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Abstract The main goal of this work is to investigate the interaction impact between three
propagated waves. In this case, the elastic wave, plasma wave and thermal waves are obtained
in the context of the hyperbolic generalized two-temperature theory. The governing equations
are studied during the photothermal theory. The impact of external magnetic field and laser
pulse are obtained which they fall on the outer surface of a semiconductor medium. The
thermal conductivity of semiconductor material is investigated in a variable case. When the
coupled between photothermal theory and thermoelasticity theory is occurred, three various
models of the photo-thermoelasticity theory are obtained. The integral transforms technique
in two-dimensional (2D) deformation is applied to solve the main equations. The double
Fourier and Laplace transforms with some initial conditions are used as example of integral
transforms technique. The inversion of the double transforms with some thermal-elastic-
mechanical-plasma boundary conditions is applied numerically to obtain the complete solu-
tions. Some comparisons during three various models in external magnetic field with variable
thermal conductivity Si (silicon) material of photo-thermoelasticity theory are performed.

1 Introduction

Semiconductor materials have many applications in modern mechanical and physical engi-
neering. Before 1950, scientists interested in semiconductors only studied them as elastic
media. However, with the development many distinct properties of semiconductors have
been discovered. One of the most important characteristics that is taken into account is the
internal structures with microelectronics process. Over time a photothermal (PT) technique

a e-mail: amattaya@tu.edu.sa
b e-mail: khlotfy_1@yahoo.com (corresponding author)
c e-mail: aaelbary@aast.edu
d e-mail: i.tayel@mu.edu.sa

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-01633-3&domain=pdf
http://orcid.org/0000-0001-9383-1361
mailto:amattaya@tu.edu.sa
mailto:khlotfy_1@yahoo.com
mailto:aaelbary@aast.edu
mailto:i.tayel@mu.edu.sa


  651 Page 2 of 21 Eur. Phys. J. Plus         (2021) 136:651 

was used to analysis the waves propagation of semiconductor media. On the other hand,
the photo-acoustic (PA) analysis of semiconductor is used in modern technology also. The
sensitive analysis processes are using PT and PA when the thermal diffusivity is important
phenomena [1, 2]. The impact of magnetic field and laser pulses of semiconductor medium
generates exited electrons on the outer surface during the electronic deformation (ED), and
the carrier density with plasma waves is obtained.

The importance of the theory of thermal elasticity appeared in the last century when
Biot was developed the coupled theory of thermoelasticity (CD) [3]. Biot [3] removed the
contradiction in the uncoupled thermoelasticity theory. Biot [3] presented a model that studies
the interference between the strain and temperature that dependent on the Fourier’s law with
infinite speeds of wave propagation. To remove the unacceptable physical meaning which
introduced by Biot, Lord and Shulman (LS) [4] developed a new model. In this model, the
Fourier’s law is replaced by another approximation when they insert a single relaxation time
into the heat equation. On the other hand, Green and Lindsay (GL) [5] introduced another
generalized thermoelasticity model which the governing equations of this model contain two
relaxation times. A lot of scholars used LS and GL models in many application problems of
thermoelasticity media [6–10]. Marin et al. [11, 12] studied the chemical reaction, the heat
and mass transfer impact and the thermoelasticity models on third-grade MHD fluid flow
and blood flow with variable reactive index with some applications during anisotropically
tapered arteries.

The photothermal theory appeared in the second half of the last century when a semicon-
ductor material was exposed to an incident pulse laser beam [13, 14]. Due to the thermal
effect of laser pulse, the thermal waves and elastic waves are generated in process called the
thermoelastic deformation (TE) [15]. In this case, the TE and ED mechanisms appear alto-
gether during the photo-excited transport processes [16]. However, the interaction processes
between plasma and thermo-elastic waves in semiconductor material are obtained [17]. Quin-
tanilla and Tien [18] studied a short-pulse laser heating in the context of the heat transfer
mechanism to investigate the structural stability of the medium. In the beginning of this cen-
tury, Youssef et al. [19, 20] introduced a new model of the linear generalized thermoelasticity
which depends on the two distinct temperatures. This model named two-temperature theory.
Lotfy et al. [21–29] applied the two-temperature theory to develop the photo-thermoelasticity
theory during TE and ED deformation with different thermal memories (relaxation times)
and several external fields. Many authors [30–35] investigated the photo-thermo-elastic wave
propagation in a non-homogenous semiconductor media with memory responses. After that,
Youssef and El-Bary [36] introduced a new model in the generalized thermoelasticity theory
to modify the paradox which it found in [19]. In this model, the two temperatures depend on
the two distinct accelerations and called the hyperbolic two-temperature model.

In this work, a novel mathematical-physical 2D deformation model is investigated under
the hyperbolic two-temperature theory. The problem is studied in the photo-thermoelasticity
theory during photo-excited processes of a semiconductor thin film. The physical properties
of the medium depend on the gradient in temperature which leads to the variable in thermal
conductivity. The elastic medium exposed to external magnetic field during a pulsed laser.
The numerical integral transforms technique under the Fourier and Laplace transformations
is used. On the other hand, by using a numerical inversion method of Fourier and Laplace
transforms the main physical fields are obtained. Many comparisons between the physical
quantities with three various models of photo-thermoelasticity theory, namely (CD, LS, LG),
are performed under the effect of magnetic field. Silicon (Si) material is used to validate of
the numerical results when the thermal conductivity is changed.
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2 Basic equations

