

(12a)

Q22 � (1 − v31v13)

ϒ
�22 , Q23 � (v32 + v31v12)

ϒ
�22 ,

Q33 � (1 − v21v12)

ϒ
�33

(12b)

Q66 � G∗
13 , Q55 � G∗

23, Q44 � G∗
12 (12c)

ϒ � (1 − v32v23 − v21v12 − v31v13 − 2v23v31v12) (12d)

The strains of the MHLNCRCP/MHLNCRAP can be written as follows [38]:

εr � ∂ur

∂r
, εθ � 1

r

(
∂uθ

∂θ
+ ur

)
, εz � ∂uz

∂z
, (13a)
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γrθ � 1

r

∂ur
∂θ

+
∂uθ

∂r
− uθ

r
, γr z � ∂ur

∂z
+

∂uz
∂r

,

γθ z � ∂uθ

∂z
+

1

r

∂uz
∂θ

(13b)

The other parameter in Eq. (10) is written as follows:

P � K P (ψ − (εrr + εθθ + εzz)γ ) (14a)

K P � − (k − ku)

γ 2 (14b)

ku �
[

1 − kfγ
2

(φ − γ )(1 − γ )kf + kfφ

]
k (14c)

In Eq. (14a), parameter ψ � 0 for undrained conditions; the constants become [68]:

P � −K Pεγ � −K P (εrr + εθθ + εzz)γ (15)

The substitution of Eqs. (15) into (10) gives
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

σrr

σθθ

σzz

τθ z

τr z

τrθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Q
∗
11 Q

∗
12 Q

∗
13 0 0 0

Q
∗
12 Q

∗
22 Q

∗
23 0 0 0

Q
∗
13 Q

∗
23 Q

∗
33 0 0 0

Q44 0 0

sym. 0 Q55 0

0 0 Q66

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂ur
∂r

1
r

(
∂uθ

∂θ
+ ur

)

∂uz
∂z

∂uθ

∂z + 1
r

∂uz
∂θ

∂ur
∂z + ∂uz

∂r

1
r

∂ur
∂θ

+ ∂uθ

∂r − uθ

r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(16)

where

Q
∗
i j � Qi j + K Pγ 2; i � j � 1, 2, 3 (17)

By using Eqs. (9a–c) and (16) as below:

σz,z � −τr z,r − r−1τr z + r−1τzθ,θ , (18a)

ur,z � −uz,r +
τrz

Q55
(18b)

uθ,z � −r−1uz,θ +
τzθ

Q44
, (18c)

uz,z � σz

Q
∗
33

− Q
∗
13

Q
∗
33

ur,r − r−1 Q
∗
23

Q
∗
33

ur − r−1 Q
∗
23

Q
∗
33

uθ,θ (18d)

τr z,z � − Q̄∗
13

Q̄∗
33

σz,r −
(
Q̄∗

13 − Q̄∗
23

Q̄∗
33

)

σz −
(

Q̄∗
11 − Q̄∗2

13

Q̄∗
33

)

ur,rr

− r−1

(

Q̄∗
11 − Q̄∗2

13

Q̄∗
33

)

ur,r − r−2 Q̄66ur,θθ

− r−2

(
Q̄∗

12 Q̄
∗
33 + Q̄∗2

23 − Q̄∗
13 Q̄

∗
23 − Q̄∗

22 Q̄
∗
33

Q̄∗
33

)

ur
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− r−1

(

Q̄∗
12 + Q̄66 − Q̄∗

13 Q̄
∗
23

Q̄∗
33

)

uθ,rθ

− r−2

(
Q̄∗

12 Q̄
∗
33 + Q̄∗2

23 − Q̄∗
13 Q̄

∗
23 − Q̄∗

22 Q̄
∗
33

Q̄∗
33

)

uθ,θ (18e)

τθ z,z � − r−1 Q̄
∗
23

Q̄∗
33

σz,θ − r−1

(

Q̄∗
12 + Q̄66 − Q̄∗

13 Q̄
∗
23

Q̄∗
33

)

ur,rθ

− r−2

(

Q̄∗
22 + 2Q̄66 − Q̄∗2

23

Q̄∗
33

)

ur,θ

− Q̄66uθ,rr − Q̄66

r
uθ,r

− r−2

(

Q̄∗
22 − Q̄∗2

23

Q̄∗
33

)

uθ,θθ + 2r−2 Q̄66uθ (18f)

The matrix form Eqs. (18a–f) can be written as follows:

dδ

dz
� Gδ (19)

where δ � {σz ur uθ uz τr z τθ z}T is the state variable vector and G is the coefficients matrix
which is given as

G �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 − ∂
∂r − 1

r
1
r

∂
∂θ

0 0 0 − ∂
∂r

1
Q55

0

0 0 0 − 1
r

∂
∂θ

0 1
Q44

σz

Q
∗
33

− Q
∗
13

Q
∗
33

∂
∂r − r−1 Q

∗
23

Q
∗
33

−r−1 Q
∗
23

Q
∗
33

∂
∂θ

0 0 0

G51 G52 G53 0 0 0

−r−1 Q
∗
23

Q
∗
33

∂
∂θ

G62 G63 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(20)

where

G51 � −Q
∗
13

Q
∗
33

∂

∂r
−

(
Q

∗
13 − Q

∗
23

Q
∗
33

)

(21a)

G52 � −
(

Q
∗
11 − Q

∗2
13

Q
∗
33

)
∂2

∂r2 − r−1

(

Q
∗
11 − Q

∗2
13

Q
∗
33

)
∂

∂r
− r−2Q66

∂2

∂θ2

− r−2

(
Q

∗
12Q

∗
33 + Q

∗2
23 − Q

∗
13Q

∗
23 − Q

∗
22Q

∗
33

Q
∗
33

)

(21b)

