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Abstract In the present study, a higher-order shear deformation plate theory with hyperbolic
shape function is used to analyze vibration suppression of a novel design of a cross-ply
composite plate that contains a homogenous core and viscoelastic faces and is embedded in
three-parameter Kerr’s foundation. Two magnetostrictive actuating layers and simple velocity
feedback control are employed for vibration control of the sandwich plate. Kelvin–Voigt
viscoelastic relation is utilized to model faces of the viscoelastic material. The system of
the governing equations is formulated utilizing Hamilton’s principle and using Navier’s
approach to solve the system analytically. Comprehensive parametric studies are carried out
to assess influences of the magnitude of the feedback control gain, magnetostrictive layer
location, thickness ratio, aspect ratio, viscoelastic layer thickness-to-core thickness ratio,
magnetostrictive layer thickness-to-core thickness ratio, half wave numbers, orientations of
the viscoelastic layer’s fiber, and foundation on the vibration suppression characteristics of
plates. The present results show that the combination of the passive and active strategies for
vibration damping of the structures can develop control systems of the structural applications
excellently. Further, the use of the Kerr-type foundation model can improve the vibration
suppression characteristics.

1 Introduction

The motion of electrons of ferromagnetic materials generates a magnetostrictive effect where
this property represents an inherent property of these materials. In the structure of the atom,
the electron revolution about the nucleus generates an orbital magnetic moment, whereas the
spinning of the electron about its axis generates a spin magnetic moment. The atomic magnetic
moment occurs as a result of the superposition of spin and orbital magnetic moment. Due
to the spontaneous magnetization, orientations of all the atomic magnetic moments are the
same in the magnetic domain which can be defined as a small region that contains 109–1015
atoms.
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On the macroscopic scale, ferromagnetic material exhibits magnetism whenever it is
exposed to an external magnetic field. Scientists utilize this attractive property for designing
new structures or for controlling the disruptive behavior of the systems and noise control
in the heavy application structures in several engineering applications. The magnetostric-
tive materials are utilized for constructing the intelligent composite structural applications
in various fields, such as infrastructure, aerospace, aircraft, automotive, armor and energy,
marine, and biomedical industries, that can perform both actuation and sensing functions.
Goodfriend et al. [1] examined Terfenol-D magnetostrictive material properties for control-
ling the active vibration of the system. Anjanappa and Bi [2, 3] studied a model for designing
the Terfenol-D actuator and discussed the magnetostrictive mini-actuators feasibility for con-
trolling active vibration of the structural systems. Several researchers have focused on the
active vibration control of different structures employing layers of magnetostrictive material
such as [4–17]. The vibration of the structures can be isolated by employing the controlled
magnetostrictive extensions as mentioned in a study presented by Hiller et al. [4]. Reddy
and Barbosa [5] utilized magnetostrictive material layers and direct feedback gain to control
the linear frequencies damping of laminated composite beams. Using first-order shear defor-
mation theory, Pradhan et al. and Pradhan [7] analyzed the vibration response of laminated
composite plates and shells, respectively, with magnetostrictive actuators. Zhang et al. [8]
studied the nonlinear dynamic response of cantilever magnetostrictive laminated composite
plate. Subramanian [9] analyzed the model of a magnetostrictive laminated composite sand-
wich beam by employing a higher-order shear deformation with a constant in-plane rotation
tensor through the thickness. Kumar et al. [10, 11] analyzed the vibration response of the
magnetostrictive aluminum sandwich beams/plates under different boundary conditions and
coil configurations. The thickness of the magnetostrictive actuating layer, the smart layer
location, and the feedback gain control are the main elements that play important role in the
vibration damping process based on the previous study’s results. Zhou and Zhou [12] dis-
cussed the nonlinear frequency behavior of magnetostrictive laminated composite sandwich
beams exposed to the control magnetic field. Murty et al. [13] used one magnetostrictive layer
to control the vibration damping of flexible beams for three different lamination schemes.
Suman et al. [14] studied the bending response of laminated composite plates with/without
magnetostrictive layers numerically. Reddy [15] presented a detailed theoretical formula-
tion for vibration control of simply supported laminated composite plate with integrated
sensor and actuator under both electrical and mechanical loads based on the classical the-
ory and shear deformation plate theories. Koconis et al. [16] used the Ritz method to solve
the dynamic system of fiber-reinforced composite beam/plate/shell containing piezoelectric
actuating layers. Lee et al. [17] discussed the effect of the mechanical loading and thickness
effect of the smart layer on the vibration damping rate of the smart laminate. Bhattacharya
et al. [18] used a strategy that depends on combining passive (layers of ferromagnetic) and
active (magnetostrictive material) suppression for controlling vibration of the structures. Fur-
thermore, Zenkour and El-Shahrany [19] carried out several theoretical studies on vibration
control of symmetric/asymmetric laminated composite beams with four magnetostrictive
actuating layers. Also, they presented a study to discuss the free vibration of a magnetostric-
tive laminated composite plate embedded in Pasternak’s foundation using a higher-order
shear deformation theory with exponential shape function [20]. Then, they employed various
shear deformation theories involving transverse shear and normal deformation impacts [21].
In the absence/presence of the feedback control gain influence, Zenkour and El-Shahrany
[22] studied the effect of viscoelastic foundations on the vibration of a laminated composite
beam containing magnetostrictive material layers. The previous results illustrated that there
are some important parametric elements such as many magnetostrictive layers, magnetostric-

