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Abstract Image denoising is the key step for image preprocessing. In particular, denoising
of a strong noisy image is truly necessary, even though it might be difficult. Among the
different image denoising methods, stochastic resonance (SR) has the advantage of using the
constructive role of noise. However, a traditional bistable system cannot take full advantage
of SR. To improve the performance of image denoising by using SR, we use a nonlinear
system with a periodic potential to utilize the benefit of noise to a greater extent. Besides,
adaptive processing is realized by an optimization algorithm. Compared to the image denois-
ing method by SR in a bistable system, the method by SR in a nonlinear system with a periodic
potential (PSR) is much more effective possessing a higher peak signal-to-noise ratio and
less computation time. Further, the image denoising method by PSR is also superior to other
common methods such as arithmetic mean filter, geometric mean filter, median filter and
Wiener filter. The PSR method is effective in removing different types of noise present in
images, such as gamma noise, uniform noise, Rayleigh noise, and exponential noise.

1 Introduction

Digital images are common information carriers in human social and industrial activities.
However, during the process of imaging, compression and transmission, images are usually
polluted by various types of noise [1, 2]. The inevitable noisy image, especially with a strong
noise, is usually annoying because it hinders the understanding of image information. For a
better understanding and obtaining a detailed information of the image, noisy images must
be denoised [3].

Image denoising has been attracting much attention in the past few years [4, 5]. There
are numerous methods that have been proposed so far. Some of the common methods are
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smoothly filtered in the spatial domain. Among them, median filtering [6] and Wiener filter-
ing [7] are based on a local neighborhood information of images, while non-local means here
that the method is based on the whole image [8]. There are also some common methods of
denoising in the transform domain [9], such as Fourier transform [10], discrete cosine trans-
form [11] and wavelet transform [12]. Besides, the block-matching 3D method is proposed,
which combines the idea of a spatial domain and a transform domain [13]. The method based
on compressed sensing, which utilizes the prior knowledge of the sparsity difference between
images and noise is used in [14]. In addition, a number of methods based on data-driven or
model-driven deep learning have been used by researchers [15–17]. Although most of the
above methods have a good performance, they mainly focus on eliminating rather than uti-
lizing noise. Unfortunately, detail information might also be removed when they eliminate
the noise of the image [18–20]. Furthermore, as the noise intensity increases, their denoising
effects typically becomes unsatisfactory [21, 22].

Stochastic resonance (SR) can be used, as a well-known physical phenomenon, to enhance
weak signals by utilizing a positive constructing role of noise [23–25]. There are already
a multitude of promising applications of SR in machine fault detection and other fields
[26–28]. With the development of applications of SR, researchers began to utilize SR in
image processing as well [29, 30]. For example, Liu et al. [31] proposed an optimal adaptive
bistable array SR-based gray-scale image restoration enhancement method. Sun et al. [32]
restored pulse and high noisy images using SR. Gupta et al. [33] proposed a method for
image enhancement by combining anisotropic diffusion with dynamic SR in discrete wavelet
transform domain. Singh et al. [34] proposed a modified neuron model based SR approach
applied for the enhancement of magnetic resonance imaging. Jha et al. [35] presented a
dynamic SR-based technique in singular-value domain for contrast enhancement of dark
images. Liu et al. [36] proposed a novel binary image enhancement scheme based on aperiodic
SR technique. Yang et al. [37] developed an elementary theory of two-dimensional (2D)
parameter-induced SR to contribute to nonlinear image processing. Chen et al. [38] proposed
an algorithm of image denoising for Gaussian–Gaussian mixed noise based on SR. Fu et al.
[39] presented an algorithm for enhancing the contrast of dark images based on the principle
of SR in global feedback spiking network of integrate-and-fire neurons. Although the above
SR-based methods can remove image noise to some extent, the image denoising method with
better performance and higher efficiency is still worth of further study, especially the method
for the image with strong noise. By analyzing the latest theoretical and applied research
results, we find that stochastic resonance of periodic potential system has more advantages
in the denoising of periodic signals than classical bitable stochastic resonance, no matter in
terms of signal-to-noise ratio or processing speed [40, 41]. In addition, relevant advantages
have been successfully applied to the engineering problems such as recovery of bearing
fault signals under the background of strong noise [42–44]. Therefore, it is worth studying
whether stochastic resonance of periodic potential system still has a leading advantage in
image processing. Different from bearing fault signals, image signals cannot be expressed in
periodic signals by dimensionality reduction, but always in complex aperiodic signals [31,
36]. In order to explore the application value of periodic potential stochastic resonance in the
field of image denoising, this paper conducts an in-depth study.

