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Abstract An important characteristic of the dilaton cosmological model is the Gasperini–
Veneziano duality transformation which follows from the existence of the O (d, d) symmetry.
In this study, we consider the equivalent dilaton theory in teleparallel dark energy with the
O (d, d) symmetry, while the equivalent teleparallel-duality transformation is presented. The
classical solution of the field equations is derived. Finally, the Wheeler–DeWitt equation of
quantum cosmology is discussed.

1 Introduction

A main property of the conformal field theory is the duality symmetry. In [1], Veneziano
introduced the duality symmetry in string theory in order to solve problem in the early
universe. This approach opened a new subject of study known as string cosmology. String
cosmology is based on the existence of a scalar field φ

(
xk

)
, known as the dilaton field,

coupled to gravity. The gravitational action integral is defined as [2–4]

Sdilaton =
∫

dDx
√−ge−2φ

(
R − 4gμνφ;μφ;ν + �

)
, (1)

where we have assumed the antisymmetric tensor strength of the sigma model, constructed
by the three-form axion fields to be zero. � is the cosmological constant term, and R is
the Ricciscalar of the background space with metric tensor gμν . The action integral (1) has
many similarities with the Brans–Dicke theory [5]. Indeed, the Brans–Dicke theory for a fixed
Brans–Dicke parameter is recovered after the change of variables φ

(
xk

) = − 1
2 ln ψ

(
xk

)

[6].
The main properties of string cosmology are summarized in [7]. Specifically, inflation

in string cosmology follows naturally without impose any fine-tune potential, the electro-
magnetic perturbations can describe the galactic magnetic fields, while matter perturbations
remain small to support the homogeneity of the universe, for more details we refer the reader
to [8].

In the case of a D-dimensional spatially flat and homogeneous background space, the
Lagrangian function for the dilaton field depends only the scale-factor a (t) and on the scalar
field φ (t). The Lagrangian function admits the scale-factor duality property, that is, the action
integral (1) is invariant under the transformation [1]
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a (t) → a−1 (t) , φ (t) → φ (t) − (D − 1) ln a. (2)

The scale-factor duality transformation has been generalized and for the case of anisotropic
and inhomogeneous spacetimes in [2]. Nowadays, it is known as Gasperini–Veneziano dual-
ity property. The duality symmetry is a discrete transformation and an isometry should
exist in the background space [3,4]. The fundamental origin for the Gasperini–Veneziano
transformation is the O (d, d) symmetry [2]. Furthermore, for the Hubble function in a
spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) space, the duality transfor-
mation reads H → −H . Therefore, under the second discrete transformation t → −t , it
follows, Ḣ (t) → Ḣ (−t) which leads to the string-driven pre-big bang cosmology [9]. Fur-
thermore, it was found that the dilaton field (1) admits a large number of symmetries which
were used to solve completely the Wheeler–DeWitt equation of quantum cosmology [10]. In
the case of cosmological studies, the scale-factor duality transformation has been attributed
to a local transformation which leave invariant the action integral (1), that is, a variational
symmetry [6]. Moreover, the viability of the discrete transformation under conformal trans-
formations is investigated in [11]. In addition, a new mathematical construction approach for
the determination of discrete transformations is established in [11].