G53 � − r−1

(

Q̄∗
12 + Q̄66 − Q̄∗

13 Q̄
∗
23

Q̄∗
33

)
∂2

∂r∂θ

− r−2

(
Q̄∗

12 Q̄
∗
33 + Q̄∗2

23 − Q̄∗
13 Q̄

∗
23 − Q̄∗

22 Q̄
∗
33

Q̄∗
33

)
∂

∂θ
(21c)

G62 � −r−1

(

Q
∗
12 + Q66 − Q

∗
13Q

∗
23

Q
∗
33

)
∂2

∂r∂θ
− r−2

(

Q
∗
22 + 2Q66 − Q

∗2
23

Q
∗
33

)
∂

∂θ
(21d)
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G63 � −Q66
∂2

∂r2 − Q66

r

∂

∂r
− r−2

(

Q
∗
22 − Q

∗2
23

Q
∗
33

)
∂2

∂θ2 + 2r−2Q66 (21e)

And the relations for different boundary conditions can be formulated as follows:

Simply : σr � uz � uθ � 0, Clamped : ur � uz � uθ � 0 (22)

Also, for circular plate at r � 0:

ur � uz,r � uθ,r � 0 r � 0 (23)

4 The linear and torsional elastic foundation

The Winkler–Pasternak foundations for MHLNCRACP/MHLNCRAAP can be written as
follows:

� � kw(r, θ, z)uz − r−1(rkp(r, θ, z)uz,r
)
,r − r−2(kp(r, θ, z)uz,θ

)
,r (24)

These parameters of Eq. (24) can be written as follows:

kw(r, θ, z) � kwo

(

1 + f1

(
r

Ro

)
+ f2

(
r

Ro

)2
)

cos(θ0) (25a)

kp(r, θ, z) � kpo

(

1 + f1

(
r

Ro

)
+ f2

(
r

Ro

)2
)

cos(θ0) (25b)

The torsional elastic foundation can be written as follows:

�r � kr1(r, θ)φ − r−1
(
rkr2(r, θ)φ,r

∂

∂r

)

,r
(26)

Substituting φ � uθ,r into Eq. (26) leads to:

�r � kr1(r, θ)uθ,r − r−1
(
rkr2(r, θ)uθ,rr

∂2

∂r2

)

,r
(27)

These coefficients are considered as

kr1(r, θ) � kr10

(

1 + P1

(
r

Ro

)
+ P2

(
r

Ro

)2
)

sin(θ0) (28a)

kr2(r, θ, z) � kr20

(

1 + P1

(
r

Ro

)
+ P2

(
r

Ro

)2
)

sin(θ0) (28b)

5 Solution procedure

To solve the state-space Eq. (18a–f), the differential quadrature method (DQM) is employed
[69]. The basic idea of DQM is to approximate an unknown function and its partial derivatives
with respect to a spatial variable at any discrete point as the linear weighted sums of their

123



Eur. Phys. J. Plus         (2021) 136:818 Page 11 of 44   818 

values at all the discrete points chosen in the solution domain. In this method, the rth-order
derivative of an unknown function f (r) at point i can be expressed as [70–74]:

∂n f (r)

∂rn
�

M∑

j�1

g(n)
i j f

(
r j
)
; n � 1, ..., N (29)

where N is the total number of discrete points, r j is the coordinate of discrete point j, f
(
rj
)

is the function value at the discrete point j, and g(n)
i j is a weighting coefficient matrix of

nth-order derivative.
Also, displacement and stress fields of an MHLNCRACP/MHLNCRAAP can be given

by:

ur �
∞∑

m�1

ûr sin(θm), uθ �
∞∑

m�1

ûθ cos(θm), uz �
∞∑

m�1

ûz sin(θm), (30a)

σr �
∞∑

m�1

σ̂r sin(θm), σθ �
∞∑

m�1

σ̂θ sin(θm), σz �
∞∑

m�1

σ̂z sin(θm), (30b)

τr z �
∞∑

m�1

τ̂r z sin(θm), τrθ �
∞∑

m�1

τ̂rθ cos(θm), τθ z �
∞∑

m�1

τ̂θ z cos(θm) (30c)

By applying Eqs. (30a–c), and (29) to Eq. (18a–f), the derivatives along the radial direction
are removed from the final equation, and only the first-order derivatives with respect to
thickness remain. Thus, the discretized state-space equations at an arbitrary discrete point rj

are derived as

∂σ̂zi

∂z
� −

N∑

j�1

gi j τ̂r z j − τ̂r zi

ri
− m

ri
τ̂zθ i , (31a)

∂ ûri
∂z

� −
N∑

j�1

gi j ûz j +
τ̂r zi

Q55
(31b)

∂ ûθ i

∂z
� − 1

ri
mûzi +

τ̂zθ i

Q44
, (31c)

∂ ûzi
∂z

� σ̂zi

Q
∗
33

− Q
∗
13

Q
∗
33

N∑

j�1

gi j ûr j − Q
∗
23

ri Q
∗
33

ûri +
mQ

∗
23

ri Q
∗
33

ûθ i (31d)

∂τ̂rzi

∂ z̄
� − Q̄∗

13

Q̄∗
33

N∑

j�1

gi j σ̂z j − 1

ri

(
Q̄∗

13 − Q̄∗
23

Q̄∗
33

)

σ̂zi

−
(

Q̄∗
11 − Q̄∗2

13

Q̄∗
33

)
N∑

j�1

g2
i j ûr j

− 1

ri

(

Q̄∗
11 − Q̄∗2

13

Q̄∗
33

)
N∑

j�1

gi j ûr j + m2 Q̄66

r2
i

ûr i

− 1

r2
i

(
Q̄∗

12 Q̄
∗
33 + Q̄∗2

23 − Q̄∗
13 Q̄

∗
23 − Q̄∗

22 Q̄
∗
33

Q̄∗
33

)