The rest of this paper is organized as follows. In Sect. 2, all parameters of Gaussian white
noise (GWN) are investigated to figure out their effect on image pollution degree. In addition,
the distribution law of image noise is explored to prepare for reducing the image dimension.
Then, SR of noisy aperiodic square wave signal (ASWS) is discussed to prepare for image
denoising. In Sect. 3, an image denoising method by SR in a nonlinear system with a periodic
potential (PSR) is proposed in further detail. Besides, adaptive SR is achieved to improve PSR
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Fig. 1 Left panel. The original image is a normalized binary graph, which is used as an object of study. Right
panel. The corresponding histogram of the original image

performance. In Sect. 4, three typical comparative experiments are carried out to verify the
superiority of the proposed adaptive PSR method. Finally, the main conclusions are provided
in the Sect. 5.

2 Preliminaries

Taking the Lena binary graph as an example which explains our algorithm simply and clearly,
we denote the normalized image as S0(i, j). In addition, gray and color graphs are only
additionally related to the selection of appropriate methods of image dimension reduction.
As shown in Fig. 1, the original image contains only 0 and 1 pixels.

2.1 Image evaluation index

Peak signal-to-noise ratio (PSNR) is introduced to evaluate images equality because of its
good evaluation ability by comparing every pixel. Two m ×n monochromatic images are
denoted S(i, j) and W (i, j), where S(i, j) is the original reference image and W (i, j) is the
image to be evaluated. Then, their mean square error (MSE) is

MSE � 1

m · n
m∑

i�1

n∑

j�1

[S(i, j) − W (i, j)]2 (1)

PSNR is defined as

PSNR � 10 log10

(
MAX2

s

MSE

)
(2)

where MAXS represents the maximum gray level of the images. For pixel normalized images,
the gray-scale range of images is within [0–1], MAXS � 1. Combining the above two
expressions, we give the PSNR of pixel normalization image as

PSNR � 10 log10
m · n

m∑
i�1

n∑
j�1

[S(i, j) − W (i, j)]2
(3)

where m and n represent the number of images rows and columns.
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Fig. 2 Image is polluted by different GWN. From left to right, the values of (μ, σ ) of the GWN in the first row
are (0,0.1), (0.5,0.1) and (1,0.1), and the values of PSNR are − 4.3528, − 15.6920 and − 20.6097, respectively.
In the second row, the values of (μ, σ ) are (0,1), (0.5,1), (1,1), and the corresponding values of PSNR are −
11.6205, -14.5271, -17.8604, respectively

2.2 Effects of different GWN parameters

To explore the effects of parameters of the Gaussian white noise (GWN), we consider the
original image S0(i, j) and denote the noisy image as S1(i, j). The two parameters of GWN
are the mean and the variance μ and σ , respectively. Much attention has been paid to the
variance which relates to noise intensity; however, here the mean of GWN is considered as
well. There are many ways to add a GWN to an image that in principle consists of adding
random numbers to each pixel of the image.

As shown in Fig. 2, images with different GWN are described. Compared subplots by
column, the mean values of the added GWN are the same, while their variances are different.
In this case, the variance determines the image pollution degree. When the subplots are
compared by row, the mean values of the GWN in images are different and the variances are
the same. We can observe that not only the variance but also the mean of the GWN has a
great influence on image pollution degree. In former works, little attention has been paid to
analyze the influence of the mean of the GWN on image denoising.

2.3 Distribution law of image noise

As well-known, an image can be regarded as a 2D matrix. Do the laws of physics correspond-
ing to a one-dimensional signal still apply to 2D images? This question is worth of studying.
For image denoising, we want to know whether the noise distribution law in the noisy image
changes or not. To clarify the confusion, we subtract S0(i, j) from S1(i, j) to obtain the noise
matrix.

