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Abstract This paper investigates damped vibrational behavior of a lightweight sandwich
plate subjected to a periodic load within a limited time. The lightweight sandwich structure
includes a thick polymeric porous core with either functionally graded or uniformly distribu-
tions of voids which is sandwiched by two thin layers of laminate composites. To investigate
the effect of void distribution properly, the same void volume fraction has been considered
while different types of core have been analyzed. Using the first-order shear deformation the-
ory of plates, the governing equations for the free and forced vibrations have been developed.
By involving structural damping, these equations which are able to treat thin to moderately
thick plates have been solved by developing a computationally cost-effective finite element
approach. An extensive sensitivity analysis has been performed to examine the effects of
fiber orientation in composite layers, void’s volume and dispersion in core, and geometrical
dimensions on the vibrational behavior of such porous composite sandwich plates (PCSPs).
The results show that the use of foam in PCSPs considerably reduces the amplitude of vibra-
tions and improves the fundamental frequency. Furthermore, it was found that the use of
[45, −45]2 composite layers offers PCSPs with the highest natural frequency and the lowest
amplitude of vibrations.

1 Introduction

Lightweight structures have been encountered with steadily growing demands over the last
decades [1–3]. These growing demands are mainly observed in the aerospace industry which
is one of the most promising industries [4, 5]. To address such demands, different types
of materials include but not limited to fiber-reinforced composites, laminates, foams, and
nanocomposite [6–10]. The performance of an engineering structure can be intensified by a
suitable use of such materials [11]. Sandwich structures as promising engineering structures
usually involve two thin but stiff outer layers to stand against normal loads, whereas a thick
and usually soft material/structure is utilized as the core layer to ensure the stability of the
structure against shear loads [12–14]. Due to the layer arrangements of sandwich panels,
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they enjoy a high ratio of structural stiffness to weight, and also their energy absorption is
relatively high [15–17]. Given these facts about the sandwich structures, it can be anticipated
that the use of composite and polymeric foam materials could be great selections to come
up with a lightweight structure that is able to address so many requirements of an aerospace
structure. The key design parameters for such sandwich structures could be fiber orientations
of composite layers and geometrical dimensions. Moreover, in advanced foams, the distri-
bution of voids can be controlled to follow FG patterns and adjust the mechanical or thermal
performance of such structures [18–20]. However, the design of such functionally graded
porous composite sandwich structures necessitates precise but simple mechanical analyses
[21–24].

Because of the vast applications of composites, there have been so many works on the
thermomechanical behaviors of composites structures. Mantari et al. [25] employed trigono-
metric theory and presented a Navier’ solution for composite plates under static loads. In a
dynamic study, Malekzadeh et al. [26] presented the response of a composite plate under mov-
ing loads by implementing a layerwise theory. Setoodeh [27] implemented three-dimensional
theory of plates in a layerwise FE solution and studied low velocity impact response of com-
posite plates. Thai et al. [28] investigated the stresses and static deflections of circular and
rectangular composite plates using an isogeometric FE solution based on layerwise defor-
mation theory which employed FSDT for each layer to avoid the use of shear correction
factor. For composite plates with different shapes of holes, Yu et al. [29] presented buckling
resistances and frequencies using an isogeometric FE solution and FSDT which was able
to rectify the shear locking issue. Tornabene et al. [30] presented a differential quadrature
(DQ) technique which captured the zig-zag effect between layers and presented stresses of
curved shells consisted of different composite layers rested on elastic foundations. The static
response [31] and free vibration behavior [32] of multilayered composite plates were also
studied by Xiaohui et al. using a refined plate theory. Bisheh and Wu [33] studied the wave
propagation behavior of composite shells which were activated by an outer piezoelectric
layer using Cooper-Naghdi shell theory.