The semiconductor medium is homogenous, linear and isotropic which it exposed to a laser
pulses and external magnetic field. When the thermal conductivity is variable, the medium
is studied during 2D deformation. The main four physical quantities in this case are T (�r , t),

φ(�r , t),
⇀
u (�r , t) and N (�r , t) which refer to the distribution of thermodynamic temperature

(thermal waves), the distribution of conductive temperature, the displacement distribution
(elastic waves) and the plasma waves (carrier density), respectively (�r is the space vector
and t refers to the time). The induced magnetic field h(x, y, z) generates when the initial

external magnetic field in y-direction H � H0 + h ,
⇀

H � (0, H0, 0) falls on the external
surface of medium. In case of a slowly moving, the Maxwell’s equations for electromagnetic

medium are used with neglected the density of charge. In this case the particle velocity
⇀̇
u

of the semiconductor elastic medium is taken into account and the electromagnetic can be
written as [35]:

⇀

J � curl
⇀

h −ε0
⇀̇

E , curl �E � −μ0
⇀̇

H ,
⇀

E � −μ0(
⇀̇
u × ⇀

H ), div
⇀

H � 0

⎫
⎬

⎭
. (1)

The μ0 and ε0 are the magnetic constant permeability and the electric permeability, respec-

tively, the electric field is
⇀

E , the vector of current density is
⇀

J � (J1, J2, J3) and the dot
notation refers to the time differentiation. The current density components can be obtained

from Eq. (1) in terms of displacement when eliminating
⇀

h and
⇀

E which leads to the following
(see the schematic figure) [30–32]

⇀

J �

∣
∣
∣
∣
∣
∣
∣

⇀

i
⇀

j
⇀

k
∂
∂x

∂
∂y

∂
∂z

0 h 0

∣
∣
∣
∣
∣
∣
∣

− ε0(μ0H0ẅ, 0,−μ0H0ü) �

Jx � −
(

∂h

∂z
+ μ0H0ε0ẅ)

)

, Jy � 0,

Jz � ∂h

∂x
+ μ0H0ε0ü,

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2)

⇀

E � −μ0

∣
∣
∣
∣
∣
∣
∣

⇀

i
⇀

j
⇀

k
u̇ 0 ẇ

0 H0 0

∣
∣
∣
∣
∣
∣
∣

,

Ex � μ0 H0 ẇ, Ey � 0, Ez � −μ0 H0 u̇.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (3)

The Lorentz’s force
⇀

F � μ0(
⇀

J × ⇀

H ) can be obtained from the electromagnetic force
Eqs. (1) and (2) as [31]:

(4)

⇀

F � μ0(
⇀

J × ⇀

H ) ≡
(

−μ0H0
∂h

∂x
− ε0μ

2
0H

2
0

∂2u

∂t2 , 0,−μ0H0
∂h

∂z
− ε0μ

2
0H

2
0

∂2w

∂t2

)

≡ Fi � (Fx , 0, Fz).
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On the other hand, a laser pulse has an input a non-Gaussian function Q which it is taken
the following form [40] (see the schematic figure):

Q � I0γ ′t
2πa2t2

0

exp

(

− z2

a2 − t

t0
− γ ′x

)

. (5)

where I0, a, t0, and γ ′ refer to the absorbed energy for unit area, the radius of beam of
laser, the rise time of pulse and the absorption coefficient of the semiconductor medium,
respectively.

The coupled equations (governing equations) that describe the interaction between plasma,
thermal and elastic impacts under the effect of magnetic field in the context of the hyperbolic
two-temperature theory can be constructed in tensor form as [5, 19, 37–39]:

∂N (r, t)

∂t
� DE N,i i (r, t) − N (r, t)

τ
+ κ T (r, t), (6)

(7)

ρ Ce

(

n1 + n0τ0
∂

∂t

)
∂T (r, t)

∂t
� (Kφ,i (r, t)),i +

Eg

τ
N (r, t)

+ γ T0

(

n1 + n0τ0
∂

∂t

) (
∂

∂t
u,i (r, t) − ρQ

)

,

ρ
∂2 �u(

⇀
r , t)

∂t2 � μui, j j (r, t) + (μ + λ)ui, j j (r, t) − γ

(

1 + ν0
∂

∂t

)

(T,i (r, t) − δnN,i (r, t)) + Fi .

(8)

(9)

In a classical theory of the two temperatures, Eq. (9) can be rewritten as:

T (r, t) − φ(r, t) � −a φ,i i (r, t). (10)

In the above equations, is arbitrary positive small parameter which describes the hyper-
bolic two-temperature case and a > 0 is the two-temperature parameter. The quantity κ is
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Table 1 .

Name (unit) Symbol value

Absolute temperature (K) T0 800

Lamé’s constants (N/m2) λ, μ 3.64×1010, 5.46×1010

Density (kg/m3) ρ 2330

The photogenerated Carrier lifetime (s) τ 5×10−5

The electronic deformation coefficient (m3) dn − 9×10−31

The carrier diffusion coefficient (m2/s) DE 2.5×10−3

The energy gap (eV) Eg 1.11

The pulse rise time (ps) t0 9

The linear thermal expansion coefficient (K−1) αt 4.14×10−6

The sample thermal conductivity (Wm−1 K−1) k 150

The recombination velocities (m/s) s 2

Specific heat at constant strain (J/(kg K)) Ce 695

The radius of the beam (µm) r 100

The absorption depth of heating energy (m−1) γ ′
10−3

The absorbed energy (J) I0 105

a nonzero thermal activation coupling parameter (κ � ∂N0
∂T

T
τ

) which describes the equilib-
rium case of the medium when the carrier concentration is N0 at high temperature [40–42].
However, the elastic and thermal relaxation times are ν0 and τ0, but the quantities n0, n1

are a dimensionless chosen parameters which taken according to the photo-thermoelasticity
models [43, 44]. On the other hand, the other physical quantities will be defined in Table 1.