As shown in Fig. 3, histograms of different noise matrices are exhibited. Besides, the
corresponding fitting curves are given. It can be seen that noise of the image where we have
added GWN does not obey a Gaussian distribution. Actually, images usually become noisy
matrices after adding noise. The noisy matrices should be reset according to the computer
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Fig. 3 Histograms of noise matrices. The subplots represent six noise matrices which are obtained by sub-
tracting S0(i, j) by S1(i, j) of Fig. 2

imaging rules to obtain noisy images. That is, if the pixel value is greater than 1, it is
reset to 1, and if is less than 0, it is reset to 0. Consequently, the noise distribution law is
changed. Conversely, if the dimension of the image is reduced before computer processing
after adding noise, the noise distribution law will not change. Although directly reducing
image dimensions is usually operated in simulation experiments, it does not conform to the
actual situation.

2.4 SR of noisy ASWS

The overdamped nonlinear system with a periodic potential can be described by the following
Langevin equation

dx

dt
� −U ′(x) + S(t) + N (t) (4)

where S(t) is the input signal and N(t) is the random noise. U(x) is the nonlinear periodic
potential function, and

U (x) � a cos(bx) a > 0, b > 0 (5)

In order to denoise the image based on SR, the image needs dimension reduction. Con-
sidering the bipolarity requirement of the input signal of the nonlinear system, the one-
dimensional signal obtained by dimensionality reduction is processed by dual polarization,
and the obtained signal is ASWS [31, 36]. Therefore, in the simulation experiment, we take
the ASWS as the input signal S(t) to verify the effectiveness of PSR for image denoising.
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(a)

(b)

(c)

Fig. 4 SR of ASWS in the nonlinear system with a periodic potential of Eq. (4). Subplots are the original
signal L(t), the input signal S(t) and the recovered signal x(t) from top to bottom. Parameters of the periodic
potential are a � 1.68, b � 0.52

In research, an ASWS denoted as L(t) is generated based on a pseudo-random sequence.
Then, GWN with μ � 0 and σ � 0.8 is added to L(t) to get S(t) which is used to simulate the
noisy signal. GWN which contains all frequencies and obeys a Gaussian distribution is one of
the most common image noise. Therefore, it is also used when we process a one-dimensional
simulation signal.

According to Eq. (4), the optimal SR can be achieved when random noise, input signal
and parameters of the nonlinear system reach the optimal match. Actually, the optimal SR is
hard to obtain by adjusting the noise intensity because the optimal noise cannot be predicted
prior. Hence, for a certain input signal, we achieve an optimal SR by adjusting the system
parameters. If not specified, we take a noisy signal S(t) as the input and no longer consider
the extra random noise N(t).

The simulation signal S(t) is substituted into Eq. (4) to observe the denoising output results.
The parameters of the nonlinear system with a periodic potential is gradually changed at the
same time. As shown in Fig. 4, one of the output results is presented. It can be seen that L(t)
is recovered from a strong noise background. Besides, the amplitude of L(t) is amplified. It
is believed that SR in a nonlinear system with a periodic potential can be used to recover
ASWS signals from strong noise.
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Fig. 5 Cross-correlation coefficient CSx corresponding to different system parameters a and b. The region
with higher values of CSx is considered as the region where a higher probability of optimal SR might occur

The cross-correlation coefficient is introduced as an evaluation index of a one-dimensional
signal, which can effectively measure the denoising performance. It is defined as

CSx � Cov(S, x)√
[Var(S)][Var(x)]

(6)

where Cov(S, x) is the covariance of input signal S and system response x. Var(S) is the
variance of S and Var(x) is the variance of x.

It is worth pointing out that PSNR can be used to evaluate images but not one-dimensional
signals. Hence,CSx is used as the evaluation index when we process a one-dimensional signal.

As is well-known, parameters a and b of the periodic potential given by Eq. (5) determine
the shape of the potential function. We will see that they have a great influence on our results.
In addition, an input signal usually corresponds to a SR region in the nonlinear system, what
means a range of system parameters corresponding to the optimal SR or nearly optimal SR.
Next, we will find out the SR region of S(t) in the nonlinear system with a periodic potential
of Eq. (4).