123



Eur. Phys. J. Plus         (2021) 136:634 Page 3 of 25   634 

tive layer thickness, feedback control gain value, foundation type, and magnetostrictive layer
location that play a significant role in the improvement of the vibration damping characteris-
tics. In addition, Zenkour and El-Shahrany [23] investigated the hygrothermal environment
impact on the vibration suppression of a magnetostrictive laminated composite plate lying
on Pasternak’s foundation. Shankar et al. [24] studied combined effects of the delamination
and hygrothermal loading on the vibration of the delaminated composite plates with active
fiber composite actuator and sensor in top and bottom of the laminate based on the first-order
shear deformation theory. Results of their study showed that increment of the voltage applied
to the actuators layer leads to enhancing the stiffness of the structures.

The viscoelastic materials are used for passive damping of the structural applications
vibration due to having a characteristic property of these materials which is dissipating the
energy under transient deformations. Many researchers have focused on methods for solving
viscoelastic problems in structural applications. Zenkour et al. [25] utilized effective moduli
and Ilyushin’s approximation methods to solve the bending problem of an inhomogeneous
viscoelastic composite plate supports by Pasternak’s foundation using a higher-order shear
deformation plate theory with sinusoidal shape function. Zenkour et al. [26] also studied the
bending behavior of a sandwich beam with viscoelastic functionally graded faces and elastic
core, embedding in Pasternak’s foundation. Alimirzaei et al. [27] used a higher-order shear
deformation plate theory with sinusoidal shape function for studying the wave propagation in
a thick viscoelastic composite plate supports by visco-Pasternak’s foundation. Zenkour et al.
[28] used quasi-3D transverse shear deformation theory for analyzing the mechanical behav-
ior of laminated composite beams lying on an elastic foundation. Allam and Zenkour [29]
presented a bending analysis of a clamped fiber-reinforced viscoelastic beam with quadratic
thickness variation. Zenkour [30] analyzed the combined influences of the nonuniform ther-
mal loads and transverse shear deformations on the bending behavior of fiber-reinforced
viscoelastic composite plates. Zenkour and Sobhy [31] presented vibration analysis of a
smart viscoelastic nanoplate resting on a viscoelastic foundation, subjected to hygrothermal
environmental conditions, and utilizing a two-variable shear deformation plate theory with
sinusoidal shape function. Sofiyev [32] studied combined effects of the elastic foundation and
periodic axial load depending on the time, on linear parametric instability of the viscoelastic
inhomogeneous truncated conical shell employing first-order shear deformation theory. In
the hygrothermal environment, Zenkour and El-Shahrany [33] analyzed the free vibration of
a magnetostrictive laminated composite plate with a core of the viscoelastic material lying on
elastic foundations. Zenkour and El-Shahrany [34] studied combined impacts of the trans-
verse shear and normal deformations and elastic foundation on the vibrational behavior of
a magnetostrictive laminated composite plate with top and bottom of the viscoelastic mate-
rial using a higher-order shear deformation theory with sinusoidal shape function. In the
two studies, the results indicate that damping time, deflection, and frequencies of the plates
decrease by increasing the viscoelastic structural damping value.

Foundations are important members for damping or reducing the vibration/oscillation of
structural systems such as high-speed transportation systems, railway tracks, solid propel-
lant rocket motors, or rocket-sled technology. Winkler’s model has substantially utilized one
parameter elastic foundation, has closed-spaced linear springs but dealing the normal loads
only. Pasternak [35] developed Winkler’s model by introducing a shear layer to deal with
the shear loadings. Various models rested on Winkler-Pasternak’s foundation have been pre-
sented in the literature even at the nanostructure applications, for example, Civalek et al.[36]
and Allahyari et al. [37]. Due to the concentrated line reactions occurrence along the free
edges of the structures in the Pasternak’s foundation, Kerr [38, 39] added an extra layer
of spring set above the shear layer to develop the Pasternak-type foundation to avoid this