ûri

+
m

ri

(

Q̄∗
12 + Q̄66 − Q̄∗

13 Q̄
∗
23

Q̄∗
33

)
N∑

j�1

gi j ûθ j
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+
m2

r2
i

(
Q̄∗

12 Q̄
∗
33 + Q̄∗2

23 − Q̄∗
13 Q̄

∗
23 − Q̄∗

22 Q̄
∗
33

Q̄∗
33

)

ûθ i (31e)

∂τθ zi

∂z
� − m

ri

Q̄∗
23

Q̄∗
33

σ̂zi − m

ri

(

Q̄∗
12 + Q̄66 − Q̄∗

13 Q̄
∗
23

Q̄∗
33

)
N∑

j�1

gi j ûr j

− m

r2
i

(

Q̄∗
22 + 2Q̄66 − Q̄∗2

23

Q̄∗
33

)

ûri − Q̄66

N∑

j�1

g2
i j ûθ j − Q̄66

ri

N∑

j�1

gi j ûθ j

+
m2

r2
i

(

Q̄∗
22 − Q̄∗2

23

Q̄∗
33

)

ûθ i +
2Q̄66

r2
i

ûθ i (31f)

where i, j � 1, 2, . . . , N , Ai j � g(1)
i j , and Bi j � g(2)

i j are the weighting coefficients of the
first- and second-order derivatives with respect to and can be obtained as [75–79]:

Ai j �

⎧
⎪⎨

⎪⎩

∏N
k�1,k ��i, j (ri−rk )

∏N
k�1,k ��i, j (r j−rk)

i �� j

1∑N
k�1,k ��i, j (r j−rk)

i � j
(32)

Bi j �
N∑

k�1

Aik Ak j i, j � 1, ..., N

Also, using Chebyshev polynomials grid points, the seed along with r-axes can be dis-
tributed as [80]:

ri � R0 − Ri

2

(
1 − cos

(
(i − 1)

(Ni − 1)
π

))
+ Ri i � 1, 2, 3, ... , N (33)

For convenience, the following dimensionless physical quantities are introduced

(
σ z σ r σ θ τ r z τ rθ τ θ z

) � 1

Em

(
σ̂z σ̂r σ̂θ τ̂r z τ̂rθ τ̂θ z

)
, E � E

P0
(34a)

(
Ur U θ Uz

) � 1

h

(
ur uθ uz

)
, r � r

Rm
, Z � Z

h
(34b)

Q̂ij � Qij

P0
, gij � gijRm, p � q

P0
, P0 � 1 [Mpa] (34c)

Substitution of Eqs. (34a–c) into Eq. (31a–f):

∂σ zi

∂z
� − h

Rm

N∑

j�1

gi jτ r z j − h

Rm

τ r zi

r i
− h

Rm

m

ri
τ zθ i , (35a)

∂uri
∂z

� − h

Rm

N∑

j�1

gi j uz j +
τ r zi

Q̂55

(35b)

∂uθ i

∂z
� − h

Rm

1

r i
muzi +

τ zθ i

Q̂44

, (35c)

∂uzi
∂z

� σ zi

Q̂33

− h

Rm

Q̂13

Q̂33

N∑

j�1

gi j ur j − h

Rm

Q̂23

r i Q̂33

uri +
h

Rm

mQ̂23

r i Q̂33

uθ i (35d)
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(35e)

∂τ r zi

∂z
� − h

Rm

Q̂13

Q̂33

N∑

j�1

gi jσz j

− h

Rm

1

r i

(
Q̂13 − Q̂23

Q̂33

)

σzi −
(

h

Rm

)2
⎛

⎝Q̂11 − Q̂
2

13

Q̂33

⎞

⎠
N∑

j�1

g2
i j ur j

−
(

h

Rm

)2 1

r i

⎛

⎝Q̂11 − Q̂
2

13

Q̂33

⎞

⎠
N∑

j�1

gi j ur j + m2 Q̂66

r2
i

uri

−
(

h

Rm

)2 1

r2
i

⎛

⎝ Q̂12 Q̂33 + Q̂
2

23 − Q̂13 Q̂23 − Q̂22 Q̂33

Q̂33

⎞

⎠ uri

+

(
h

Rm

)2 m

ri

(

Q̂12 + Q̂66 − Q̂13 Q̂23

Q̂33

)
N∑

j�1

gi j uθ j

+

(
h

Rm

)2 m2

r2
i

⎛

⎝ Q̂12 Q̂33 + Q̂
2

23 − Q̂13 Q̂23 − Q̂22 Q̂33

Q̂33

⎞

⎠ uθ i

∂τ θ zi

∂z
� − h

Rm

m

ri

Q̂23

Q̂33

σ zi −
(

h

Rm

)2 m

ri

(

Q̂12 + Q̂66 − Q̂13 Q̂23

Q̂33

)
N∑

j�1

gi j ur j

−
(

h

Rm

)2 m

r2
i

⎛

⎝Q̂22 + 2Q̂66 − Q̂
2

23

Q̂33

⎞

⎠uri −
(

h

Rm

)2

Q̂66

N∑

j�1

g2
i j uθ j

−
(

h

Rm

)2 Q̂66

r i

N∑

j�1

gi j uθ j +

(
h

Rm

)2 m2

r2
i

⎛

⎝Q̂22 − Q̂
2

23

Q̂33

⎞

⎠uθ i +

(
h

Rm

)2 2Q̂66

r2
i

uθ i

(35f)

where

σ ki � σ k(r, θ, z), τ r zi � τ r z(r, θ, z), τ θ zi � τ θ z(r, θ, z),

uki � uk(r, θ, z); (k � ri , θ, z)
(36)

Substitution of Eqs. (22–23) into Eqs. (35a–f) results in the following state-space equations

∂ δ̄b

∂ z̄
� Ḡb δ̄b (37)

in which δ̄b � {
σ z ur uθ uz τ r z τ θ z

}T
is the column matrix of state variables and Gb is

defined in Appendix section, where subscript b in Eq. (37) denotes the state equation includes
the boundary conditions.