Figure 5 exhibits a 2D plot showing the values of CSx for different pairs of a and b values
of the potential. The region with large CSx can be distinguished directly. It is believed that
there is a larger likelihood of achieving the optimal SR when system parameters are in this
region. In practical terms, choosing the optimal parameters is an important and complicated
process. Therefore, obtaining a SR region is helpful because it greatly narrows the searching
range for the population initialization of the optimization algorithm.

3 Adaptive PSR image denoising

The characteristics of a signal are often submerged in a strong noise background. It is well-
known that the parameters of the nonlinear system are important factors affecting the SR
performance. However, optimal system parameters are hard to be obtained, which is an
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optimization problem hindering wide application of SR. Fortunately, many algorithms have
been proposed to solve this problem. Among them, the quantum particle swarm optimization
(QPSO) algorithm is a kind of algorithm that has good ability for searching the optimal
solution in the whole feasible region [45]. Therefore, the QPSO is used for the searching of
optimal system parameters to achieve adaptive SR.

3.1 QPSO algorithm

The QPSO algorithm endows particles with quantum behavior, so that they can search for
the optimal solution in the whole feasible region without falling into local convergence. The
main optimization principle is as follows.

Firstly, the search of the range of the optimal target is defined as a D-dimensional space,
in which initial population is composed of H particles. The position of the ith particle in
the space is denoted as Xi � (Xi1, Xi2, . . . , XiH )T . In fact, the updated position vectors of
each particle constitute a potential solution. Next, positions of particles are substituted into
a fitness function to obtain the fitness value which can be used to evaluate the whole result.
Then, the individual position of each particle is updated by tracking the individual extremum
Pi and the population extremum Pg , where Pi refers to the optimal fitness position calculated
from the positions experienced by a single particle.Pg refers to the optimal fitness position of
all particles in the population. Finally, the optimal result is obtained when the search reaches
the preset condition.

The position equation is

X (T ) � P ± L

2
ln(1/v) (7)

where v is a random number within [0,1] and T is the number of iterations. P is the attractor,
P � uPi + [1 − u]Pg , in which u is a random number within [0,1]. The transformation law
of L is

L(T + 1) � 2α|M − X (T )|, (8)

whereM is the average value of the individual extremum corresponding to the particle position

under the current iteration times M � 1
H

H∑
i�1

Pi , and α is the coefficient of contraction and

expansion. The position equation of the particle is obtained by substituting Eq. (8) into Eq. (7),
that is,

X (T + 1) � P ± α|M − X (T )|ln(1/v), (9)

The QPSO algorithm can be used to find the optimal target quickly and efficiently, which
provides a basis for the realization of the adaptive image denoising.

3.2 Adaptive PSR

Here, the image denoising by SR in the system given by Eq. (4) is proposed in detail. Besides,
the QPSO algorithm is utilized to obtain the optimal system parameters in order to achieve
the adaptive denoising. Adaptive PSR image denoising contains the following steps:

(1) Normalize image
The noisy image to be processed are normalized firstly. The result is denoted as I0 (i, j),
in which pixel values are distributed within [0,1].
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(2) Dual-polarize image
The normalized image I0 (i, j) is dual-polarized. Then, the result is denoted as I1 (i, j).
For simplicity, I1 (i, j) is obtained by subtracting 0.5 from I0 (i, j). The pixel values of
I1 (i, j) are distributed within [− 0.5, 0.5].

(3) Reduce dimensionality
I1 (i, j) is reduced by the row-major order to obtain S(k). Firstly, the first line of I1 (i, j)
is scanned, which is traversed from the first element to the last element. Then, the second
line is scanned from the first element. The operation is repeated until the last element
of the last line.

(4) Acquire optimal SR adaptively
Firstly, S(k) is input into the system of Eq. (4). Then, the optimal system parameters
are obtained with the help of the QPSO algorithm. Finally, the optimal x(k) is obtained
through achieving the optimal SR.

(5) Reshape image
x(k) is reshaped to obtain W (i, j).

(6) Binarize image
W (i, j) is binarized to obtained the image W0 (i, j).

(7) Statistical analysis

Steps (4), (5) and (6) are repeated for n times to get images W1 (i, j),W2 (i, j),…,
Wn (i, j). Based on Gibbs rules, the image with a large PSNR deviation is removed [46].
Then, the required image is obtained by averaging rest images.