Polymeric foams or metal porous structures have been also widely utilized as the core layer
of sandwich structures. However, before the use of these materials, their material properties
need to be characterized. In this regard, Wang et al. [34] managed to simulate 3D voids
in a media by developing an extended FEM modeling. Nguyen et al. [35] considered FG
plates made of a mixture of metal and ceramic materials which had FG patterns of porosity
distribution and characterized their mechanical behaviors using a nonlinear polygonal FE
solution. Yang et al. [36] considered graphene enhanced plates with FG patterns of porosity
distribution and presented vibration and buckling responses of such plates using an FSDT
method. Dong et al. [37] proposed the use of the same material for rotary cylindrical shells
and characterized vibrations of such porous nanocomposite shells. Barati and Zenkour [38]
conducted a nonlinear free vibration analysis FG plates made of two piezoceramics with
embedded porosities in FG patterns using a refined plate theory. Askari et al. [39] considered
an FG porous metal circular plate located between two piezoceramic layers and presented
the fundamental frequencies of such active plates Mindlin plate theory. Mohammadi et al.
[40] also considered two piezoelectric layers attached to the faces of an FG porous metal
cylinder and presented static electro-mechanical stresses of these active cylinders. Moradi
et al. [41–43] considered FG patterns of porosity distributions in CNT enhanced plates
which were activated by piezoceramic layers and presented vibrations, static and buckling
responses using a mesh-free method. Nguyen et al. [44] also used piezoceramic to activate
a graphene enhanced metal plate with embedded porosities in FG patterns, and conducted
active control study for such plates using FE model. Zhao et al. [45] developed a semi-
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analytical technique based on Fourier series to characterize the vibrations of axisymmetric
shells with embedded porosities in FG patterns. Zargar et al. [46] conducted an analytical
study to investigate heat transfer behavior of porous metal fins using an axisymmetric model.
By employing 3D elasticity theory in a framework of an analytical solution, Babaei et al. [47]
studied the frequencies and transient responses of disks and panels made of an FG porous
metallic material. For FG porous silicon beams in nanoscale, Xie et al. [1] studied resonance
phenomenon through a nonlinear analysis using surface elasticity theory.

Due to the structural benefits of foams and composite materials, researchers have been
greatly convinced to apply them separately or jointly in sandwich structures. Sobhani and
Yas [48] presented the fundamental frequencies of a sandwich shell which involved an FG
metal/ceramic core and two fiber reinforced faces. They assumed FG patterns for the variation
of fiber orientation in the plies of composite layers. Moradi et al. [49, 50] considered an
FG polymeric porous plate sandwiched between two graphene enhanced layers, whereas
whole these three layers activated by two more layers of a piezoceramic. They presented
the fundamental frequencies and damped forced vibrations of such sandwich plates using
a meshless technique. Setoodeh et al. [51] also considered curved sandwich shells with
the same layer arrangement while they utilized CNT enhanced nanocomposite instead of
graphene one, and presented the fundamental frequencies of such sandwich shells using DQ
technique. Safaei et al. [52] presented dynamic behavior of FG porous plates sandwiched
between CNT enhanced nanocomposite layers using a third-order theory. Amiri et al. [53]
considered a flexible porous cylindrical micropanel sandwiched between two CNT enhanced
nanocomposite faces, and presented buckling resistance as well as stresses of the resulting
micro-sandwich panel. Li et al. [54] enhanced a rectangular FG porous metal plate with
graphene nanosheets and presented the dynamic stability resistance of the resulting sandwich
structure through a nonlinear analysis. In a dynamic analysis framework, the propagation of
stress waves in FG porous cylinders sandwiched by graphene enhanced layers was analyzed
using a mesh-free method in [55]. Safaei [56] studied the impact of adding a thick FG
polymeric foam in the middle of composite plies on the fundamental frequencies of the
resulting sandwich plate while it was rested on an elastic foundation.