In this piece of work, we are interested on the existence of discrete transformations, sim-
ilar with the scale-factor duality transformation (2), in the case of teleparallel dark energy
theory [12]. The aforementioned theory belongs to the so-called alternative/modified theories
of gravity [13–22] which have been introduced in the last years by cosmologists in order to
explain the cosmological observations [23,24]. Teleparallelism has drawn attention in the last
years because it provides a systematic geometric description for the explanation of the cos-
mological observations. In the teleparallel equivalence of general relativity [25], instead of
the torsion-less Levi–Civita connection, the curvatureless Weitzenböck connection is consid-
ered, where the corresponding dynamical fields are the four linearly independent vierbeins.
Hence, the gravitational field are defined by the Weitzenböck tensor and its scalar T [26–28].
The teleparallel dark energy is the analogue of the scalar tensor theories, where a scalar field
is introduced in teleparallel action integral, while the scalar field interacts with the scalar T
for the Weitzenböck tensor. The theory is also known as scalar-torsion theory [29–32]. Under
a conformal transformation [33], the theory can be related with the so-called f (T, B) theory
[34], which is a fourth-order theory of gravity, as an analogue of the equivalence of O’ Hanlon
theory with f (R) gravity [35]. The evolution of the cosmological dynamics in teleparallel
dark energy was studied before in [36–38]. Analysis of the cosmological observations with
the teleparallel dark energy are presented in [39,40], while some other studies are given in
[41,42]. From the latter studies, it is clear that the theory can play an important role for the
description of the late-time and the early acceleration phases of the universe [40]. Moreover,
from the analysis of the evolution for the matter perturbations in teleparallel dark energy, it
was found that teleparallel dark energy theory is favoured with respect to the quintessence
theory. Modified teleparallel theories of gravity are Lorentz violated theories. Nowadays,
Lorentz violation has not been observed; however, Lorentz violation is a prediction for vari-
ous models of quantum gravity, for a review see [43]. The motivation of this work is to define
a teleparallel dark energy model which admits a discrete transformation and open the way
for the teleparallel string cosmology. The plan of the paper is as follows.

In Sect. 2, we present the field equations for the teleparallel dark energy. In Sect. 3,
we define the teleparallel dilaton model, which is invariant under a discrete transformation
similar to the scale-factor duality transformation of the dilaton cosmological model. This new
discrete transformation has its origin on the presence of the O (d, d) symmetry. Moreover,
the field equations are found to be superintegrable, and the analytic solution is expressed in

123



Eur. Phys. J. Plus         (2021) 136:674 Page 3 of 7   674 

terms of exponential functions. Finally, in Sect. 4, we summarize our results, while we solve
the Wheeler–DeWitt equation of quantum cosmology for the teleparallel dilaton model.

2 Teleparallel dark energy

In teleparallelism, the dynamical variables are the vierbein fields. They are defined by the
requirement g(ei , e j ) = ei .e j = ηi j where ηi j = diag(1,−1,−1,−1) is the Lorentz metric
in canonical form.

The metric tensor gμν(xκ ) in terms of coordinates is defined as

gμν = ηi j h
i
μh

j
ν, (3)

where ei (xκ ) = hiμ(xκ )dxi is the dual basis, in which ei
(
e j

) = δij .
In contrary to general relativity, the curvatureless teleparallel torsion tensor is the funda-

mental geometric object in teleparallelism, and is defined by the antisymmetric part of the
affine connection coefficients as follows:

T β
μν = 
̂β

νμ − 
̂β
μν = hβ

i (∂μh
i
ν − ∂νh

i
μ). (4)

The gravitational Lagrangian for the teleparallel equivalent of general relativity is defined
by the scalar T = Sμν

β T β
μν where Sμν

β = 1
2 (Kμν

β + δ
μ
βT

θν
θ − δν

βT
θμ
θ ) and Kμν

β is the

tensor Kμν
β = − 1

2 (Tμν
β − T νμ

β − Tμν
β ). The latter tensor equals the difference of the Levi–

Civita connection in the holonomic and the unholonomic frame.
As stated by the cosmological principle, the universe in large scales is homogeneous and

isotropic described by the spatially flat FLRW metric

ds2 = N 2 (t) dt2 − a2(t)(dx2 + dy2 + dz2). (5)

Therefore, in order to recover such cosmological scenario, we assume the diagonal frame for
the vierbein fields hiμ(t) = diag(1, a(t), a(t), a(t)), where we calculate the scalar

T = 6H2, (6)

in which H = 1
N

ȧ
a is the Hubble function.