It has to be noted that not every step is necessary in applications. Steps (1), (2) and (3) are
for preprocessing. Steps (4) and (5) are the core of the algorithm. Steps (6) and (7) are for
post-processing. The post-processing steps are presented to test the denoising result, which
are not necessary in practical applications. In addition, if the image is scanned both in positive
and transpose direction in step (3), the average of their final results will be better.

4 Experimental results and performance analysis

To evaluate the image denoising performance of the adaptive PSR, three contrast experiments
are presented. Just for convenience, we report that all the experiments have been implemented
on a laptop, whose main configuration is CPU: AMD Ryzen 7 2700 eight-core Processor
3.2 GHz, GPU: NVIDIA GeForce GTX1660, RAM: 6 GB.

4.1 The comparison with the adaptive BSR method

Among traditional SR-based methods, SR in a nonlinear system with a bistable potential is
often used. The potential function of the bistable system is given by

U0(x) � − c

2
x2 +

d

4
x4 c > 0, d > 0, (10)

which corresponds to the periodic potential function U(x) in Eq. (5). In the numerical exper-
iment, we use this bistable potential into Eq. (4) in order to achieve SR, while other con-
ditions remain unchanged to avoid interference from other factors. Hence, the adaptive SR
in a bistable system (BSR) method is utilized to compare with the proposed adaptive PSR
method by denoising the same image with different GWN parameters.

Figure 6 depicts denoising results of Fig. 2 by using the adaptive BSR and the adaptive PSR.
The images to be denoised are polluted by having used a GWN with different parameters.
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Fig. 6 Denoising results of images shown in Fig. 2 by either using the adaptive BSR method or the adaptive
PSR method. From top to bottom, we show in the first row, the figures of the noisy images, in the second row,
the results of the adaptive BSR, and in the third row, the results of the adaptive PSR. In the first row, (μ,σ )
of GWN are (0,0.1), (0.5,0.1), (1,0.1), (0,1), (0.5,1) and (1,1), respectively. PSNR of the second row are −
3.1085, − 3.2947, − 3.5037, − 9.1659, 1.4717 and − 1.5204. PSNR of the third row are − 1.3095, 3.8906,
2.0120, − 8.7280, 3.3406 and − 0.3751

The GWN mean which has an influence on image pollution degree is considered besides the
GWN variance. It can be seen that the results of the adaptive PSR method have a better visual
feedback and a higher PSNR.

To further compare the adaptive BSR and the adaptive PSR under different noise intensity,
Fig. 7 presents denoising results of other images by the two methods. The images to be
denoised are polluted by having used a GWN with different variances. The variances of
GWN added to the image are 0.5, 1, 1.5, 2, 2.5 and 3. It can be seen that the results of the
adaptive PSR method have better visual feedback in all the noise background.

To objectively evaluate the image denoising performance of the two methods mentioned
above, we record the PSNR of the denoised images by the two methods. The image to
be processed is polluted by GWN with μ � 0.5, σ � 1. Table 1 exhibits the key indexes
including computation time T , the optimal PSNR and the number of convergent iterations I
of the optimization algorithm. As shown in Table 1, compared with the adaptive BSR, the
proposed adaptive PSR method not only improves the PSNR but also has a faster convergence
speed and less computation time. In applications, if the data volume is larger, the advantage
of faster convergence speed and less computation time of the adaptive PSR method will be
greater.

4.2 A comparison with four other common methods

Here, we compare the adaptive PSR method with four common image denoising methods
including arithmetic mean filter, geometric mean filter, median filter and Wiener filter by
processing the same image with a GWN. These common methods are realized directly through
calling functions in MATLAB. The arithmetic mean filter uses imfilter. The geometric mean
filter uses exp(imfilter(log(I)). The median filter usesmedfilt2. The Wiener filter useswiener2.
Figure 8 shows the results of all the mentioned methods.
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Fig. 7 Denoising results of the same image with different GWN parameters by either using the adaptive BSR
method or the adaptive PSR method. From top to bottom, we show in the first row, the figures of the noisy
images, in the second row, the results of the adaptive BSR, and in the third row, the results of the adaptive
PSR. The variances of GWN added in the images are 0.5, 1, 1.5, 2, 2.5 and 3, respectively, while the mean is
0.5 in all cases