This paper investigates the natural frequencies and damped forced vibrations of an
advanced and lightweight sandwich plate under a periodic load within a limited time. This
sandwich plate includes a thick FG/UD polymeric core which is sandwiched by two thin
layers of laminate composites. The governing equations for the study of dynamic behavior of
the proposed PCSPs are developed using FSDT, and then these equations were treated using
an FE solution. Using the mentioned solution approach, an extensive sensitivity analysis has
been performed to examine the effects of fiber orientation in composite layers, void’s volume
and dispersion in core, and geometrical dimensions on the vibrational behavior of PCSPs.

2 Modeling of PCSP

As illustrated in Fig. 1, a sandwich plate with outer layers made of fiber-reinforced composite
and a core made of a polymeric foam with FG/UD distributions of porosities have been
considered. In addition, this PCSP is subjected to a sinusoidal periodic load i.e., f (t) � f 0 sin
(2π ωt t) with the load amplitude f 0 and load frequency ωt in a limited time (t < t0) as shown
in Fig. 2. The composite layers are assumed to be two layers composed of 2p plies which are
indicated as [α1, α2,]p. The considered PCSPs have side length a, thickness h, core thickness
hc and composite thickness hf .
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Fig. 1 The schematic of PLCSP with an FG foam sandwiched by two composite layers under a uniform load

Fig. 2 Time history of the applied uniform load

2.1 Governing equations

By employing the first-order shear deformation theory which is capable of treating such sand-
wich plates when they are thin to moderately thick, the displacement field can be described
only with five unknowns as follows ([57, 58]):

u � u0(x , y) + zϕx (x , y)

v � v0(x , y) + zϕy(x , y)

w � w0(x , y)

(1)

where u, v and w show components of the displacement field in Cartesian coordinates.
Moreover, ϕ and the subscribe 0 show normal rotations and deflections of the midline of
PCSP, respectively.

According to Eq. (1), the linear components of strain vector for the proposed PCSP are
presented below [57]:

εxx � ∂u

∂x
, εyy � ∂v

∂y
, γxy � ∂u

∂y
+

∂v

∂x
, γxz � ∂u

∂z
+

∂w

∂x
, γyz � ∂v

∂z
+

∂w

∂y
(2)
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To make the equations easier, the in-plane εb and out-of-plane γ components of the strain
vector can be distinguished as follow:

εb �
⎧
⎨

⎩

∂u0
/
∂x

∂v0
/
∂y

∂u0
/
∂y + ∂v0

/
∂x

⎫
⎬

⎭
+ z

⎧
⎨

⎩

∂ϕx
/
∂x

∂ϕy
/
∂y

∂ϕx
/
∂y + ∂ϕy

/
∂x

⎫
⎬

⎭
γ �

{
ϕx + ∂w0

/
∂x

ϕy + ∂w0
/
∂y

}

(3)

or in the vector form, they are rewritten as:

εb � {
εxx εyy γxy

}T � ε0 + zε1 , γ � {
γxz γyz

}T
(4)

In the same manner, the in-plane σ and out-of-plane τ stress vectors of PCSPs are also
distinguished in the constitutive equation as follows [57]:

σ � Dbεb , τ � 5

6
Dsγ , D �

[
Db 0
0 Ds

]

(5)

where 5/6 is for the shear correction factor as it is needed in FSDT, and D is the elastic
constant matrix. D and stress vectors are defined below:

⎧
⎨

⎩

σx
σy

σxy

⎫
⎬

⎭
�
⎡

⎣
D11 D12 D16

D12 D22 D26

D26 D26 D66

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭

{
τxz

τyz

}

� 5

6

[
D55 D45
D45 D44

]{
γxz

γyz

}

(6)

Given the aforementioned equations for the displacement field, strains and stresses, the
energy function U of the proposed PCSP which includes the energy of external work, kinetic
energy and strain energy are defined as follows:

	 � 1

2

∫




[
−ρ(z)(u̇2 + v̇2 + ẇ2) + εTb σ + γT τ

]
d
 +

∫

A

wf d A (7)

where ρ is density, A is the area of PCSP that load is applied on it, and V is the volume of
PCSP and is f the load vector.