The gravitational action integral in teleparallel dark energy theory is defined to be

S = 1

16πG

∫
d4xe

[
F (φ)

(
T + ω

2
φ;μφμ + V (φ)

)]
. (7)

where e = √−g, F (φ) is the coupling function, ω is a constant nonzero parameter, analogue
of the Brans–Dicke parameter and V (φ) is the scalar field potential. We remark that we can
always define new scalar field under the point transformation dψ = √

ωF (φ)dφ, such that
the action integral (7) to be written as follows:

S = 1

16πG

∫
d4xe

[
F̂ (ψ) T + 1

2
ψ;μψμ + V̂ (ψ)

]
. (8)

The field equations in this cosmological model admit a minisuperspace description.
Indeed, by replacing scar T from (6) in (7) and assuming that the scalar field φ inherits
the symmetries of the background space, i.e. φ = φ (t), the point-like Lagrangian for the
field equations is

L
(
a, ȧ, φ, φ̇

) = F (φ)

(
1

N

(
6aȧ2 − ω

2
a3φ̇2

)
+ Na3V (φ)

)
. (9)
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Hence, the gravitational field equations are derived by the variation of the Lagrangian
function (9). Indeed, the field equations are

F (φ)
(

6H2 − ω

2N 2 φ̇2 − V (φ)
)

= 0 , (10)
(

2

N
Ḣ + 3H2

)
+ 1

2

( ω

2N 2 φ̇2 − V (φ)
)

+ 2 (ln F (φ)),φ H
φ̇

N
= 0 , (11)

ω

(
1

N 2 φ̈ + 3

N
H φ̇ − Ṅ

N 3 φ̇

)
+

( ω

2N 2 φ̇2 + V (φ)
)

+ V,φ (φ) = 0 . (12)

We continue our analysis by assuming specific functional forms for the coupling function
F (φ) and the potential V (φ) in which the field equations remain invariant under discrete
transformations as that of the scale-factor duality transformation for the dilaton field. Without
loss of generality in the following, we assume the lapse function to be constant, i.e. N (t) = 1.
In this case, Eq. (10) can be seen as a the constraint equation of the Hamiltonian for the
second-order differential equations (11) and (12).

3 O (d, d) symmetry in teleparallel dark energy

For the unknown functions of the point-like Lagrangian (9), that is, the coupling function and
the potential, we consider that they are F (φ) = e−2φ and V (φ) = �. Hence, the point-like
Lagrangian (9) reads

L
(
a, ȧ, φ, φ̇

) = e−2φ
(

6aȧ2 − ω

2
a3φ̇2 + a3�

)
. (13)

This cosmological model shall be called as the teleparallel dilaton model or dilaton-tensor
model. As we shall see in the following, for this specific selection of the free functions, the
point-like Lagrangian (13) is invariant under the O (d, d) symmetry. We continue with the
construction of the discrete transformation and the derivation of the O (d, d) symmetry for
the field equations.

We observe that under the scale-factor duality transformation (2), for D = 4, Lagrangian
function (13) does not remain invariant. Thus, we should investigate for other forms for the
discrete transformation.

However, we observe that under the change of variables

a → ā p1ep2φ̄ , φ → p4φ̄ + p3 ln a (14)

with

p1 = 1 + κ2

1 − κ2 , p2 = − 4

3
(
1 − κ2

) , p3 = 3κ2

1 − κ2 , p4 = −1 + κ2

1 − κ2 , ω = 4

3κ2 . (15)

the Lagrangian function (13) becomes

L
(
a, ȧ, φ, φ̇

) = e−2φ̄

(

6ā

(
dā

dt

)2

− ω

2
ā3

(
dφ̄

dt

)2

+ a3�

)

. (16)

Thus, the discrete transformation (14) with (15) is a symmetry for the teleparallel dilaton
model. In the case of large values of κ , the discrete transformation (14) becomes a →
ā−1, φ → φ̄ − 3 ln ā which is the Gasperini–Veneziano scale-factor duality. Furthermore,
for ω = 8

3 , that is, κ2 = 1, the discrete transformation does not exist.
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In order to understand the origin of this discrete transformation, consider the point trans-
formation

u (a, φ; κ) = 8

3 (1 + κ)
a

3
2 (1+κ) exp

(
−1 + κ

κ
φ

)
, (17)

v (a, φ; κ) = − 1

1 − κ
a

3
2 (1−κ) exp

(
1 − κ

κ
φ

)
. (18)

Therefore, in the new variables, the point-like Lagrangian (13) becomes

L (u, v, u̇, v̇) = −
(
u̇v̇ + 3

8

(
1 − κ2) �uv

)
. (19)

Hence, the discrete transformation (14) in the new variables becomes {x → ȳ , y → x̄},
which is the rotational symmetry in the two-dimensional plane, i.e. the origin of (14) is the
O (d, d) symmetry.