123



  634 Page 4 of 25 Eur. Phys. J. Plus         (2021) 136:634 

influence. Barati and Zenkour [40] analyzed the size-dependent forced vibration of func-
tionally graded nanobeam embedded in Kerr foundations subjecting to uniformly dynamic
loadings, hygrothermal load, and lateral concentrated based on a higher-order refined beam
theory. Further, Barati [41] discussed the hygrothermal-elastic dynamic response of inho-
mogeneous porous nanobeam resting on Kerr’s foundations and subjecting to concentrated
and distributed loadings. Shahsavari et al. [42] used a new quasi-3D hyperbolic theory and
Galerkin method to analyze the free vibration of porous functionally graded plate supporting
by Winkler/Pasternak/Kerr’s elastic foundation. In addition, Shahsavari et al. [43] presented
a new size-dependent quasi-3D shear deformation theory to study the hygrothermal effect
on the shear buckling of a porous functionally graded nanoplate supported by Kerr’s founda-
tions. Recently, Zenkour and El-Shahrany [44] have discussed vibration analysis of the vis-
coelastic fiber-reinforced magnetostrictive sandwich plate on viscoelastic foundations using
higher-order deformation theory with sinusoidal shape function. Moreover, Zenkour and El-
Shahrany [45] analyzed hygrothermal loading influence on the forced vibration behavior of
viscoelastic smart laminated composite plates supporting by the viscoelastic foundation.

The previous literature refers to that there is no work covering the vibrational behavior anal-
ysis of visco-magnetoelastic sandwich structures embedded in Kerr-type foundations. Hence,
the current study will present a new model for the design of a visco-magnetoelastic plate in
Kerr’s foundation and their vibration damping characteristics will be analyzed. According to
the higher shear deformation plate theory with hyperbolic shape function, Hamilton’s princi-
ple, and Kelvin–Voigt viscoelastic relation, the equations of motion for the proposed model
will be derived and the impact of important parameters on solutions behavior of the dynamic
system will be studied and discussed in detail.

2 Theory and formulation of the problem

Consider a rectangular cross-ply multilayered viscoelastic magnetostrictive composite sand-
wich plate with length a, width b, total thickness h, and k layers, as appeared in Fig. 1. The
sandwich plate is composed of viscoelastic faces, homogeneous core, two magnetostrictive
materials in [(m) th, (k-m + 1)th] layers, fiber-reinforced material in k − 6 remaining layers.
The visco-magnetoelastic plate rests on three-parameter foundations, in which containing two
independent upper and lower sets of springs and a shear layer connects these two sets. So,
the interaction between the surrounding elastic medium is simulated by Kerr’s foundations
model and the structure as:

EKerr �
[

Kl Ku

Kl + Ku
− KPKu

Kl + Ku

(
∂2

∂x2 +
∂2

∂y2

)]
w0, (1)

where KP , Ku , Kl , and w0 are the stiffness of shear layer, upper spring, lower spring, and
transverse displacement, respectively.

For viscoelastic faces, Young’s modulus Eviscoelastic, and the shear modulus Gviscoelastic

depending on the Kelvin–Voigt model can be expressed as follows (Jalaeia and Civalek [46]):

Eviscoelastic � E

(
1 + g

∂

∂t

)
, Gviscoelastic � G

(
1 + g

∂

∂t

)
, (2)

in which g is the viscoelastic structural damping coefficient.
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Fig. 1 Schematic diagram of the structure

According to the hyperbolic shear deformation plate theory, the displacement fields can
be described as

u(x, y, z, t) � − z ∂w0
∂x + f (z)ϕx (x, y, t),

v(x, y, z, t) � −z ∂w0
∂y + f (z)ϕy(x, y, t),

w(x, y, z, t) � w0(x, y, t),

(3)

f (z) � h sinh
( z

h

)
− 4z3

3h2 cosh

(
1

2

)
, g(z) � f ′(z). (4)

The unknown function w0 is the transverse displacement of x , y, and t at a point on the
plane z � 0. The functions ϕx and ϕy are rotations of normal to the midplane about the y-axes
and x-axes. Moreover, f (z) presents the representative shape function which describes the
transverse shear stress or strain distribution along with the thickness of the plate.

The nonzero linear strain–displacement fields can be expressed as
⎧⎨
⎩

εxx
εyy
γxy

⎫⎬
⎭ � z

⎧⎪⎨
⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫⎪⎬
⎪⎭ + f (z)

⎧⎨
⎩

εexx ,

εeyy,

γ e
xy,

⎫⎬
⎭,

{
γxz
γyz

}
� g(z)

{
γ
g
xz

γ
g
yz

}
, (5)

where
⎧⎪⎨
⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫⎪⎬
⎪⎭ � −

⎧⎪⎪⎨
⎪⎪⎩

∂2w0
∂x2

∂2w0
∂y2

2 ∂2w0
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎨
⎩

εexx
εeyy
γ e
xy

⎫⎬
⎭ �

⎧⎪⎨
⎪⎩

∂ϕx
∂x
∂ϕy
∂y

∂ϕx
∂y + ∂ϕy

∂x

⎫⎪⎬
⎪⎭,

{
γ
g
xz

γ
g
yz

}
�

{
ϕx

ϕy

}
. (6)
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For the rth fiber-reinforced layer, the nonzero linear stress–strain fields can be expressed
as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxx
σyy