2.2 Materials properties of foam layer

In order to define the components of D described in Eqs. (5) and (6), the material properties of
each layer need to be defined. As mentioned before, one uniform pattern and two FG patterns
including a symmetric (FG-S) and an asymmetric (FG-A) one for the distributions of porosity
inside the foam layer have been considered. For further illustration, Fig. 3 generally compares
such patterns along the thickness of the foam layer. According to Ref. [45], the density ρ p and
elasticity modulus E p of such foams with these three distribution patterns can be estimated
as:

UD : E p �
(

2

π

√
1 − e0 − 2

π
+ 1

)2

Emρ p �
(

2

π

√
1 − e0 − 2

π
+ 1

)

ρm (8)

FG − S : E p(z) �
(

1 − e0 cos

(
π z

hc

))

Emρ p(z) �
(

1 − em cos

(
π z

hc

))

ρm (9)

FG − A : E p(z) �
(

1 − e0 cos

(
π z

4hc
+

π

4

))

Emρ p(z) �
(

1 − em cos

(
π z

4hc
+

π

4

))

ρm

(10)

in which Poisson’s ratio of such foams υ p is estimated as:

υ p(z) � 0.221β + υm(0.342β2 − 1.21β + 1
)

(11)
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Fig. 3 Comparison between the three porosity patterns with e0 � 0.6

where e0 and superscript m indicate porosity parameter a non-porous material (i.e., e0 � 0).
Moreover, em � 1 − √

1 − e0, β � 1 − ρ p
/
ρm . It should be noted that the overall volume

fraction of porosity for these three patterns is equal when the same e0 is considered.
Given the fact that the foam layer is an isotropic material, the components of elasticity

matrix Di j are determined as follows:

D11 � D22 � E p

1 − (υ p)2 , D44 � D55 � D66 � E p

2(1 + υ p)
,

D12 � υ pD11 , D16 � D26 � D45 � 0

(12)

2.3 Elasticity matrix of composite layers

The fiber-reinforced composite materials are usually a transverse isotropic material. There-
fore, the elasticity matrix for such materials when the components of z direction are reduced
can be defined as:

Di j �
{
Qi j − (

Qi3 · Qi j
)
/Q33 i , j � 1, 2, 6

Qi j i , j � 4, 5
(13)

where

Q11 � E1
1 − ν23 ν32

�
, Q22 � E2

1 − ν13 ν31

�
, Q12 � E1

ν21 + ν31 ν32

�
,

Q13 � E3
ν13 + ν12 ν23

�
, Q23 � E3

ν23 + ν13 ν21

�
, Q33 � E3

1 − ν12 ν21

�

Q44 � G23 , Q55 � G13 , Q66 � G12

� � 1 − ν32ν23 − ν21ν12 − ν13ν31 − 2 ν32ν21ν13

E1E2E3

(14)

In order to take into account the effect of fiber orientation, another elasticity matrix Qi j
should be determined as follows [57]:

Q11 � m4Q11 + 2m2n2(Q12 + 2Q66) + n4Q22,
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Q22 � n4Q11 + 2m2n2(Q12 + 2Q66) + m4Q22

Q44 � m2Q44 + n2Q55, Q55 � m2Q55 + n2Q44,

Q66 � −m2n2(Q11 + Q22 − 2Q12) +
(
m4 − n4)Q66

Q12 � m2n2(Q11 + 4Q22Q66) +
(
m4 + n4)Q12,

Q13 � m2Q13 + n2Q23, Q23 � n2Q13 + m2Q23

Q36 � (Q32 − Q31)mn, Q45 � (Q45 − Q55)mn,

Q16 � −mn
[
n2Q11 − m2Q22 − (

m2 − n2)(Q12 + 2Q66)
]

Q26 � −mn
[
m2Q11 − n2Q22 − (

m2 − n2)(Q12 + 2Q66)
]

(15)

where m � cos α and n � sin α.