Moreover, in the new variables, from (19), the field equations reads

u̇v̇ − 3

8

(
1 − κ2) �uv = 0, (20)

ü − 3

8

(
1 − κ2) �u = 0, (21)

v̈ − 3

8

(
1 − κ2) �v = 0. (22)

The latter system is the two-dimensional oscillator, a well-known superintegrable system.
Hence, similarly with the dilaton field [10], the existence of O (d, d) symmetry in the telepar-
allel dark energy theory leads to a superintegrable system.

The closed-form solution is

u (t) = c1e
√

�̄t + c2e
−

√
�̄t , (23)

v (t) = c3e
√

�̄t + c4e
−

√
�̄t , (24)

with constraint c1c4 + c2c3 = 0 and �̄ = 3
8

(
1 − κ2

)
�. For large values of t and for �̄ > 0,

the solution becomes asymptotically u (t) � e
√

�̄t , v (t) � e
√

�̄t , where it is clear that the
final solution the scale factor is a (t) � e�(�,κ)t , where �(�, κ) is a constant. We conclude
that de Sitter inflation is natural in teleparallel dilaton theory.

Finally, for the Hubble function H (t), we find that under the discrete transformation (14)
is transformed as H (t) → p1 H̄ (t) + p2φ̇ (t), H̄ (t) = d

dt (ln ā) , where it is clear that for
small values of ω, H (t) → −H̄ (t) .

4 Conclusions

In this study, we generalized the dilaton cosmological model in the context of teleparallel
dark energy theory. For our new model, we developed that the main properties of the dilaton
field, i.e. the de Sitter inflation, and the superintegrable property for the field equations, hold
and for the teleparallel dilaton model. The two theories share a common property, they admit
an isometry which is the O (d, d) symmetry.

For the teleparallel dilaton model, we determined a discrete transformation for the dynami-
cal variables of the field equations, i.e. the scale-factor a (t) and the scalar field φ (t), in which
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the field equations remain invariant. This transformation is more general than the Gasperini–
Veneziano scale-factor duality transformation, while the Gasperini–Veneziano transforma-
tion is recovered in the case of the teleparallel dilaton field when a free parameter for the
model is very small.

As far as the Hubble function is concerned, the discrete symmetry in terms of the Hubble
function reads H (t) → p1 (κ) H̄ (t) + p2 (κ) φ̇ (t). Thus, for specific values of κ , the sign
of H (t) can be changed such that under the second change of variables t → −t , we are
able to study the pre-big bang epoch for the universe in a similar way as in string cosmology.
However, because of the presence of the nonzero parameter p2 (κ), the behaviour in the
pre-big bang epoch in the teleparallel model is different from that of the dilaton field.

Finally, because of the existence of the minisuperspace Lagrangian (13), we are able to
write the Wheeler–DeWitt equation of quantum cosmology [44], similarly with the analysis
presented in [10]. The Hamiltonian constraint for the teleparallel dilaton model is written as:

H ≡ e2φ

(
p2
a

6a
− p2

φ

2ωa3 − a3�

)

= 0 (25)

where the Wheeler–DeWitt equation reads W ≡ H�, that is,

W ≡ e2φ

(
1

6a

∂2

∂a2 − 1

2ωa3

∂2

∂φ2 − a3�

)
� (a, φ) = 0 (26)

In the variables {u, v} defined by expressions (17), (18), the Wheeler–DeWitt equation is
written in the simplest form

W ≡
(

∂2

∂u∂v
− �̄uv

)
� (u, v) = 0. (27)

Equation (27) admits the quantum operator the
(

∂
∂u2 − ∂

∂v2 − �̄
(
u2 − v2

))
� = Q0�,

which is nothing else than the Schrödinger equation for the two-dimensional (hyperbolic)
oscillator. Thus, we stop our discussion here.

We showed that the teleparallel dilaton model has important characteristics similar to
the classical dilaton model. That makes the model of special interests for future studies.
Furthermore, the generalization of the new discrete transformation in the case of a anisotropic
and inhomogeneous background space should be investigated.
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