G is presented in appendix section; the above equation is a typical first-order differential
equation with a definite answer. It should be noted that the current material is laminate, so its
properties are different in different layers in terms of thickness, so the G matrix has different
properties in terms of different thicknesses. On the other hand, since the thickness changes,
the first-order equation introduced will have variable coefficients that are difficult to solve.
Therefore, in order to solve the problem, the object can be divided into several layers in terms
of thickness, and in each layer, the thickness is constant and equal to its thickness to be able
to solve the equations. Obviously, the more layers we consider, the more accurate the answer
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to the problem can be. Therefore, by solving the equations and the boundary conditions of
the problem, the values of the introduced states in different places can be calculated, and
other quantitative plane stress quantities can be determined through them. Now, by using a
layer-wise technique, Gb is reduced to the constant matrix, and then, Eq. (37) can be solved
analytically for N t fictitious layer as the below

δk(z) � δok exp
(
Gbk(z − zk−1)

)
, zk−1 ≤ z ≤ zk (38)

At the inner and outer radius of kth layer, the relation between the state variables can be
given as follows:

δk(zk) � Mkδok, (39)

in which Mk � exp
(
Gbkhf
Nt

)
.

6 Various types of sandwich MHL composite circular/annular plates

6.1 Type-1 (two layers)

Similarly, state-space equations for Type-1 can be derived by using Eq. (39);

∂ δ̄bi

∂z
� Gbi δ̄bi and : i � (b, t) (40)

By using the continuity of displacements, and equilibrium equation at each layers, the
following relations between the inner, outer layers can be derived

δ̄bo � Mb δ̄bi Mb �
1∏

k�Nt

exp

(
Gbkhb
Nt

)

(41a)

δ̄to � Mt δ̄ti Mt �
1∏

k�Nt

exp

(
Gbkht
Nt

)

(41b)

Using continuity of displacements and equilibrium equation at each layer and using Eqs.
(41a–b) result in the following relation

δ̄to � Abi (42)

where A � MtMb.

6.2 Type-2 (three layers)

Similarly, state-space equations for Type-2 can be derived by using Eq. (39);

∂ δ̄bi

∂z
� Gbi δ̄bi and : i � (b,m, t) (43)

By assuming the continuity of displacements, and equilibrium equation at each fictitious
layer, we have:

δ̄bo � Mb δ̄bi Mb �
1∏

k�Nt

exp

(
Gbkhb
Nt

)

(44a)
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δ̄mo � Mm δ̄mi Mm �
1∏

k�Nt

exp

(
Gbkhm
Nt

)

(44b)

δ̄to � Mt δ̄ti Mt �
1∏

k�Nt

exp

(
Gbkht
Nt

)

(44c)

By assuming continuity of displacements and equilibrium equation at each layer, and
using Eq. (44a–c) results in the following relation, we have:

δ̄to � Aδ̄bi (45)

where A � MtMmMb.

6.3 Type-3 (five layers)

Similarly, state-space equations for Type-3 can be derived by using Eq. (39):

∂ δ̄bi

∂z
� Ḡbi δ̄bi and : i � (b, b1,m, t1, t) (46)

By assuming continuity of displacements, and equilibrium equation at each layer, we have:

δ̄bo � Mb δ̄bi Mb �
1∏

k�Nt

exp

(
Gbkhb
Nt

)

(47a)

δ̄b1o � Mb1 δ̄b1i Mb1 �
1∏

k�Nt

exp

(
Gbkhb1

Nt

)

(47b)

δ̄mo � Mm δ̄mi Mm �
1∏

k�Nt

exp

(
Gbkhm
Nt

)

(47c)

δ̄t1o � Mt1 δ̄t1i Mt1 �
1∏

k�Nt

exp

(
Gbkht1
Nt

)

(47d)

δ̄to � Mt δ̄ti Mt �
1∏

k�Nt

exp

(
Gbkht
Nt

)

(47e)

By assuming the continuity of displacements and equilibrium equation at each layer, and
using Eq. (47a–c) results in the following relation, we have:

δ̄to � Aδ̄bi (48)

where A � MtMt1MmMb1Mb.

6.4 Type-4 (seven layers)

Similarly, state-space equations for Type-4 can be derived by using Eq. (39):

∂ δ̄bi

∂z
� Gbi δ̄bi and : i � (b, b1, b2,m, t2, t1, t) (49)
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As the repeat process, like three and five layers, we have:

δ̄bo � Mb δ̄bi Mb �
1∏

k�Nt

exp

(
Gbkhb
Nt

)

(50a)

δ̄b1o � Mb1 δ̄b1i Mb1 �
1∏

k�Nt

exp

(
Gbkhb1

Nt

)

(50b)

δ̄b2o � Mb2 δ̄b2i Mb2 �
1∏

k�Nt

exp

(
Gbkhb2

Nt

)

(50c)

δ̄mo � Mm δ̄mi Mm �
1∏

k�Nt

exp

(
Gbkhm
Nt

)

(50d)

δ̄t2o � Mt2 δ̄t2i Mt2 �
1∏

k�Nt

exp

(
Gbkht2
Nt

)

(50e)

δ̄t1o � Mt1 δ̄t1i Mt1 �
1∏

k�Nt

exp

(
Gbkht1
Nt

)

(50f)

δ̄to � Mt δ̄ti Mt �
1∏

k�Nt

exp

(
Gbkht
Nt

)

(50g)

By assuming continuity of displacements, and equilibrium equation at each fictitious
layers, we have:

δ̄to � Aδ̄bi (51)

where A � MtMt1Mt2MmMb2Mb1Mb.