3 FEM Formulations

By employing a proper shape function N, the real values of displacement vector ui can be
estimated in an element as follows:

u �
n∑

i�1

Niui (16)

where u is the estimated displacement field by FE method, Ni is value of shape functions at
each node, n is node number in each element. Due to employing FSDT, each node has five
degrees of freedom and accordingly the components of displacement field are defined as:

ui � [
u0i , v0i , w0i , ϕxi , ϕyi

]T (17)

By substituting Eq. (16) into Eq. (4), strain vectors in FE forms are developed as follows:

εb � {Pm + z Pb } u , γ � Ps u (18)

where:

Ps �
[

0 0 Ni ,x Ni 0
0 0 Ni ,y 0 Ni

]

, Pm �
⎡

⎣
Ni ,x 0 0 0 0

0 Ni ,y 0 0 0
Ni ,y Ni ,x 0 0 0

⎤

⎦

Pb �
⎡

⎣
0 0 0 Ni ,x 0
0 0 0 0 Ni ,y

0 0 0 Ni ,y Ni ,x

⎤

⎦

(19)

The FE form of energy function can be obtained by substituting strain and stress vectors
into total energy function (Eq. 7) which results in:

U � 1

2

∫




δ(u)T
{

PT
mAPm + PT

mBPb + PT
b BPm + PT

b DBb + PT
s AsPs

}
u d A

+
1

2

∫

A

δ(u)T
∫

z

[
ITi MI j

]
Rud A − δ(u)T

∫




Pw fw d A (20)
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where

(A, B, D) �
h/2∫

−h/2

Db(1, z, z2)dz , As � 5

6

h/2∫

−h/2

Dsdz (21)

Pw � [
0 0 Ni 0 0

]
(22)

Ii �

⎡

⎢
⎢
⎢
⎢
⎣

Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

⎤

⎥
⎥
⎥
⎥
⎦

(23)

M �

⎡

⎢
⎢
⎢
⎢
⎣

I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

⎤

⎥
⎥
⎥
⎥
⎦

(24)

In addition, I0, I1 and I2 are the coefficient of inertia which are defined as:

(I0, I1, I2) �
h/2∫

−h/2

ρ(z)(1, z, z2)dz (25)

Equation (20) should be satisfied for every value of δ(u); therefore this equation can be
rearranged as:

MRu + Ku � f (26)

where f , M and K are the global force vector, stiffness matrix and mass matrix as described
below:

f �
∫




Pw fw d A (27)

M �
∫

A

ITi MI j d A (28)

K �
∫




{
BT
mABm + BT

mBBb + BT
b BBm + BT

b DBb + BT
s AsBs

}
d
 (29)

By involving structural damping with mass Rm and stiffness Rk coefficients, Eq. (26) is
rearranged as follows:

MRu + CPu + Ku � f (30)

where C � Rm × M + Rk × K.

4 Results and discussions

After the elaboration of the problem and its solution procedure in previous sections, the
free and forced vibration behaviors of the proposed lightweight sandwich plates as well as
the reliability of the developed FE approach are presented in this section. Regarding the
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Table 1 comparison study for the
normalized natural frequency of
square isotropic plates

h/a � 0.05 h/a � 0.1 h/a � 0.2

Method 
 Method 
 Method 


[60] 0.0291 [60] 0.1134 [60] 0.4154

[61] 0.0291 [61] 0.1135 [61] 0.4154

Present
study

0.0292 Present
study

0.1136 Present
study

0.4159

utilized materials in PCSP, a neat epoxy foam is considered for the core, whereas composite
layers made of graphite–epoxy (Gr/Ep) is utilized for the face layers. The employed material
properties for the nonporous epoxy and Gr/Ep are as follows [59]:

Epoxy : E � 4.5 GPa, υ � 0.4, ρ � 1150 Kg/m3

Gr/Ep : E11 � 132.38 GPa, E12 � E13 � 10.756 GPa, υ23 � 0.49, υ12 � υ13 � 0.24,

G23 � 3.606e9 GPa, G12 � G13 � 5.6537 GPa, ρ � 1578 Kg/m3

4.1 Validation of models

To establish the precision of the obtained FE results, we first modeled square simply supported
plates made of an isotropic material with E � 380 GPa, ρ � 3800 kg/m3 and υ � 0.3 and
compared the obtained normalized natural frequency of such plates at different thickness
values with those available in Refs. [60, 61]. This comparison study has been summarized

in Table 1, whereas the normalized natural frequency is determined by 
 � ωh0

√

ρm
/
Em

where h0 � 0.1 m. It is evident from the agreement between the results that the precision of
the developed FE solution is successfully verified especially for thinner plates i.e., h/a < 0.2.

As a further establishment of the precision of the developed FE solution, we have examined
the convergence of the results by studying time history of vibrations at the midpoint of a PCSP.
Therefore, a simply supported (SSSS) square PCSP with a � 1 m, hc/a � 0.01 and hf /hc �
0.1, whereas the PCSP has an FG-S core with e0 � 0.7, and two composite faces with four
plies as [45,-45]2. Figure 4 shows the undamped vibrations of this PCSP under a periodic
load with f 0 � 500 N/m2, t0 � 100 ms and ωt � 50 Hz for different node arrangements. This
figure illustrates that the dynamic response of this plate is perfectly converged such that there
is a slight difference between the results of models employed at higher nodes. Therefore, for
the following modelings, PCSPs with 15×15 nodes have been considered.

4.2 Free vibration of PCSPs

This subsection concerns the study of the fundamental natural frequency of PCSPs. In the
first analysis, the effect of fiber orientations is investigated. In this regard, SSSS square
PCSPs with a � 1 m, hc/a � 0.01, hf /hc � 0.1, e0 � 0.7, FG-S porosity patterns and with
composite faces with different fiber orientations and ply number have been considered. Table
2 summarizes the results of this study and shows that although the number of ply slightly
improves the fundamental frequency, fiber orientation has a significant impact on it such that
the fundamental frequency of PCSP with [0,90]2 is only 67.02 Hz while this number for the
same PCSP with [45,-45]2 is 86.61 Hz. This shows fiber orientation can remarkably change
the structural stiffness of PCSPs.
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Fig. 4 midpoint undamped vibrations of a PCSP with different node arrangements (convergence study)

Table 2 Fundamental
frequencies (Hz) of PCSPs with
different fiber orientations and
ply numbers

p 1 2 3 4

[0, 90]p 67.019 67.020 67.021 67.021

[15, − 15]p 71.954 72.031 72.045 72.050

[30, − 30]p 81.159 81.337 81.370 81.382

[45, − 45]p 85.390 85.607 85.647 85.661

Considering the same PCSPs but with [45, − 45]2 and different porosity parameters and
distribution patterns, Figs. 5a and b study the effect of different porosity states for PCSPs
with hc/a � 0.01 and 0.02, respectively. The most important observation is that the increase
in embedding porosity enhances the fundamental frequency of PCSPs due to the significant
reduction of the weight of PCSPs. Moreover, the results show that PCSPs with FG-S foams
in core offer the higher fundamental frequencies while those with UD foam have the lowest
natural frequencies. Furthermore, as anticipated, the comparison between Figs. 5a and b
discloses that the natural frequencies of PCSPs with thicker cores have greatly higher natural
frequencies.

4.3 Forced vibrations of PCSPs

In this subsection, the forced vibration response of PCSPs is investigated. In the following
modeling, SSSS square PCSP with geometrical dimensions as a� 1 m, hc/a� 0.01 and hf /hc
� 0.1, porosity states as FG-S core with e0 � 0.7, composite faces with fiber orientation as
[45,-45]2, damping status as Rm � 10 and Rk � 5e-5, and loading conditions as f 0 �
500 N/m2, t0 � 100 ms and ωt � 50 Hz have been considered unless otherwise clearly
mentioned.