The constitutive (stress–strain) relations can be given in the following form [24, 25]:

σi j � μui, j (r, t) + (μ + λ) ui, j (r, t) − (3λ + 2μ)

(

αT

(

1 + ν0
∂

∂t

)

T (r, t) + dnN (r, t)

)

.

(11)

When physical properties of the inner structure of the medium change with gradient
temperature, then the thermal conductivity K can be chosen as variable. In this case, K can
be chosen a linear function of the thermodynamical temperature as follows:

K (T ) � K0(1 + K1T ). (12)

where K0 is thermal conductivity when the medium independent to temperature at K1 � 0
(K1 very small negative parameter). From Eq. (10) with using Eq. (12) the following relation
can be given:

(13)

The value can be neglected because it is very small value; in this case, the thermal
conductivity parameter (Eq. 13) can be rewritten as:

K (T ) � K0(1 + K1φ) or K (φ) � K0(1 + K1φ). (14)
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On the other hand, the following maps can be used for more suitable form as [32]:

φ̂ � 1

K0

φ∫

0

K (�)d�, (15)

T̂ � 1

K0

T∫

0

K (�)d�. (16)

Using the differentiation notation ∂
∂xi

for all both sides of the maps Eq. (15) and (16), the
following relations can be obtained:

K0
∂φ̂

∂xi
� K (φ)

∂φ

∂xi

or in tensor form⇐⇒ K0φ̂,i � K (φ)φ,i . (17)

Using again the differentiating operator on Eqs. (17) with respect to xi yields:

K0
∂2φ̂

∂x2
i

� ∂

∂xi

(

K (φ)
∂φ

∂xi

)
or in tensor form⇐⇒ K0φ̂,i i � (K (φ)φ,i ),i . (18)

On the other hand, by using the same way, the temperature (T ) can be expressed in the
following form:

K0T̂,i � K (T )T,i . (19)

The time-differentiation operator can be applied of Eq. (16) as:

K0
∂ T̂

∂t
� K (T )

∂T

∂t
. (20)

The equation of motion (8) under the mapping transformation Eqs. (18), (19) and (20)
can be rewritten as:

ρ
∂2 �u
∂t2 � μ∇2 �u + (μ + λ)∇(∇ · �u) − γ

(

1 + ν0
∂

∂t

)

(1 + K1T )−1 ∂ T̂

∂xi
− δn∇N +

⇀

F . (21)

Applying the expand technique on the third term in the right-hand side of the above
equation when neglected the nonlinear terms, yields:

(22)

γ

(

1 + ν0
∂

∂t

)

(1 + K1T )−1 ∂ T̂

∂xi
� γ

(

1 + ν0
∂

∂t

)

(1 − K1T + +(K1T )2 − . . . . . .)
∂ T̂

∂xi

� γ

(

1 + ν0
∂

∂t

)
∂ T̂

∂xi
.

Therefore, Eq. (21) can be expressed in tensor form as:

ρ
∂2ui
∂t2 � μ

∂2ui
∂x2

m
+ (μ + λ)

∂2um
∂x2

i

− γ

(

1 + ν0
∂

∂t

)
∂ T̂

∂xi
− δn

∂N

∂xi
+ Fi . (23)

To analyze the governing equation during 2D (xz-plane) electronic-elastic deforma-
tion, consider the displacement vector which can be expressed in two components as
�u � (ux , 0, uz), ux (x, z, t) and uz(x, z, t).
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(24)

ρ

(
∂2u

∂t2

)

� (2μ + λ)
∂2u

∂x2

+ (μ + λ)
∂2w

∂x∂z
+ μ

∂2u

∂z2 − γ
∂ T̂

∂x
− δn

∂N

∂x
− μ0H0

∂h

∂x
−ε0μ

2
0H

2
0

∂2u

∂t2

}

,

(25)ρ

(
∂2w

∂t2

)

� (μ)
∂2w

∂x2 + (μ + λ)
∂2u

∂x∂z
+ (2μ + λ)

∂2w

∂z2 − γ
∂ T̂

∂y
− δn

∂N

∂z
− μ0H0

∂h

∂z
−ε0μ

2
0H

2
0

∂2w

∂t2

}

.

On the other hand, the heat Eq. (7) under the mapping with neglected the nonlinear term
can be rewritten in tensor form as:

1

k

(

n1 + n0τ0
∂

∂t

)
∂T̂

∂t
� ∂2φ̂

∂x2
i

+
Eg

K0τ
N (

⇀
r , t) +

γ T0

K0

(

n1 + n0τ0
∂

∂t

)(
∂

∂xi

∂ui
∂t

− ρQ

)

.