7 Static analysis

For static analysis, it is assumed the following surface traction boundary condition.

σ z � �, τ r z � 0, τ θ z � �r at z � −1

2

σ z � p cos(θ0), τ r z � τ θ z � 0 at z � 1

2

(52)

Applying Eq. (51) into Eqs. (42), (45), (48), and (51) leads to the following nonhomoge-
neous equation:

⎡

⎣
A12

A52
A62

A13 + A16�r

A53 + A56�r

A53 + A56�r

A14 + A11�
A54 + A51�
A64 + A61�

⎤

⎦

⎧
⎨

⎩

ur
uθ

uz

⎫
⎬

⎭
z�− 1

2

�
⎧
⎨

⎩

p cos(θ0)

0
0

⎫
⎬

⎭
z� 1

2

(53)

where p � {p1, ......, pN }T . Displacements at the bottom surface are computed by solving
Eq. (53), and then, by using Eqs. (42, 45, 48, 51) transverse normal and shear stresses, as
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well as displacements as a function of radial coordination, are determined. Finally, in-plane
normal and shear stresses are computed from the following equations:

σ̄ri �
ˆ̄Q13

ˆ̄Q33

σ̄zi +
h

Rm

(
ˆ̄Q11 −

ˆ̄Q2
13

ˆ̄Q33

)
N∑

j�1

ḡi j ūr j

+
h

Rm

1

r̄i

(
ˆ̄Q12 −

ˆ̄Q13
ˆ̄Q23

ˆ̄Q33

)

(ūri − mūθ i ) (54a)

σ̄θ i �
ˆ̄Q23

ˆ̄Q33

σ̄zi +
h

Rm

(
ˆ̄Q12 −

ˆ̄Q13
ˆ̄Q23

ˆ̄Q33

)
N∑

j�1

ḡi j ūr j

+
h

Rm

1

r̄i

(
ˆ̄Q22 −

ˆ̄Q2
23

ˆ̄Q33

)

(ūri − mūθ i ) (54b)

τ rθ i � h

Rm

m

ri
Q̂66uri +

h

Rm
Q̂66

N∑

j�1

gi j uθ j +
h

Rm

Q̂66

r i
uθ i (54c)

8 Numerical results and discussion

Subsequently, we present a comprehensive parameter study to quantify the effects of various
parameters on the bending response of MHLNCAAP/MHLNCACP. The geometrical and
material characteristics of constituent materials are found in Table 1.

8.1 Validation

The properties in this validation section can be written as:

E(z) � Em

(
h − 2z

2h

)n

+ Ec

[
1 −

(
h − 2z

2h

)n]
(55a)

Er � 0.396, Ec � 125.83 × 109, Em � Ec × Er (55b)

Ro � 1, h � 0.2Ro, n � 0.288 (55c)

Table 1 The properties of MHLNC [81] and poroelastic constant [82]

Carbon (fiber) Epoxy (matrix) Carbon nanotube Poroelastic constants

E f
11(GPa) � 233.05 vm � 0.34 Ecnt(Gpa) � 640 γ � 0.27

E f
22(GPa) � 23.1 ρm

(
kg
m3

)
� 1200 Dcnt(m) � 0.14 × 10−9 ku � 41

[
Gpa

]

G f
11(GPa) � 8.96 Em(Gpa) � 3.51 T cnt(m) � 0.034 × 10−9

k � 35 [Gpa]

υ f � 0.2 Lcnt(m) � 0.25 × 10−9 kf � 3.3
[
Kpa

]

ρ f
(

kg
m3

)
� 1750 v12 � 0.33 ∅ � 0.02

ρcnt
(
kg/m3

)
� 1350
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Table 2 Comparison the wF
0 (0, 0) of functionally graded clamped circular plates with the results in Ref. [83]

n h/a � 0.05 h/a � 0.1 h/a � 0.15 h/a � 0.2

Ref. [83] P.S Ref. [83] P.S Ref. [83] P.S Ref. [83] P.S

0 2.554 2.8702 2.639 2.9195 2.781 3.1057 2.979 3.2186

2 1.402 1.5820 1.444 1.6081 1.515 1.6962 1.613 1.8903

4 1.282 1.4483 1.320 1.4727 1.384 1.5513 1.473 1.6545

6 1.220 1.3796 1.257 1.4037 1.318 1.4792 I.404 1.5656

8 1.181 1.3366 1.217 1.3605 I.278 1.4348 1.362 1.5625

10 1.155 1.3070 1.190 1.3307 1.250 1.4043 I.333 1.5641

15 1.114 1.2621 1.149 1.2853 1.208 1.3584 1.289 1.4750

20 I.092 1.2369 1.126 1.2597 1.184 1.3326 I.265 1.3996

25 1.077 1.2208 1.112 1.2433 1.169 1.3162 1.250 1.4209

30 1.067 1.2096 1.101 1.2319 1.159 1.3047 1.239 1.3555

35 1.060 1.2014 1.094 1.2235 1.151 1.2964 1.231 1.3583

40 1.054 1.1952 1.088 1.2170 1.145 1.2900 1.225 1.4598

50 1.046 1.1903 1.080 1.2119 1.137 1.2850 1.216 1.3685

102 1.029 1.1863 1.063 1.2078 1.119 1.2810 1.199 1.3925

103 1.013 1.1683 1.047 1.1892 1.103 1.2624 1.182 1.3448

104 1.011 1.1569 1.045 1.1773 1.101 1.2508 1.180 1.3012

105 1.011 1.1569 1.045 1.1773 1.101 1.2508 1.180 1.3880

In Eq. (55a), n shows the FG power index. The dimensionless form of stress and displace-
ment in this example can be written as:

w̄F
0 �64wF
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(56c)

Table 2 presents a validation study for proving the result of the current paper. In this regard,
the non-dimensional maximum deflections in the conditions of various FG power index (n)
value,wF

0 (0, 0) are compared with those outcomes in Ref. [83]. As shown in the comparison
studies, the results of this paper have a suitable agreement with the presented study in the
literature. As can be seen, there is good agreement between the results.