σyz

σxz
σxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(r )

�

⎡
⎢⎢⎢⎢⎣

Q̄11 Q̄12 0 0 0
Q̄21 Q̄22 0 0 0

0 0 Q̄44 0 0
0 0 0 Q̄55 0
0 0 0 0 Q̄66

⎤
⎥⎥⎥⎥⎦

(r )⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx
εyy
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(r )

. (7)

For the viscoelastic faces and the magnetostrictive layer, the nonzero linear stress–strain
fields can be given as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxx
σyy

σyz

σxz
σxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(face)

�
(

1 + g
∂

∂t

)
⎡
⎢⎢⎢⎢⎣

Q̄11 Q̄12 0 0 0
Q̄21 Q̄22 0 0 0

0 0 Q̄44 0 0
0 0 0 Q̄55 0
0 0 0 0 Q̄66

⎤
⎥⎥⎥⎥⎦

(face)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx
εyy
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(face)

, (8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxx
σyy

σyz

σxz
σxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(m)

�

⎡
⎢⎢⎢⎢⎣

Q̄11 Q̄12 0 0 0
Q̄21 Q̄22 0 0 0

0 0 Q̄44 0 0
0 0 0 Q̄55 0
0 0 0 0 Q̄66

⎤
⎥⎥⎥⎥⎦

(m)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx
εyy
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(m)

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̄31

q̄32

0
0
q̄36

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(m)

Hz, (9)

q(m) � Q
(m)

d(m), Q(m) � E (m) � 1

S(m)
, (10)

in which Q
(r)
i j are the transformed elastic constants which are expanded in Appendix 1.

Furthermore, the coefficients d(m), E (m), and S(m) are the magneto-mechanical coupling
coefficient, magnetostrictive layer modulus, and m th magnetostrictive layer compliance. In
addition, the relation between the magnetic field intensity Hz and the coil current I (x, y, t)
can be defined as

Hz(x, y, t) � kc I (x, y, t) � kcc(t)
∂w0

∂t
, (11)

in which c(t) and kc are the control gain and the coil constant.
For the homogeneous core, the nonzero linear stress–strain fields can be given as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx
σyy

σzz
σyz

σxz
σxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(core)

�

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13
Q21 Q22 Q23
Q31

0
0
0

Q32
0
0
0

Q33
0
0
0

0 0 0
0 0 0
0

Q44
0
0

0
0

Q55
0

0
0
0

Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

(core)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(core)

. (12)

3 Governing dynamic system

The governing system of the visco-magnetoelastic plate can be derived using Hamilton’s
energy principle

δ

∫ t

0
(U + V − K )dt � 0, (13)
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in which δU , δV , and δK are the variation of the strain energy, work done by applied forces
and kinetic energy, which can be given as

δU �
∫ a

0

∫ b

0

∫ h
2

− h
2

[
σxx

(
zδε(1)

xx + f (z)δεexx
)

+ σyy

(
zδε(1)

yy + f (z)δεeyy
)

+g(z)
(
σxzδγ

g
xz + σyzδγ

g
yz
)

+ σxy

(
zδγ (1)

xy + f (z)δγ e
xy

)]
dzdxdy, (14)

δV � −
∫ a

0

∫ b

0
(q − EKerr)δw0dydx, (15)

δK �
∫ a

0

∫ b

0

∫ h
2

− h
2

ρ

[(
−z

∂ẇ0

∂x
+ f (z)ϕ̇x

)(
−z

∂δẇ0

∂x
+ f (z)δϕ̇x

)

+

(
−z

∂ẇ0

∂y
+ f (z)ϕ̇y

)(
−z

∂δẇ0

∂y
+ f (z)δϕ̇y

)
+ ẇ0δẇ0

]
dzdxdy, (16)

in which q is the transverse distributed load. By employing the previous equations into Eqs.
(13)–(16), and the integral by parts is applied, for arriving at the next expression

0 �
∫ T

0

∫ a

0

∫ b

0

{[
−∂2Mxx

∂x2 − 2
∂2Mxy

∂x∂y
− ∂2Myy

∂y2 − q + EKerr

−I2

(
∂2ẅ0

∂x2 +
∂2ẅ0

∂y2

)
+ Ie

(
∂ϕ̈x

∂x
+

∂ϕ̈y

∂y

)
+ I0ẅ0

]
δw0

+

(
Qgx − ∂Sxx

∂x
− ∂Sxy

∂y
− Ie

∂ẅ0

∂x
+ I 2

e ϕ̈x

)
δϕx

+

(
Qgy − ∂Sxy

∂x
− ∂Syy

∂y
− Ie

∂ẅ0

∂y
+ I 2

e ϕ̈y

)
δϕy

}
dxdy

+
∮

	