(26)

where K0
ρCe

� k.
The hyperbolic two-temperature Eq. (10) under the mapping transformation when

neglected the nonlinear term can be represented as:

(27)

Similarly, the coupled plasma-thermal Eq. (6) can be rewritten under the influence of
mapping transformation as [43]:

∂N

∂t
� DE

∂2N

∂x2
m

− N

τ
+ κ T̂ . (28)

3 Formulation of the problem

According to the Helmholtz’s theorem, the displacement vector (with components ux and
uz) can be described in terms of the scalar function and vector function (�(x, z, t) and

ψ(x, z, t),
⇀
u � grad � + rot ψ), as:

ux � ∂�

∂x
+

∂ψ

∂z
, uz � ∂�

∂z
− ∂ψ

∂x
, (29)

For more simplification, the following non-dimensional quantities can be used:

(x ′, z′, u′
x , u

′
z) � (x, z, ux , uz)

CT t∗
, (t ′, υ ′

0, τ
′
0) � (t, υ0, τ0)

t∗
(T̂ ′, φ̂′) � γ (T̂ , φ̂)

2μ + λ
, σ ′

i j � σi j

μ

N ′ � δnN

2μ + λ
, (�′, ψ ′) � (�,ψ)

(CT t∗)2 , h′ � h

ρC2
T

, Q′ � Q

T0Cet∗
. (30)

The above non-dimension quantities which defined in Eq. (30) and using Eq. (29) with
ignored the primes for the main equations yield:

(

∇2 − q∗
1 − q∗

2
∂

∂t

)

N + ε3T̂ � 0, (31)
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∇2ϕ̂ −
(

n1 + n0τ0
∂

∂t

)
∂ T̂

∂t
+ ε2 N + ε1

(

n1 + n0τ0
∂

∂t

)
∂

∂t
∇2� � ε1

(

n1 + n0τ0
∂

∂t

)

Q,

(32)
(

α∇2 − RH
∂2

∂t2

)

� −
(

1 + ν0
∂

∂t

)

T̂ − N � 0, (33)

(

∇2 − RH

2∐ ∂2

∂t2

)

ψ � 0, (34)

ˆ̈T − ˆ̈φ � −a ∇2φ̂.

where

q∗
1 � K0t∗

DEρτCe
, q∗

2 � K0

DEρCe
, ε1 � γ 2T0t∗2

K0ρ
, ε2 � αT Egt∗

dnρτCe
, ε3 � dnK0κt∗

αT ρCeDE
, a � λ̄

C2
L

C2
T � 2μ + λ

ρ
,C2

L � μ

ρ
,

2∐
� C2

T

C2
L

, δn � (2μ + 3λ)dn, t
∗ � K0

ρCeC2
T

,
∂2

∂x2
1

+
∂2

∂x2
3

� ∇2.

(36)

The parameters ε1, ε2 and ε3 represent the coupled relation between thermal-elastic,
thermal, energy with thermal-electric properties.

During the elastic 2D deformation, the non-dimension stress–strain relations under the
mapping transformation can be obtained as follows:

σxx � (2μ + λ)

μ

∂2�

∂x2 +
λ

μ

∂2�

∂z2 + 2
∂2ψ

∂x∂z
− (2μ + λ)

μ

((

1 + ν0
∂

∂t

)

T̂ + N

)

, (37)

σzz � (2μ + λ)

μ

∂2�

∂z2 +
λ

μ

∂2�

∂x2 − 2
∂2ψ

∂x∂z
− (2μ + λ)

μ

((

1 + ν0
∂

∂t

)

T̂ + N

)

, (38)

σxz � ∂2ψ

∂z2 + 2
∂2�

∂x∂z
− ∂2ψ

∂x2 . (39)

The initial conditions which used in this problem can be constructed as:

(40)

ux (x, t)|t�0 � ∂ux (x, t)

∂t

∣
∣
∣
∣
t�0

� 0, uz(x, t)|t�0 � ∂uz(x, t)

∂t

∣
∣
∣
∣
t�0

� 0 σi j (x, t)
∣
∣
t�0 � ∂σi j (x, t)

∂t

∣
∣
∣
∣
t�0

� 0

N (x, t)|t�0 � ∂N (x, t)

∂t

∣
∣
∣
∣
t�0

� 0, T̂ (x, t)
∣
∣
∣
t�0

� ∂ T̂ (x, t)

∂t

∣
∣
∣
∣
∣
t�0

� 0, φ̂(x, t)
∣
∣
∣
t�0

� ∂φ̂(x, t)

∂t

∣
∣
∣
∣
∣
t�0

� 0.
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4 The solution in Laplace and Fourier transform

The Laplace and Fourier transformations can be used to convert the time–space domain to
Laplace and Fourier domain by using the following definition for any function ℵ(x, z, t) as:

L(ℵ(x, z, t)) � ℵ(x, z, s) �
∞∫

0

ℵ(x, z, t) exp(−st)dt, (41)

F(ℵ(x, z, s)) � ℵ̃(ξ, z, s) � 1√
2π

∞∫

−∞
ℵ(x, z, s) exp(−iξ x) dt. (42)

Using the above definition Eqs. (41) and (42) with applied them of all the main
Eqs. (31)–(35), yield:

(D2 − α1)Ñ + ε3 T̃ � 0, (43)

(D2 − b2)φ̃ − ω∗T̃ + ε2 Ñ + α2(D2 − b2)�̃ � �(ξ, s)e−γ ′x , (44)

(αD2 − α3)�̃ − α7T̃ − Ñ � 0, (45)

(D2 − α2
4)ψ̃ � 0, (46)

(D2 − A1)φ̃ + β∗T̃ � 0. (47)

On the other hand, the stress–strain relations (37)–(39) under the impact of Laplace and
Fourier transformation can be expressed as:

σ̃xx � (α5D
2 − α6 b2)�̃ + 2ibDψ̃ − α5(α7T̃ + Ñ ), (48)