To begin with, the effect of fiber orientation is investigated in Fig. 6 where the midpoint
vibrations of PCSPs with different fiber orientations for two values of composite layers’
thicknesses are shown. Figure 6 shows that PCSPs with [45,-45]2 have the lowest vibration
amplitudes while their frequencies of vibrations in the free vibration zone are the highest.
On the other side, PCSPs with [0, 90]2 can be observed whose vibrations have the highest
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(a)
 

(b)
 

Fig. 5 Fundamental frequency of PCSPs with a hc/a � 0.01 b hc/a � 0.02 versus porosity parameter for
different porosity distribution patterns

(a) (b)

Fig. 6 Midpoint’s vibrations of PCSPs with a hf /hc � 0.1 b hf /hc � 0.2 and different fiber orientations

amplitudes and the lowest frequencies of vibrations in the free vibration zone. These obser-
vations are absolutely supported by the results reported in Table 2. Moreover, the comparison
between the vibrations of PCSPs with hf /hc � 0.1 and hf /hc � 0.2 reveals that the thickness
of composite faces has a remarkable impact on both amplitudes and frequencies of vibrations.

Figures 7a and b also explore the effect of porosity distribution patterns and porosity
parameters on the vibrations of the proposed PCSPs, respectively. Figure 7a shows that the
pattern of porosity distribution does not have a considerable impact on the vibrations of
PCSPs although PCSPs with UD core have vibrations with the highest amplitudes and the
lowest frequency. On the other side, Fig. 7b illustrates that the amount of porosity embedded
in the core layer has a great impact on the vibrations of PCSPs such that the PCSP with
nonporous core has the lowest frequency of vibrations as this observation is supported with
the results of Fig. 5. Moreover, it can be seen that PCSPs with porous cores have the lowest
amplitudes of vibrations. This could be due the beats phenomena observed in forced vibration
zone as the vibrations of PCSPs with porous core are entered into the free vibration zone
with much lower amplitudes of vibrations.

Figure 8 also investigates the effect of structural damping coefficients on the vibrations of
the PCSP. As expected, the application of each coefficient smoothly reduces the vibrations
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(a) (b)

Fig. 7 Midpoint’s vibrations of PCSPs with different a porosity distribution patterns b porosity parameter

(a) (b)

Fig. 8 Midpoint’s vibrations of PCSPs with different a mass coefficient b stiffness coefficient of structural
damping

amplitudes. It also observed that the frequency of vibrations is slightly reduced by increasing
these coefficients. This figure also gives a good understanding about the range of structural
damping coefficients.

Finally, the effects of core and face thicknesses on the vibrations are investigated in Figs. 9a
and b, respectively. It can be seen the use of thicker layers either in core or faces leads to
significant reductions in vibration amplitudes as well as a considerable increase in vibration
frequencies as the structural stiffness of PCSPs improves.

5 Conclusions

Lightweight sandwich plates consist of two thin composite layer faces, and a thick polymeric
foam core was considered. UD and FG patterns were considered for the distribution of porosi-
ties inside the thick foam layer. The natural frequency and damped forced vibration behavior
of such advanced PCSPs under a periodic load within a limited time were investigated by
developing an FE solution based on FSDT. By performing an extensive sensitivity analysis
on the considered PCSP, it was found that simply supported PCSPs with the fiber orienta-
tion of [45,− 45]2 offer the highest natural frequency and the lowest amplitude of vibrations.
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(a) (b)

Fig. 9 Midpoint’s vibrations of PCSPs with different a core thicknesses b composite layer thicknesses

Moreover, the results showed that the amount of porosity has a significant impact on both fun-
damental frequency and transient response of PCSPs such that embedding porosity reduces
the amplitude of vibrations and improves the fundamental frequency. Furthermore, it was
shown that the use of thicker layers leads to PCSPs with lower vibrations amplitudes and
higher frequency of vibrations.
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