{[(
∂Mxx

∂x
+

∂Mxy

∂y
+ I2

∂ẅ0

∂x
− Ieϕ̈x

)
nx +

(
∂Mxy

∂x
+

∂Myy

∂y
+ I2

∂ẅ0

∂y
− Ieϕ̈y

)
ny

]
δw0

− (
Mxxnx + Mxyny

)∂δw0

∂x
− (

Mxynx + Myyny
)∂δw0

∂y
+
(
Sxxnx + Sxyny

)
δϕx

+
(
Sxynx + Syyny

)
δϕy

}
ds

}
dt, (17)

where 	 is the boundary, whereas (Mi , Si , Qgs) and (I0, I2, Ie and I 2
e ) denote the force and

moment resultants and the mass inertias, respectively, which can be defined as{
Mi

Si

}
�

∑k

r�1

∫ zr+1

zr
σi

{
z

f (z)

}
dz �

(
1 + g

∂

∂t

∣∣∣∣
r�face

)([
[D]

[
E1

]
[
E1

] [
E3

]
]{

ε(1)

εe

})

−
{
Mm

i
Smi

}
, i � xx, yy, xy,

Qgs �
∫
A

σszg(z)dz �
(

1 + g
∂

∂t

∣∣∣∣
r�face

)
E3
i iγ

g
sz, s � x, y, i � 4, 5, (18)

in which

{
Mm

i , Smi
} � kcc(t)

∑
r

∫ zr+1

zr
q3i {z, f (z)}∂w0

∂t
dz � {β3i , γ3i }∂w0

∂t
,

i � 1, 2, 6, r � m, k − m + 1,{
Di j , E

1
i j , E

3
i j

}
�

∑k

r�1

∫ zr+1

zr
Q

(r)
i j

{
z2, z f (z), [ f (z)]2}dz, i, j � 1, 2, 6,
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E3
i i �

∑k

r�1

∫ zr+1

zr
Q

(r)
i i [g(z)]2dz, i � 4, 5, (19)

{
I0, I2, Ie, I

2
e

} �
∑k

r�1

∫ zr+1

zr
ρ
{
1, z2, z f (z), [ f (z)]2}dz, (20)

in which ρ is the mass density for each layer of the plate.
Motion equations of the visco-magnetoelastic plate resting on Kerr’s foundation are pre-

sented as

δw0 :
∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2Myy

∂y2 + q − EKerr

+ I2

(
∂2ẅ0

∂x2 +
∂2ẅ0

∂y2

)
− Ie

(
∂ϕ̈x

∂x
+

∂ϕ̈y

∂y

)
− I0ẅ0 � 0, (21)

δϕx :
∂Sxx
∂x

+
∂Sxy
∂y

− Qgx + Ie
∂ẅ0

∂x
− I 2

e ϕ̈x � 0, (22)

δϕy :
∂Sxy
∂x

+
∂Syy
∂y

− Qgy + Ie
∂ w0

∂y
− I 2

e ϕy � 0. (23)

In terms of the displacements field, dynamic equations of the visco-magnetoelastic plate
can be rewritten as

[P]
{
w0, ϕx , ϕy

} � {F}, (24)

in which

P11 �
(

1 + g
∂

∂t

∣∣∣∣
r�face

)[
D11

∂4

∂x4 + D22
∂4

∂y4 + 2(D12 + 2D66)
∂4

∂x2∂y2

]

−
(

KP Ku

Kl + Ku
+ I2

∂2

∂t2
− β31

∂

∂t

)
∂2

∂x2 −
(

KP Ku

Kl + Ku
+ I2

∂2

∂t2
− β32

∂

∂t

)
∂2

∂y2 + I0
∂2

∂t2
+

Kl Ku

Kl + Ku
,

P12 � −
(

1 + g
∂

∂t

∣∣∣∣
r�face

)[
E1

11
∂3

∂x3 +
(
E1

21 + 2E1
66

) ∂3

∂x∂y2

]
+ Ie

∂3

∂t2∂x
,

P13 � −
(

1 + g
∂

∂t

∣∣∣∣
r�face

)[
E1

22
∂3

∂y3 −
(
E1

12 + 2E1
66

) ∂3

∂x2∂y

]
+ Ie

∂3

∂t2∂y
,

P21 � −P12 + γ31
∂2

∂x∂t
, P22 � −

(
1 + g

∂

∂t

∣∣∣∣
r�face

)(
E3

11
∂2

∂x2 + E3
66

∂2

∂y2 − E3
55

)
+ I 2

e
∂2

∂t2
,

P23 � P32 � −
(

1 + g
∂

∂t

∣∣∣∣
r�face

)(
E3

12 + E3
66

) ∂2

∂x∂y
,

P31 � −P13 + γ32
∂2

∂y∂t
,

P33 � −
(

1 + g
∂

∂t

∣∣∣∣
r�face

)(
E3

66
∂2

∂x2 + E3
22

∂2

∂y2 − E3
44

)
+ I 2

e
∂2

∂t2
,

F1 � −q, F2 � 0, F3 � 0. (25)