σ̃zz � (−α5b
2 + α6 D2)�̃ − 2ibDψ̃ − α5(α7T̃ + Ñ ), (49)

σ̃xz � 2ibD�̃ − (D2 + b2)ψ̃. (50)

where

D � d

dx
, α1 � ξb2 + q∗

1 + s q∗
2 , α2 � ε1(n1 + n0τ0s), α3 � ξ2 + RHs

2, α2
4 � ξ2 + s2RH

2∐
,

ω∗ � s(n1 + n0τ0s), α5 � (2μ + λ)

μ
, α6 � λ

μ
, A1 � ξ2 + β∗, β∗ � s2

a

�(z, t) �
(
I0γ ′ε1(n1 + n0τ0s)

2π a2t2
0 (s + 1

t0
)2

)

e
− ξ2

4a2 . (51)

Eliminating the above system Eqs. (43)–(45) and (47) in �̃(x), φ̃(x), T̃ (x), and Ñ (x),
however the six-order ordinary non-homogeneous differential equation can be obtained in
the quantity T̃ (x) as:

[D6 − ED4 + FD2 − G] T̃ (x) � L1�(ξ, s) exp(−γ ′x). (52)

where

E � [(α1 + α3 + b2)β∗ + (α1 + α3 + A1)ω∗ − ε2ε3 − α2(α∗
1 + α7(A1 + b2))]/αA2

F � [(α1α3 + (α1 + α3)b2)β∗ + (α1A3 + α3A1)ω∗ − ε2ε3A3 − α2(α∗
1 A1 + b2A4)]/αA2

G � [α1α3b
2β∗ + α1α3A1ω

∗ − ε2ε3α3A1 − α2α
∗
1 A1b

2]/αA2

α∗
1 � α1α7 + ε3, A2 � β∗ + ω∗ − α2α7, A3 � α3 + A1, A4 � (α∗

1 + α7A1),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(53)
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The factorization form of homogeneous Eq. (52) can be decomposed in in terms of tem-
perature as:

(
D2 − k2

1

)(
D2 − k2

2

)(
D2 − k2

3

)
T̃ (x) � 0. (54)

The characteristic equation of Eq. (54) when the real roots (k2
n (Re(kn) > 0, n � 1 , 2, 3)

are taken into account can be rewritten as:

�6 − E�4 + F�2 − G � 0. (55)

On the other hand, the factorization form of the non-homogenous Eq. (52) can be expressed
as:

(
D2 − k2

1

)(
D2 − k2

2

) (
D2 − k2

3

)
T̃ (x) � L1�(ξ, s) exp(−γ ′x). (56)

However, Eq. (46) can be factorized and it has the following characteristic equation:
(
D2 − k2

4

)
ψ̃(x) � 0. (57)

But k2
4 is the real root of Eq. (57).

According to the linearity, the solution of Eq. (56) can be expressed as:

T̃ (x) �
3∑

n�1

n(s, ξ ) e−kn x + L2e
−γ ′x . (58)

where L1 � γ ′6 + (α1A1 + α3A1 + α1α3)γ ′2 − (α1 + α3 + A1)γ ′4 − α1α3A1, L2 �(
�L1

γ ′6−Eγ ′4+Fγ ′2−G

)
.

From the relations between T̃ (x) and the other quantities, according to the linearity the
main quantities take the following form:

�̃(x) �
3∑

n�1

′
n(s, ξ )e−kn x + L3e

−γ ′x , (59)

Ñ (x) �
3∑

n�1

′′
n(s, ξ ) e−kn x + L4e

−γ ′x , (60)

φ̃(x) �
3∑

n�1

′′′
n (s, ξ )e−kn x + L5e

−γ ′x , (61)

ψ̃(x) � 4(s, ξ ) e−k4x . (62)

where L3 � L2
(α7γ

′2−α∗
1 )

(γ ′2−α1)(γ ′2−α3)
, L4 � −ε3L2

(γ ′2−α1)
, L5 � − β∗L2

γ ′2−A1
and 4, n, ′

n , ′′
n , ′′′

n

(n � 1, 2, 3) are the main unknown parameters that depend on (s, ξ ).
The displacement components can be obtained as:

ũx (x) � D�̃ + i b ψ̃, (63)

ũx (x) � −
3∑

n�1

′
n(s, ξ ) kne

−kn x − γ ′L3e
−γ ′x + ib4(s, ξ ) e−k4x , (64)

ũz(x) � i b �̃ − D ψ̃, (65)

ũz(x) � ib

{
3∑

n�1

′
n(s, ξ ) e−kn x + L3e

−γ ′x
}

+ 4(s, ξ )k4e
−k4x . (66)
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The relations between the quantities ′
n , ′′

n , ′′′
n and n can be constructed from

Eqs. (59)–(61) and Eqs. (43)–(45) as:

′
n(s, ξ ) � (α7k2

n − α∗
1 )

(k2
n − α1)(k2

n − α3)
n(s, ξ ), n � 1, 2, 3. (67)

′′
n(s, ξ ) � −ε3

(k2
n − α1)

n(s, ξ ), n � 1, 2, 3, (68)

′′′
n (s, ξ ) � − β∗

k2
n − A1

n(s, ξ ), n � 1, 2, 3. (69)

In this case, the main physical quantities can be represented in terms of n as:

�̃(x) �
3∑

n�1

(α7k2
n − α∗

1 )

(k2
n − α1)(k2

n − α3)
n e

−kn x + L3e
−γ ′x , (70)