Table 1 Comparison of critical
indices of the adaptive BSR and
the adaptive PSR

Adaptive BSR method Adaptive PSR method

Time
(s)

Iterations PSNR
(dB)

Time(s) Iterations PSNR
(dB)

1 450.3044 17 1.4696 169.9030 18 3.3816

2 455.5701 04 1.4716 165.1042 11 3.3916

3 438.0583 12 1.4726 168.7305 11 3.3406

4 444.3386 08 1.4717 166.1081 12 3.4036

5 449.0917 15 1.4726 162.9762 13 3.3876

6 450.1454 06 1.4726 168.9271 03 3.3808

7 446.2924 10 1.4726 164.9041 04 3.3786

8 451.1163 12 1.4726 171.5033 10 3.3346

9 443.8347 22 1.4726 164.1174 02 3.4016

10 445.1277 18 1.4726 171.4160 03 3.3997

11 451.3128 11 1.4726 163.5810 13 3.4006

Average 447.7445 12.2727 1.4722 167.0242 9.0909 3.3819

Table 2 exhibits the PSNR values of denoised images by different methods. The noisy
image used for denoising is Lena with GWN (μ � 0.5,σ � 1). From the graphs in Fig. 8
and the PSNR values in Table 2, we can see that the adaptive PSR method is better than the
common image denoising methods including arithmetic mean filter, geometric mean filter,
median filter, Wiener filter and BSR method.

To intuitively and objectively compare all image denoising methods mentioned above,
Fig. 9 provides PSNR of different denoised images by different methods. Six different meth-
ods are compared by denoising the same noisy image, which is obtained by adding a GWN
to the raw image. PSNR of noisy images before processing are also shown. As shown in
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Fig. 8 Results by the proposed method and four traditional denoising methods. From left to right, the first line
are the noisy image with GWN (μ � 0.5,σ � 1), geometric mean filtering and arithmetic mean filtering. The
second line is the median filtering, Wiener filtering and the result of the proposed method

Table 2 PSNR of denoised images by different methods

The noisy
image

Geometric
mean
filtering

Arithmetic
mean
filtering

Median
filtering

Wiener
filtering

PSR method BSR method

− 14.5271 − 10.1108 − 5.5229 − 4.8248 0.8791 3.4090 1.4722

the figure, adaptive PSR method has the best performance in both weak and strong noise
background.

4.3 Denoising results of images with four other common noises

Image noise can be classified into different types according to its probability distribution.
We have already proved the superiority of the proposed adaptive PSR method in denoising
images with GWN. In order to verify the universality of the adaptive PSR, four other common
types of noise, we perform experiments using other types of noise to simulate image noise
including gamma noise, uniform noise, Rayleigh noise and exponential noise. The denoised
images are shown in Fig. 10.

Table 3 presents the PSNR values corresponding to subplots of Fig. 10. From the graphs
in Fig. 10 and the PSNR values in Table 3, it can be seen that the proposed adaptive PSR
method can also remove other types of image noise effectively.

In the above comparative experiments, Lena is used as the research object to simulate
image denoising under different noise intensity backgrounds, where the denoising effects of
PSR, BSR and four common traditional methods are, respectively, compared. At the same
time, PSR method is verified to denoise images with different types of noise. In order to
fully validate the productivity of the proposed adaptive PSR method, we select another new
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Fig. 9 PSNR of the noisy image denoised by different methods. The parameter σ represents the variance of
the GWN

Fig. 10 Denoised results of the image polluted by different types of noise including gamma noise, uniform
noise, Rayleigh noise and exponential noise. The first row represents noisy images, while the second row
represents the corresponding denoised results

research object, Cameraman, to carry out a new set of comparative experiments, and the
results are as follows.