For another verification for this work, according to Table 3, it is revealed that the proposed
modeling can provide good agreement with Ref. [84] where the influences of compatibility
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Table 3 Compare the maximum deflections (m) of axisymmetric plates made of various materials with the
result in Ref. [84]

Circular plate Annular plate

Ref. [84] P.S Ref. [84] P.S

Polyimide 2.626×10–3 2.6342×10–3 0.2720×10–3 0.2727×10–3

1% CNT-RP 2.284×10–3 2.2913×10–3 0.2365×10–3 0.2372×10–3

3% CNT-RP 1.720×10–3 1.7285×10–3 0.1782×10–3 0.1787×10–3

5% CNT-RP 1.397×10–3 1.4002×10–3 0.1446×10–3 0.1451×10–3

5% CF-RP 2.309×10–3 2.3151×10–3 0.2391×10–3 0.2398×10–3

10% CF-RP 2.076×10–3 2.0810×10–3 0.2149×10–3 0.2156×10–3

20% CF-RP 1.606×10–3 1.6129×10–3 0.1663×10–3 0.1668×10–3

0.95% CNT–5% CF-RP 2.012×10–3 2.0195×10–3 0.2083×10–3 0.2089×10–3

2.85% CNT–5% CF-RP 1.523×10–3 1.5387×10–3 0.1577×10–3 0.1582×10–3

4.75% CNT–5% CF-RP 1.242×10–3 1.2741×10–3 0.1286×10–3 0.1292×10–3

0.9% CNT–10% CF-RP 1.811×10–3 1.8210×10–3 0.1876×10–3 0.1881×10–3

2.7% CNT–10% CF-RP 1.376×10–3 1.3812×10–3 0.1425×10–3 0.1431×10–3

4.5% CNT–10% CF-RP 1.126×10–3 1.1314×10–3 0.1166×10–3 0.1169×10–3

0.8% CNT–20% CF-RP 1.409×10–3 1.4152×10–3 0.1459×10–3 0.1464×10–3

2.4% CNT–20% CF-RP 1.085×10–3 1.0916×10–3 0.1124×10–3 0.1127×10–3

4% CNT–20% CF-RP 0.898×10–3 0.9014×10–3 0.0930×10–3 0.0932×10–3

Annular plate: Ri � 10 mm, Ro � 25mm, h � 10 mm
Circular plate: Ro � 25 mm , h � 10 mm
P �108 [N/m2]

conditions are ignored. As shown in Table 3, by increasing the CNT’s volume fraction, the
maximum deflection of the axisymmetric circular/annular plates decreases.

The influence of the node number (N) on the convergence condition is reported in Fig. 3 for
the investigation of bending response and stress analysis of the laminated disk. As a general
result, there is a break in the diagram of stress fields. In this regard, the bending behaviors of
the laminated structure with [0°/90°/0°] are presented for three values of N parameter. Based
on the presented diagram in Fig. 3, we can report that when N is longer than seven, the stress
and displacement fields don’t have a dependency to N , so the convergence condition of the
DQ method is achieved by employing seven grid points for the semi-analytical method. As
a general result, there is a break in the diagram of stress fields.

The reason for the mentioned matter is that the mechanical properties of the layers are
different, and the layer-wise technique is employed in the presented model (according to
Eq. (42) for three layer’s continuity).

The bending behaviors of the laminated annular plate are presented in Fig. 4 by having
more attention to the effect of three kinds of boundary conditions. According to Fig. 4 when
the structure is encountered with the clamped edges, the better bending response and the
lowest stress are seen in the laminated structure. The meaning of better bending response is
that the structure with lower magnitude stress and displacement fields has a better bending
response in compassion with other ones. In addition, if the structure encounters the clamped
edges (C–C and C–S boundary conditions), we cannot find a remarkable change in the