4 Solution method

Firstly, consider {Fi } � 0 in Eq. (24) for controlling the vibration. To solve the governing
equations of the simply supported visco-magnetoelastic plate on the proposed hyperbolic
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theory, Navier’s solution procedure is utilized. In addition, considering the boundary condi-
tions for a simply supported plate and the next initial conditions to arrive at the final form of
solution

w � ϕy � Mxx � Pxx � Sxx � 0 at x � 0, a,

w � ϕx � Myy � Pyy � Syy � 0 at y � 0, b,
(26)

w0(x, y, 0) � 0, ẇ0(x, y, 0) � 1,

ϕx (x, y, 0) � ϕ̇x (x, y, 0) � ϕy(x, y, 0) � ϕ̇y(x, y, 0) � 0.
(27)

The generalized displacement fields which satisfy the applied boundary conditions can be
assumed as

w0(x, y, t) � ∑∞
n�1

∑∞
m�1 W0nm sin nπx

a sin mπy
b eλnm t ,

ϕx (x, y, t) � ∑∞
n�1

∑∞
m�1 Xnm cos nπx

a sin mπy
b eλnm t ,

ϕy(x, y, t) � ∑∞
n�1

∑∞
m�1 Ynm sin nπx

a cos mπy
b eλnm t ,

(28)

in which subscript n and m denote the half wave numbers (mode numbers), whereas (W 0
nm ,

X0
nm , Y 0

nm) and λnm are the unknown Fourier coefficients and the eigenfrequencies. The
system can be written as[

Si j
]{�}t � 0, � � {

W 0
nm, X0

nm, Y 0
nm

}
, i, j � 1, 2, 3. (29)

For a solving system of the equations in Eq. (29), the next determinant is solved∣∣∣∣∣∣
S11 S12 S13

S21 S22 S23

S31 S32 S33

∣∣∣∣∣∣ � 0, (30)

Si j � Ŝi j + λnm M̂i j + λ2
nmĈi j , i, j � 1, 2, 3. (31)

in which Ŝi j , M̂i j and Ĉi j can be expanded in Appendix 2. Also, the eigenfrequencies can
be expressed as follows:

λnm � −αnm ± iωnm, i � √−1, (32)

in which αnm and ωnm indicate, respectively, the damping coefficients and the damped nat-
ural frequency coefficients. Finally, the deflection of the dynamic system for the visco-
magnetoelastic plate and the magnetic field intensity can be obtained as

w0(x, y, t) � 1

ωnm
e−αnm t sin ωnmt sin

nπx

a
sin

mπy

b
, (33)

Hz(x, y, t) � kcc(t)

ωnm

∂

∂t

[
e−αnm t sin ωnmt sin

nπx

a
sin

mπy

b

]
. (34)

5 Simulation results and discussion

A theoretical study and numerical results of eigenfrequencies and deflection for a new model
for the cross-ply multilayered magnetostrictive composite plate with viscoelastic faces and
homogeneous core, supported by Kerr’s foundation, are presented and discussed in the current
section. The plate with the lamination scheme

[
0core/m/90/0/90/core

]
s and the following

data: h/a � 0.06, a/b � 1, Kl � Ku � KP � 106, (n,m) � (1, 1), kcc(t) � 104,
and g � 10−4 are considered for carrying out the numerical results of the study. The used
materials properties are written in Table 1, while the homogeneous material properties are:
Ecore � 380GPa, ρcore � 3800kg/m3, and ν � 0.3. Comprehensive parametric examples are
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Table 1 The properties of used materials in the study

Properties Material

Viscoelastic material Gr.-Ep Magnetostrictive material

ρ
(

kg m−3
)

1600 1943 9250

E1(GPa) 40 × E2 138 26.5

E2(GPa) 6.895 8.96 26.5

E3(GPa) 6.895 8.96 26.5

G12(GPa) 0.6 × E2 7.10 -

G13(GPa) 0.5 × E2 7.10 –

G23(GPa) 0.5 × E2 3.01 –
v12 0.25 0.3 0
v13 0.25 0.3 0
v23 0.36 0.45 0
q31 N (mA)−1