4.4 The comparison with the adaptive BSR method for another image

Figure 11 depicts denoising results of noisy images of Cameraman by using the adaptive
BSR and the adaptive PSR. The images to be denoised are polluted by having used a GWN
with different parameters, including the GWN mean and variance. It can be seen that the
results of the adaptive PSR method have a better visual feedback and a higher PSNR.
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Table 3 Value of the PSNR for
different noise images before and
after being processed by the
adaptive PSR

Gamma
noise

Uniform
noise

Rayleigh
noise

Exponential
noise

Before − 21.6373 − 21.6225 − 21.8751 -21.6391

After 0.4407 6.3367 5.6098 4.2133

Fig. 11 Denoising results by either using the adaptive BSR method or the adaptive PSR method. From top
to bottom, we show in the first row, the figures of the noisy images, in the second row, the results of the
adaptive BSR, and in the third row, the results of the adaptive PSR. In the first row, (μ,σ ) of GWN are (0,0.1),
(0.5,0.1), (1,0.1), (0,1), (0.5,1) and (1,1), respectively. PSNR of the first row are 9.8051, − 11.0134, − 16.6968
− 6.9624, − 11.4650 and − 12.6377. PSNR of the second row are − 3.9679, 3.6910, − 1.7225, − 6.4821,
1.3481 and − 5.8723. PSNR of the third row are − 1.1249, 7.4676, 1.3014, − 3.0563, 3.2001 and − 0.8666

To further compare the adaptive BSR and the adaptive PSR under different noise intensity,
Fig. 12 presents denoising results of other images by the two methods. The images to be
denoised are polluted by using a GWN with different variances. The variances of GWN
added to the image are 0.5, 1, 1.5, 2, 2.5 and 3. It can be seen that the results of the adaptive
PSR method have better visual feedback in all the noise background.

To objectively evaluate the image denoising performance of the two methods mentioned
above, we record the PSNR of the denoised images by the two methods. The image to be
processed is polluted by GWN with μ � 0.5, σ � 1. Table 4 lists the key indexes including
computation time, the optimal PSNR and the number of convergent iterations of the opti-
mization algorithm. As shown in Table 4, compared with the adaptive BSR, the proposed
adaptive PSR method not only improves the PSNR but also has a faster convergence speed
and less computation time. In applications, if the data volume is larger, the advantage of faster
convergence speed and less computation time of the adaptive PSR method will be greater.

4.5 A comparison for another image with four other common methods

As shown in Fig. 13, we compare the adaptive PSR method with four common image denois-
ing methods including arithmetic mean filter, geometric mean filter, median filter and Wiener
filter by processing the same Cameraman with a GWN. These common methods are realized
directly through calling functions in MATLAB. The arithmetic mean filter uses imfilter. The
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Fig. 12 Denoising results of the same Cameraman with different GWN parameters by either using the adaptive
BSR method or the adaptive PSR method. From top to bottom, we show in the first row, the figures of the noisy
images, in the second row, the results of the adaptive BSR, and in the third row, the results of the adaptive
PSR. The variances of GWN added in the images are 0.5, 1, 1.5, 2, 2.5 and 3, respectively, while the mean is
0.5 in all cases. PSNR of the first row are − 10.0846, − 11.4650, − 13.5891, − 14.5666, − 15.2292 and −
15.6377. PSNR of the second row are 3.9679, 1.3910, 1.1450, − 1.5592, − 4.2518 and − 4.8723. PSNR of
the third row are 5.3987, 3.2676, 2.2761, − 0.6563, − 3.2001 and − 4.2518

Table 4 Comparison of critical
indices of the adaptive BSR and
the adaptive PSR

Adaptive BSR method Adaptive PSR method

Time
(s)

Iterations PSNR
(dB)

Time
(s)

Iterations PSNR
(dB)

1 111.1682 14 1.3696 47.9115 10 3.2816

2 115.2553 19 1.3716 46.9755 06 3.2916

3 112.8278 11 1.3726 46.2305 14 3.2406

4 124.9596 16 1.3717 48.1831 12 3.2036

5 113.9519 10 1.3726 49.1003 04 3.2876

6 126.6635 10 1.3726 47.5027 09 3.2808

7 136.4892 12 1.3726 46.6725 10 3.2786

8 117.2318 06 1.3726 46.6262 07 3.2346

9 134.7117 11 1.3726 50.9565 06 3.2016

10 119.0295 14 1.3726 46.2405 13 3.2997

11 115.7567 13 1.3726 48.1831 11 3.2006

Average 123.6363 12.2727 1.3722 47.6893 9.2727 3.2546

geometric mean filter uses exp(imfilter(log(I)). The median filter uses medfilt2. The Wiener
filter uses wiener2. Figure 13 shows the results of all the mentioned methods.