123



  818 Page 20 of 44 Eur. Phys. J. Plus         (2021) 136:818 

Fig. 3 Stress and displacement fields of the laminated structure for three N in the DQ method with Ro/Ri �
1.2, h � 0.01Ri, WCNT � 0.02, VF � 0.8, [900/00/900/00/900], Kwo � Kpo � 100, f 1 � f 2 � P1 � P2 �
0.1, Kr10 � Kr20 � 100, θo � π/4, clamped–clamped boundary conditions, and MHLNCAP
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Fig. 4 Effect of three kinds of boundary conditions stress and displacement fields of the laminated structure
with Ro/Ri � 1.2, h � 0.01Ri, WCNT � 0.02, VF � 0.8, [90°/0°/90°/0°/90°/0°/90°], Kwo � Kpo � 100, f 1
� f 2 � P1 � P2 � 0.1, Kr10 � Kr20 � 100, and MHLNCAP
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Fig. 5 Stress and displacement fields of the laminated structure for three number of layers with Ro/Ri � 1.5,
h � 0.01Ri, WCNT � 0.02, VF � 0.8, Kwo � Kpo � 100, f 1 � f 2 � P1 � P2 � 0.1, Kr10 � Kr20 � 100,
clamped–clamped boundary conditions, and MHLNCAP
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Fig. 6 Stress and displacement fields of the laminated structure for three number of layers with Ro/Ri � 1.5,
h � 0.01Ri, WCNT � 0.02, VF � 0.8, Kwo � Kpo � 100, f 1 � f 2 � P1 � P2 � 0.1, Kr10 � Kr20 � 100,
clamped–clamped boundary conditions, and MHLNCAP
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Fig. 7 Stress and displacement fields of the laminated structure for Effect of the foundation coefficients with
Ro/Ri � 1.3, h � 0.01Ri, WCNT � 0.02, VF � 0.8, [90°/0°/90°/0°/90°/0°/90°], f 1 � f 2 � P1 � P2 � 0.1,
K r10 � K r20 � 100, θo � π/4, clamped–clamped boundary conditions, and MHLNCAP
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Fig. 8 Effect of foundation gradient index on the stress and displacement fields of the laminated structure with
Ro/Ri � 2, h � 0.01Ri, WCNT � 0.02, VF � 0.8, [90°/0°/90°], Kwo � Kpo � 5 × 104, K r10 � K r20 � 100,
θo � π/4, P1 � P2 � 0.1, clamped–clamped boundary conditions, and annular plate
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Fig. 9 Effect of Biot’s coefficient on the stress and displacement fields of the laminated structure with Ro/Ri
� 2, h � 0.01Ri, WCNT � 0.02, VF � 0.8, [90°/0°/90°/0°/90°/0°/90°], Kwo � Kpo � 100, K r10 � K r20 �
100, θo � π/4, f 1 � f 2 � P1 � P2 � 0.1, clamped–clamped boundary conditions, and MHLNCAP
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Fig. 10 Effect of external pressure on the stress and displacement fields of the laminated structure with h �
0.01Ro, WCNT � 0.02, VF � 0.8, [90°/0°/90°/0°/90°/0°/90°], Kwo � Kpo � 100, K r10 � K r20 � 100, θo �
π/4, f 1 � f 2 � P1 � P2 � 0.1, hinged–clamped boundary conditions, and MHLNCCP
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radial bending response, but by having simply–simply edges, we can see an increase in the
radial displacement field. Also, in the middle layers we cannot see any effect from boundary
conditions on the normal axial stress, while in the inner and outer layers, when the structure is
encountered with simple edges, we can see the highest axial normal stress. Also, the impact
of boundary conditions on normal stress is more remarkable in the inner and outer layers.
Besides, for each boundary condition, the maximum shear stress is seen in the middle layers,
and the structure with clamped edges has the lowest shear stress along the thickness direction.
Last but not the list, there is a fluctuation in the diagram of σ r, σθ , and τ rz and the intensity
of the fluctuation decreases by increasing the rigidity of the boundary conditions. In other
words, when the structure is fixed with more rigid boundary conditions, the sensitivity of
the static response to the layers’ characteristics decreases. The reason for the mentioned
fluctuation is that the mechanical properties of the layers are different, and the layer-wise
technique is employed in the presented model.

Figures 5 and 6 present the effects of the number of layers and two kinds of laminate
patterns (horizontal pattern [0°/90°.] and vertical pattern [90°/0°]) on the stress analysis
and bending behaviors of the structure. With respect to the diagrams of Figs. 5 and 6, we
can see that there are fluctuations in the diagram of σ r, σθ , and τ rz and the intensity and
number of the fluctuations decrease by increasing the number of layers in the laminated
disk with a vertical pattern. In contrast, by increasing the number of layers in the horizontal
pattern, the fluctuations increase. Accordingly, for horizontal laminate pattern, as the number
of layer increases, stress and displacement fields increase, so the bending behaviors of the
system become weak. In contrast, when the structure is made by a vertical laminate pattern
by increasing the number of layers the stress and displacement fields decrease, the bending
responses of the laminated system improve. In conclusion, in this section, increasing the
number of layers is a reason to improve bending responses, but this is only true for the
vertical laminate pattern, while increasing the number of layers in the horizontal laminate
pattern makes a negative impact on the static responses of the structure.

The purpose of Fig. 7 is an investigation about the effect of Winkler and Paster-
nak factors (Kwo and Kpo) on the stress and displacement fields of the structure with
[90°/0°/90°/0°/90°/0°/90°]. Accordingly, as the Winkler and Pasternak factors of the foun-
dation increase, the in-plane and out-plane stress decreases. In addition, increasing the foun-
dation factors is a reason to decrease the axial stress (σz) and this issue becomes bold by
increasing z− or at the outer layers. Also, the impact of Winkler and Pasternak factors on
the in-plane or shear stress (τrz and τθ z) is more remarkable at the middle layers (− 0.4
≤ z− ≤ 0.1). Last but not the list, there is a fluctuation in the diagram of σ r, σθ , and τ rz

and the intensity of the fluctuation decreases by increasing Winkler and Pasternak factors.
In other words, when the foundation becomes intense, the sensitivity of the static response
to the layers’ characteristics decreases. The reason for the mentioned fluctuation is that the
mechanical properties of the layers are different, and the layer-wise technique is employed in
the presented model. Furthermore, the bending behavior of the laminated system improves
due to increasing the value of Winkler and Pasternak factors, and stress distribution becomes
more uniform.

The effect of foundation gradient parameters ( f1 and f2) on the bending or static infor-
mation of the laminated circular plate is explored in Fig. 8. Accordingly, increasing the
foundation gradient parameters is a reason for improving the static responses of the system.
As an important result, by increasing z− the impact of the gradient factor of the foundation
on the axial stress is intensified, and in the middle layers, the effect of gradient factor on the
τr z and τθ z increases. Also, the given information in Fig. 8 proves that the distribution of
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the stress and displacement fields becomes more uniform by improving the foundation via
increasing the gradient factor of the foundation.

The effect of the Biot’s coefficient (γ ) on the stress and displacement fields of the laminated
structure is presented via the given diagram in Fig. 9. The presented diagram in this section
shows that the Biot’s coefficient makes a direct impact on radial and hoop stress. Along with
the thickness, the impact of γ factor on the value of axial stress changes from direct to indirect
for two times. Also, bending in the system decreases due to the increasing Biot’s coefficient.
Furthermore, the distribution of the stress and displacement fields becomes more uniform
due to increasing the Biot’s coefficient. Finally, static stability and bending behaviors of the
system improve owing to increase the γ factor.