Ñ (x) �
3∑

n�1

−ε3

(k2
n − α1)

n e
−kn x + L4e

−γ ′x , (71)

φ̃(x) �
3∑

n�1

−β∗

k2
n − A1

n e
−kn x + L5e

−γ ′x , (72)

σ̃xx �
3∑

n�1

hn n e
−kn x + χ1e

−γ ′x − 2ibk44e
−k4x , (73)

σ̃zz �
3∑

n�1

h′
n n e

−kn x + χ2e
−γ ′x + 2ibk44e

−k4x , (74)

σ̃xz �
3∑

n�1

h′′
n n e

−kn x + χ3e
−γ ′x − (k2

4 + b2)4e
−k4x , (75)

ũx (x) � −
3∑

n�1

kn(α7k2
n − α∗

1 )

(k2
n − α1)(k2

n − α3)
n e

−kn x − γ ′L3e
−γ ′x + ib4e

−k4x , (76)

ũz(x) �
3∑

n�1

ib(α7k2
n − α∗

1 )

(k2
n − α1)(k2

n − α3)
n e

−kn x + ibL3e
−γ ′x + k44e

−k4x . (77)

where

hn � (α5k2
n − α6b2)(α7k2

n − α∗
1 )

(k2
n − α3)(k2

n − α1)
+

(
ε3

(k2
n − α1)

− α7

)

α5, χ3 � −2ibγ ′L3, h
′′
n � −2ibkn

h′
n � − (α5b2 − α6k2

n)(α7k2
n − α∗

1 )

(k2
n − α3)(k2

n − α1)
+

(
ε3

(k2
n − α1)

− α7

)

α5, χ1

� L3(α5γ
′2 − α6b

2) − (L4 + α7L2)α5,

χ2 � L3(α6γ
′2 − α5b

2) − (L4 + α7L2)α5.

5 Boundary conditions

To calculate the unknown parameters n(n � 1, 2, 3, 4) analytically, some boundary con-
ditions are applied at the free surface of the elastic semiconductor medium. During these
conditions, the effect of external magnetic field and laser pulses in the context of the photo-
hyperbolic two-temperature-thermoelasticity theory when the thermal conductivity is of vari-
able is considered.
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(I) The isothermal condition:
The thermal condition can be chosen at the boundary surface x � 0 as an isothermal
case:

∂
˜̂T (0, ξ, s)

∂x
� 0 or

3∑

n�1

knn(s, ξ ) � −γ ′L2. (78)

(II) The mechanical ramp type can be applied for the normal stress component at the surface
x � 0, when used the Fourier and Laplace transform, which yields:

σxx (x, z, t) �
⎧
⎨

⎩

0 t ≤ 0
t
t0

0 < t ≤ t0
1 t > t0

⇒ σ̃xx (0, ξ, s) � F̃(ξ )

(
1 − e−st0

)

t0s2 ,

3∑

n�1

hn n − 2ibk44 � −χ1 + F̃(ξ )

(
1 − e−st0

)

t0s2 .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (79)

(III) The other mechanical conditions can be chosen when the traction component of the
stress is free at x � 0, when using the Fourier and Laplace transform as:

σxz � 0 ⇒ σ̃xz � 0,⇒
3∑

n�1

h′′
n n − (k2

4 + b2)4 � −χ3

}

. (80)

(IV) The plasma condition at the surface x � 0 can be taken during the transport processes
in the context of the recombination processes. On the other hand, the photo-generated
(plasma) condition can be represented by carrier density as:

Ñ (a, s) � �

De
R̃(s) ⇒

3∑

n�1

−ε3kn
(k2

n − α1)
n � −

(
s

De
N + γ ′L4

)}

. (81)

where � and R(s) are a chosen parameter and the Heaviside unit step function, respec-
tively. By using the system of above boundary condition equations the values of
n(n � 1, 2, 3, 4) can be obtained with helping the MATLAB 2018a computer
programing.

6 Fourier–Laplace transforms inversion

The Honig and Hirdes method is used to obtain the inversion form of Fourier and Laplace
transformation.

In this case, the inverse of Fourier transform can be written as:

F−1(ζ̃ (x, ξ, s)) � 1√
2π

∞∫

−∞
ζ̃ (x, ξ, s) exp(iξ x) dt � ζ (x, z, s). (82)

On the other hand, the Riemann-sum approximation method is used to obtain the inverse
of Laplace transform in numerical form. In this case, the inverse of Laplace transform in time
domain for a function ζ (x, z, s) can be written as:

ζ (x, z, t ′) � L−1{ζ (x, z, s)} � 1

2π i

∫ n+i∞

n−i∞
exp(st ′)ζ (x, z, s)ds. (83)
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where s � n + iM(n, M ∈ R), in this case Eq. (83) can be rewritten as follows:

ζ (x, z, t ′) � exp(nt ′)
2π

∫ ∞

∞
exp(iβt)ζ (x, z, n + iβ)dβ. (84)

After that, the expansion in the closed interval
[
0, 2t ′

]
of the Fourier series can be used

for large integer N when nt ′ ≈ 4.7, therefore:

ζ (x, z, t ′) � ent
′

t ′

[
1

2
ζ (x, z, n) + Re

N∑

k�1

ζ

(

x, z, n +
ikπ

t ′

)

(−1)n
]

. (85)

where i � √−1 and Re refers to the real part.
To obtain the basic temperature T and the conductive temperature φ under the impact of

Laplace and Fourier transformation the map Eqs. (15) and (16) are used. In this case, the
following relation can be obtained:

T̂ � 1

K0

T∫

0

K0(1 + K1T )dT � T+
K1

2
T 2 ⇒ T � 1

K1

[√

1 + 2K1T̂ − 1

]

. (86)

7 Validation

7.1 The two-temperature theory

The two-temperature theory in classical case can be investigated in the framework of the
thermoelasticity theory during photothermal excitation processes when the second time dif-
ferentiation is ignored and Eq. (9) can be represented as [47]:

(87)

In this case that refers to the two-temperature parameter. In this case the hyperbolic
two-temperature theory is not taken into account.