– – 442.55

q32 N (mA)−1
– – 442.55

presented using a higher-order shear deformation with hyperbolic shape function to estimate
effects of the velocity feedback gain, magnetostrictive layers positions, thickness ratio, aspect
ratio, viscoelastic layer thickness-to-core thickness ratio, magnetostrictive layer thickness-
to-core thickness ratio, half wave numbers, orientations of the viscoelastic layer’s fiber, lower
and upper spring stiffnesses and shear layer stiffness on the vibration damping characteristics
of the structure. The used higher-order shear theory computes the hyperbolic distribution of
transverse shear deformation through the thickness of the plate; the present theory is more
accurate than the classical theory, or the first-order shear theory that accounts for constant
states of the transverse shear deformation or the third-order shear theory which calculates a
parabolic transverse shear deformation distribution only. The behavior of the fundamental
eigenfrequency values with the change in the geometric parameters (the thickness-to-side
ratio and the aspect ratio) and feedback gain control value is illustrated in Table 2. It is clear
that the eigenfrequency value of the sandwich plate studied is significantly influenced by
the geometric parameters and magnitude of the feedback gain control. In fact, the damping
coefficient increases smoothly and the frequency decreases slightly by the increase of the
feedback gain control, whereas both the damping and the frequency values rise with increasing
the geometric parameters (thickness ratio or aspect ratio) highly. For different values of the
thickness ratio, Fig. 2 shows the first linear frequency with the change of the shear layer
stiffness. A notable increase in the frequency of the plate is observed as increasing the
thickness ratio and the shear layer stiffness constant. In addition, the effect of the geometric
parameters and feedback gain control on the deflection of the plate is plotted in Figs. 3, 4, and
5. It is seen from Fig. 3 that in absence of the feedback gain control element, deflection of the
plate reduces with time due to the presence of the viscoelastic structural damping effect in the
viscoelastic faces of the structure. The figure also indicates that the active damping process
improves whenever the velocity feedback gain increases where the deflection reduces and
the damping time decreases. Moreover, it is seen from Figs. 4 and 5 that there is a decrease
in deflection of the plate due to increasing the geometric parameters: the thickness ratio and
aspect ratio, respectively.
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Table 2 Effect of the thickness-to-side ratio h/a and the aspect ratio a/b on the eigenfrequency coefficients
of −α11 ± ω11 (rad s−1) for various values of the feedback control gain

h/a a/b c(t)kc

103 5 × 103 104

0.06 0.5 51.368 ± 1160.377 63.302 ±1159.787 78.221 ±1158.876
1 55.856 ±1393.481 74.830 ±1392.592 98.548 ±1391.115
2 83.486 ±2638.457 129.739 ±2636.595 187.555 ±2633.123

0.12 0.5 175.907 ±2219.650 199.474 ±2217.651 228.932 ±2214.798
1 184.834 ±2652.954 221.631 ±2650.130 267.626 ±2645.874
2 252.358 ±4926.595 336.326 ±4921.627 441.288 ±4913.377

0.24 0.5 455.917 ±3984.953 501.617 ±3979.333 558.732 ±3971.554
1 443.817 ±4700.347 510.905 ±4693.358 594.746 ±4683.235
2 514.469 ±8200.487 641.651 ±8191.524 800.597 ±8177.364

Fig. 2 The behavior of the fundamental frequency with the variation of stiffness of the shear layer for different
values of the thickness ratio

The behavior of the first linear frequency for different values of the linear and shear layers
of Kerr foundation (Kl , Ku and KP ) is displayed in Table 3. It is shown that an increment in
the stiffness of the spring results in an increase of the frequencies significantly and a decrease
of the damping coefficient insignificantly. Effect of the lower spring, upper spring, and shear
layer stiffness on the first linear frequency versus the thickness ratio is plotted in Figs. 6,
7, and 8, respectively. It is seen that the frequencies increase with increasing the values of
Kerr foundation constants and this effect reduces as the thickness ratio increases where the
difference between curves decreases with increasing the thickness ratio. Also, the effect of
the shear layer stiffness on the fundamental frequency with change in the thickness ratio is
more than the effect of the upper and lower spring stiffnesses. Furthermore, the effect of the
stiffness of the upper springs or the lower springs on the fundamental frequency is unequal
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Fig. 3 Effect of the feedback control gain on the central displacement of the plate

Fig. 4 The behavior of the central displacement of the plate with the change of damping time for various
thickness ratios

as the thickness ratio changes, but the variation is very insignificant, for more illustration see
Table 3 and compare the reciprocal effect for Ku and Kl for h/a � 0.06. Figure 9 depicts
the behavior of the central displacement of the plate for different values of the shear layer
stiffness versus time.