The impact of external pressure (p) on the bending or static information of the laminated
circular plate is explored in Fig. 10. According to Fig. 10, with each increase in the external
pressure, the value of normal axial stress along with the thickness of the composite disk
increases, and the mentioned relation is more considerable at the bigger value of z. In addition,
the sensitivity of the static response to the layers’ characteristics is intensified by increasing
the value of external pressure. Also, for each z, as the external pressure increases, the stress
and displacement fields increase. Furthermore, the impact of external pressure on the hoop
shear stress, radial stress, and radial shear stress of the laminated circular plate becomes
more considerable in the middle layers. In contrast, the impact of external pressure on normal
hoop stress is considerable at the top and bottom layers. Finally, as z increases, the impact
of external pursues on the axial stress reinforces.

Table 4 is presented for having an investigation about the impacts of the number of layers
and poroelastic factor (K p) on the bending behaviors of the laminated disk. Accordingly,
K p factor and number of laminated layers have a positive effect on the bending behaviors of
the system, so the displacement fields increase, and stress fields decrease.

Figure 11 presents to study the effect of radius ratio of the laminated disk on the bending
behaviors of the system or stress and displacement fields. Based on the presented diagrams
in Fig. 11, when the radius ratio of the laminated disk increases, the displacement fields
increase, and stress fields decrease. Also, the radius ratio has the most impressive impact on
the stress and displacement fields along the z-direction.

9 Conclusion

In this research, bending analysis of the MHLNCRCP/MHLNCRAP resting on linear and
torsional elastic foundations based on three-dimensional poroelasticity theory for various
boundary conditions was presented. The SS-DQM was presented to examine the bending
behavior of MHLNCRACP/MHLNCRAAP. For prediction of the bulk material properties of
the multi-scale composite, Halpin–Tsai equations and fiber micromechanics were presented.
The carbon nanotubes were supposed to be randomly oriented and uniformly distributed
through the matrix of epoxy resin. Afterward, a parametric study was done to present the
effects of stacking sequence, various types of sandwich circular/annular plates, linear and
torsional gradient elastic foundation, and Biot’s coefficient on the bending characteristics of
the composite structure. Finally, the most bolded results of this paper were as follows:

• The bending behavior of the system improves owing to increase the γ factor.
• The bending behavior of the laminated system improves due to increasing the value of

Winkler and Pasternak factors, and stress distribution becomes more uniform.
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Fig. 11 Effect of Ro/Ri on the stress and displacement fields of the laminated structure with h � 0.01Ri,
WCNT � 0.02, VF � 0.8, [90°/0°/90°/0°/90°], Kwo � Kpo � 100, Kr10 � Kr20 � 100, θo � π/4, f 1 � f 2 �
P1 � P2 � 0.1, clamped–clamped boundary conditions, and MHLNCAP
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• If the laminated structure is under sinusoidal external pressure, we can see that the sensi-
tivity of the static response to the layers’ characteristics decreases.

• The impact of external pressure on the hoop shear stress, radial stress, and radial shear
stress of the laminated circular plate becomes more considerable in the middle layers.

• Kp factor and number of laminated layers have a positive effect on the bending behaviors
of the system.
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Annular plate
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gi jhs1 � gi j (i � 1, ..., N , j � 1, ..., N ), gi jhs2 � gi j (i � 1, ..., N , j � 2, ..., N − 1)
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ḡi jhc2

+

(
h

Rm

)2 m

r̄2
i1

( ˆ̄Q12
ˆ̄Q33 + ˆ̄Q2

23 − ˆ̄Q13
ˆ̄Q23 − ˆ̄Q22

ˆ̄Q33

ˆ̄Q33

)

I(N−2)(N−2)

+

(
h

Rm

)2 ˆ̄Q66

r̄2
i1

m2 I(N−2)(N−2)

−
(

h

Rm

)2 1

r̄2
i1

( ˆ̄Q12
ˆ̄Q33 + ˆ̄Q2

23 − ˆ̄Q13
ˆ̄Q23 − ˆ̄Q22

ˆ̄Q33

ˆ̄Q33

)

I(N−2)(N−2)

+

(
h

Rm

)2 ˆ̄Q66

r̄2
i1

m2 I(N−2)(N−2)

−
(

h

Rm

)2 1

r̄2
i1

( ˆ̄Q12
ˆ̄Q33 + ˆ̄Q2

23 − ˆ̄Q13
ˆ̄Q23 − ˆ̄Q22

ˆ̄Q33

ˆ̄Q33

)

I(N−2)(N−2)

a8 � −
(

h

Rm

)2 m

ri2

(

Q̂12 + Q̂66 − Q̂13 Q̂23

Q̂33

)

gi jhc1

−
(

h

Rm

)2 m

r2
i2

⎛

⎝Q̂22 + 2Q̂66 − Q̂
2

23

Q̂33

⎞

⎠ I(N )(N−2)

a9 � −
(

h

Rm

)2

Q̂66g
(2)
i jhc2 −

(
h

Rm

)2 Q̂66

r i2
gi jhc1

+

(
h

Rm

)2 m2

r2
i2

⎛

⎝Q̂22 − Q̂
2

23

Q̂33

⎞

⎠ I(N )(N−2) +

(
h

Rm

)2 2Q̂66

r2
i2

I(N )(N−2)

123



Eur. Phys. J. Plus         (2021) 136:818 Page 41 of 44   818 

gi jhc1 � gi j (i � 1, ..., N , j � 2, ..., N − 1), gi jhc2

� gi j (i � 2, ..., N − 1, j � 2, ..., N − 1),
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