7.2 The one temperature theory

The one-temperature theory is a special case from the two-temperature theory which it can
be obtained when it is ignored the two-temperature parameter a � 0 in Eq. (87). There-
fore, the conductive temperature must be equal the thermodynamic temperature and the heat
conduction Eq. (7) can be represented as [21]:

(88)

ρ Ce

(

n1 + n0τ0
∂

∂t

)
∂T (r, t)

∂t
� (KT,i (r, t)),i +

Eg

τ
N (r, t)

+ γ T0

(

n1 + n0τ0
∂

∂t

) (
∂

∂t
u,i (r, t) − ρQ

)

.

7.3 Laser pulses effect

The hyperbolic two-temperature theory in the context of the photo-thermoelasticity theory
under the impact of magnetic field is investigated only when the influence of the laser pulse
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is neglected. In this case the heat input function can be put as Q � 0. However, the heat
conduction Eq. (7) can be rewritten as [42]:

ρ Ce

(

n1 + n0τ0
∂

∂t

)
∂T (r, t)

∂t
� (Kφ,i (r, t)),i +

Eg

τ
N (r, t) + γ T0

(

n1 + n0τ0
∂

∂t

)
∂

∂t
u,i (r, t).

(89)

7.4 The variable thermal conductivity

In case of independent the thermal conductivity of the temperature when K1 � 0, in this case
the variable thermal conductivity is ignored and equal to the classical thermal conductivity
K � K0. However, the maps transformation are vanished also.

7.5 The hyperbolic two temperatures in the generalized thermoelasticity theory

When the plasma wave which considering by the carrier density N (
⇀
r , t) is vanished. In this

case the free electrons on the free surface of the semiconductor medium effects are neglected,
i.e.N � 0 and the main equation in this investigation is studied in the generalized hyperbolic
two-temperature thermoelasticity theory under the influence of magnetic field with laser
pulses [38].

7.6 The generalized case of the photo-thermoelasticity theories

The photo-thermoelasticity theory in generalized case is studied when the thermal relaxation
times (thermal memories) are variable according to the photo-thermoelasticity models. In this
case, the three models of photo-thermoelasticity can be represented namely the following:

(i) The CD theory is obtained when the following parameters take the values n1 � 1, n0 �
0, ν0 � τ0 � 0, [3].

(ii) The LS theory is obtained when the following parameters take the values n1 � n0 �
1, ν0 � 0, τ0 > 0, [4].

(iii) The GN theory is obtained when the following parameters take the values n1 � 1, n0 �
0, ν0 ≥ τ0 > 0, [5].

7.7 The impact of magnetic field

The generalized hyperbolic two-temperature theory during the photo-thermoelasticity theory
under the effect of the laser pulse is studied only when the impact of the magnetic field is

neglected. In this case, the Lorentz’s force
⇀

F � μ0(
⇀

J × ⇀

H ) � 0 is neglected.

8 Numerical results and discussions

After evaluated the numerical inversion of Laplace and Fourier transform, the complete solu-
tions of the main quantities are obtained. In this case, the computer programing numerically
can be used to carry out the numerical simulations and the description of the behavior of the
main fields is made. To make this simulation, the physical constants of silicon (Si) material
are used as an example of a plate of semiconductor medium. On the other hand, the laser
beam physical properties and generalized hyperbolic two-temperature theory are used in
the numerical simulations under the effect of the magnetic field when the variable thermal
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conductivity is taken into account. The physical and optical constants for the Si medium are
considered in SI unit which they displayed in Table 1 as [43, 44].