Table 5 exhibits the PSNR values of denoised images by different methods. The noisy
image used for denoising is Cameraman with GWN (μ � 0.5,σ � 1). From the graphs in
Fig. 13 and the PSNR values in Table 5, we can see that the adaptive PSR method is better
than the common image denoising methods including arithmetic mean filter, geometric mean
filter, median filter, Wiener filter and BSR method.
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Fig. 13 Results by the proposed method and four traditional denoising methods. From left to right, the first
line are the noisy image with GWN (μ � 0.5,σ � 1), geometric mean filtering and arithmetic mean filtering.
The second line is the median filtering, Wiener filtering and the result of the proposed method

Table 5 PSNR of denoised images by different methods

The noisy
image

Geometric
mean
filtering

Arithmetic
mean
filtering

Median
filtering

Wiener
filtering

PSR method BSR method

− 11.4650 − 8.7361 − 6.9398 − 4.7954 − 0.4820 3.2786 1.3910

To intuitively and objectively compare all image denoising methods mentioned above,
Fig. 14 provides PSNR of different denoised images by different methods. Six different
methods are compared by denoising the same noisy image, which is obtained by adding a
GWN to the raw image. PSNR of noisy images before processing are also shown. As shown
in the figure, adaptive PSR method has the best performance in both weak and strong noise
background.

4.6 Denoising results of images with four other common noises

Image noise can be classified into different types according to its probability distribution.
We have already proved the superiority of the proposed adaptive PSR method in denoising
images with GWN. In order to verify the universality of the adaptive PSR, four other common
types of noise, we perform experiments using other types of noise to simulate image noise
including gamma noise, uniform noise, Rayleigh noise and exponential noise. The denoised
images are shown in Fig. 15.

Table 6 presents the PSNR values corresponding to subplots of Fig. 15. From the graphs
in Fig. 15 and the PSNR values in Table 6, it can be seen that the proposed adaptive PSR
method can also remove other types of image noise effectively.

As shown above, we reproduce the comparison experiment with another image, i.e., Cam-
eraman. As shown in the above figures and tables, the new object has same experimental
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Fig. 14 PSNR of the noisy image denoised by different methods. The parameter σ represents the variance of
the GWN

Fig. 15 Denoised results of the image polluted by different types of noise including gamma noise, uniform
noise, Rayleigh noise and exponential noise. The first row represents noisy images, while the second row
represents the corresponding denoised results

comparison results with Lena. In fact, adaptive PSR has no special requirements for handling
objects. In other words, adaptive PSR method has universality to a certain extent.

5 Conclusion

This work proposes an adaptive PSR image denoising method based on the use of the con-
structive role of noise played by a simple nonlinear system with a periodic potential. Further,
the method achieves adaptive denoising by utilizing the QPSO algorithm. Through numerical
experiments, the superiority of the proposed adaptive PSR method is verified. It can be con-
cluded that the method has a stable performance in both weak and strong noise background.
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Table 6 Value of the PSNR for
different noise images before and
after being processed by the
adaptive PSR

Gamma
noise

Uniform
noise

Rayleigh
noise

Exponential
noise

Before − 15.9812 − 15.8262 − 15.6042 − 16.0144

After 0.1712 3.9452 4.5073 0.6898

In addition, all the GWN parameters including variance and mean are considered to clarify
their roles on polluted images. It is found that the mean of GWN also has a great influence
on image pollution degree besides the variance. The noise of images where a GWN has been
added are explored as well. It is known that the noise no longer obeys a Gaussian distribution
because images should be reset after adding noise. That is, image dimension should not be
reduced directly after adding noise. Besides, noise in a one-dimensional signal is not in a
GWN form even if the signal is obtained by reducing the image after having added the GWN.

To sum up, this study not only provides an adaptive PSR denoising method with a higher
efficiency and a better performance for images with a strong noise, but also presents some
new insights of image noise. The paper may also provide some ideas for other types of image
processing.
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