The first figure (Fig. 1) has been divided into a number of subfigures which it displays the
impact of the thermal conductivity when it is variable. In this case, the thermal conductivity
depends on a linear function of temperature and clarification the effect of it on the main
physical fields. The wave distributions can be taken in the direction of the horizontal dis-
tance x in the generalized hyperbolic two temperatures. The physical fields are investigated
under the impact of magnetic field and a non-Gaussian laser pulses according to the photo-
thermoelasticity (GL) model. However, three different values of the thermal conductivity
(variable) parameters are taken into account. On the other hand, when the thermal conduc-
tivity independent to the temperature (with solid black lines) can be obtained at K1 � 0.0
and K0 � K . But in the variable cases of the thermal conductivity, two cases are studied,
the first case is taken at K1 � −0.03 (dotted red lines) and the second case is taken at
K1 � −0.06 (dashed blue lines). The amplitude values of T satisfy the thermal condition for
three cases of K1 which they start at x � 0 (isothermal). The thermo-dynamical T tempera-
ture distributions increase with exponential behavior for all different cases in the first range
which they take a smooth distributions until to arrive to the maximum value. It is due to the
thermal impact of external magnetic field and the laser pulses according to the photothermal
excitation. In the second range, the amplitudes of the temperature T decrease with a smooth
shape also when the curves coincide with the increasing in the horizontal distance. The con-
ductive temperature distribution is shown in the second subfigure which it takes the same
behavior of temperature distribution, it is due to the proportional between the temperature and
conductive temperature. The third subfigure shows the horizontal displacement distribution
ux which it represents the elastic wave. When x � 0 the component ux distributions start
at three different values because the roughly surface, in the first range all curves according
to K1 increase near the surface reach a peak maximum values with a great affinity at the
surface. However, the second range of the curves of ux distributions decreases according to
the values of K1 until they arrive to the minimum values with the increasing in the horizontal
distance. On the other hand, the distributions of the mechanical waves σxx are illustrated in
the fourth subfigure. The σxx distributions satisfy the ramp mechanical type condition, all
curves under three values of K1 start from a maximum positive values in the beginning is
due to ramp mechanical type and magnetic field with thermal laser pulses impact. Far away
from the surface, σxx distributions decrease with smooth shape until arrive to the minimum
values and all curves distributions coincide. The σxz distributions (tangent stress) are shown
in the fifth subfigure, the distributions begin at zero minimum values for all different cases of
K1 are due to zero ramp mechanical load. The plasma waves distributions are shown in the
last subfigure which describe the magnitude of distributions of carrier density N according
to three different cases of thermal conductivity K1. The plasma wave distributions satisfy the
condition in the context of the plasma recombination processes. At the beginning the plasma
N distributions increase smoothly to reach the maximum values which is due to the effect of
magnetic field and photo-excited thermal laser. On the other hand, in the second range, the
plasma wave distributions decrease to arrive to the minimum values, again all distributions
increase and decrease periodically until the waves are damped.

Figure 2 illustrates in dimensionless the wave propagation of main physical fields distribu-
tions (T , ux , φ, ux , σxx , σxz and N ) at the plane z � −1 against the horizontal distance x. The
three models in photo-thermoelasticity theory are shown according to the variation of thermal
memories (thermal relaxation times) when a variable thermal conductivity K1 � −0.03 under
the effect of external magnetic field with laser pulses when the hyperbolic two-temperature
parameter is present. According to a thermal memories, CD model which represented by
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Fig. 1 The main physical fields against the horizontal distance in various cases of thermal conductivity under
GL model and magnetic field with laser pulses in hyperbolic two-temperature field

solid lines can be obtained when the thermal memories are ignored, the LS model which rep-
resented by dotted lines is studied when introduced a one relaxation time at τ0 � 0.00002 s.
On the other hand, the general case is taken in GL model which represented by dashed lines
in this case the two relaxation times are presented when τ0 � 0.00002 s, ν0 � 0.00003 s.
In this category, the change in the amplitude of all distributions of the main physical fields
increases according to the increasing in the thermal relaxation times.

Figure 3 shows the wave propagation of the main physical quantities against the distance
in the horizontal direction under the effect of external magnetic field. All calculations are
made under the effect of laser pulses in the generalized GL model when the hyperbolic two-
temperature theory is taken into account. Figure 3 studies two different cases, the first case
when the magnetic field is absent which refers by WOMG (without magnetic field) in the
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Fig. 2 The main physical fields against the horizontal distance under generalized three models in photo-
thermoelasticity theory under the effect of magnetic field with laser pulses when K1 � −0.06 in hyperbolic
two-temperature field

same range. On the other hand, the second case is studied when the magnetic field is present
which is referred by WMF (with magnetic field). The wave propagation curves for all main
distributions coincide at infinity when the horizontal distance x is in increasing case. That is
due to the hyperbolic two-temperature effect with a finite speed of distribution waves. The
magnetic field has a great influence in all physical fields.

Figure 4 shows the impact of three different cases according to the two-temperature
parameter for the main physical fields against the horizontal distance. All numerical results
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Fig. 3 The main physical fields against the horizontal distance with generalized GL model under the impact
of laser pulses in hyperbolic two-temperature field

in this category are made under the effect of magnetic field and the laser pulses in generalized
GL model when K1 � −0.06. The solid lines curves in this category express the first case
when T and φ are equal when the heat supply is absent which can be named one-temperature
(OT) model. The dotted lines curves refer to the classical two-temperature model (CTT)
which is taken when the heat supply is absent also. The dashed lines curves show the general
model which named the hyperbolic two-temperature (HTT) model; this model illustrates
the finite speed of wave propagation. A clear significant effects in this figure are observed
according to the three different cases of the hyperbolic two-temperature theory.
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Fig. 4 The main physical fields against the horizontal distance in generalized GL model with laser pulses and
magnetic field in one temperature, two temperatures and hyperbolic two temperatures when K1 � −0.06

9 Conclusions

The problem concludes the effect of the different relaxation times according to the generalized
photo-thermoelasticity models. This investigation is studied under the effect of magnetic
field when the thermal conductivity is in change case (depend on the temperature). The
problem is investigated under the impact of a novel model that called the hyperbolic two-
temperature model. The impact of laser pulses is taken into account according to a non-
Gaussian laser model. The thermal memories with a negative parameter constant of thermal
conductivity, effect of magnetic field and laser pulses in hyperbolic two temperatures have
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more significant influence with the improving processes in the waves propagation of the main
fields. These observations are very important when studying the semiconductor media during
the photothermal excitation in the context of the generalized thermoelasticity theory. The
obtained results with numerical calculations are graphed which they are useful for scientists
and engineering to carry out many applications in modern physic, mechanical engineering
and plasma design.
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