The time of the vibration suppression reduces obviously, and the deflection of plate
decreases due to increasing the shear layer stiffness. In fact, the models become more rigid
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Fig. 5 The behavior of the central displacement of the plate with the change of damping time for various
aspect ratios

Table 3 Eigen frequency coefficients −α11 ±ω11 (rad s−1) for different values of the foundation coefficients

Kl Ku KP

0 106 2 × 106

109 109
98.559 ± 2074.666 98.559 ± 2086.143 98.559 ± 2097.557

2 × 109
98.563 ± 2260.673 98.563 ± 2274.712 98.563 ± 2288.665

3 × 109
98.565 ± 2348.158 98.565 ± 2363.361 98.565 ± 2378.467

2 × 109 109
98.563 ± 2260.673 98.563 ± 2267.704 98.563 ± 2274.712

2 × 109
98.570 ± 2592.962 98.571 ± 2602.154 98.571 ± 2611.313

3 × 109
98.575 ± 2773.289 98.575 ± 2783.602 98.576 ± 2793.876

3 × 109 109
98.565 ± 2348.158 98.565 ± 2353.237 98.565 ± 2358.304

2 × 109
98.575 ± 2773.289 98.575 ± 2780.168 98.575 ± 2787.030

3 × 109
98.582 ± 3023.683 98.582 ± 3031.569 98.582 ± 2039.435

due to increasing the springs stiffness and the shear layer stiffness and the shear layer stiffness
is more efficient than the upper and lower spring stiffnesses.

The viscoelastic layer magnetostrictive layer and core thickness can be denoted by hv ,hm
and hc, respectively. The behavior of eigenfrequency values for viscoelastic layer thickness-
to-core thickness ratio hvc � hv/hc, magnetostrictive layer thickness-to-core thickness ratio
hmc � hm/hc and three values of the viscoelastic structural damping value is illustrated
in Table 4. It is observed that increase of the viscoelastic layer thickness-to-core thickness
ratio leads to increasing the damping coefficient and damped natural frequencies. Figure 10
describes the behavior of the first linear frequency with change in the shear layer stiffness
for different values of hvc parameter. It is noted that with the increasing value of the hvc

parameter, the frequencies increase highly, and this influence increases as the shear layer
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Fig. 6 Effect of the lower spring stiffness on the fundamental frequency with change in the thickness ratio,
Ku � 109

Fig. 7 Effect of the upper spring stiffness on the fundamental frequency with change in the thickness ratio,
Kl � 109

stiffness value rises. It is further observed from the table the damping coefficient increases,
while the frequencies decrease as the hmc parameter increases. In addition, the influence of
the magnetostrictive layer thickness-to-core thickness ratio on the first linear frequency with
the change of the shear layer stiffness is plotted in Fig. 11. With a variation of the shear layer
stiffness, the frequencies reduce for all the values studied of hmc parameter. Effect of hvc and
hmc on the central displacement of the plate with the change of the time is shown in Figs. 12
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Fig. 8 Effect of the shear layer stiffness on the fundamental frequency with change in the thickness ratio

Fig. 9 The central displacement of the plate for different values of the shear layer stiffness

and 13, respectively. The two parameters have the same effect on the deflection of the plate
where with increasing hvc or/and hmc, the deflection and damping time reduce. Furthermore,
the impact of the viscoelastic structural damping on the damping coefficient and the damped
natural frequencies is also deduced from the results in Table 4 and Fig. 14. It is noted that
there are an increment in the damping coefficient and a decrement in the frequencies with
increasing the viscoelastic structural damping value. It is also seen from the figure that the
variation between the frequency curves increases as the thickness ratio increases. Figure 15
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Table 4 Effect of the viscoelastic layer thickness-to-core thickness ratio hvc and magnetostrictive layer
thickness-to-core thickness ratio hmc on the damping and frequency parameters −α11 ± ω11 (rad s−1) for
various values of the viscoelastic structural damping

hvc hmc g (10−4)

1 2 3

0.5 0.5 56.122 ±1056.351 81.625 ±1054.778 107.141 ±1052.645

1 73.607 ±1190.282 97.834 ±1188.648 122.084 ±1186.589

1.5 86.354 ±986.311 109.291 ±984.128 132.248 ±981.466

1 0.5 82.720 ±1274.618 136.375 ±1270.186 190.058 ±1263.589

1 98.548 ±1391.115 149.736 ±1386.902 201.042 ±1381.006

1.5 109.556 ±1203.851 157.737 ±1198.710 205.971 ±1191.745

1.5 0.5 112.007 ±1479.960 196.351 ±1471.386 280.730 ±1458.056

1 124.308 ±1428.444 202.834 ±1419.690 281.413 ±1406.685

1.5 135.148 ±1404.529 210.837 ±1395.495 286.605 ±1382.479

Fig. 10 Effect of the viscoelastic layer thickness-to-core thickness layer ratio on the fundamental frequency

shows the deflection reduces significantly with decreasing the damping time whenever the
viscoelastic structural damping value increases.

Effect of orientations of the fiber in the viscoelastic layers for the plate[
θ face/m/90/0/90/core

]
s on the eigenfrequency values for the first three mode numbers

is displayed in Table 5. It is clear that the damping coefficient and the damped natural fre-
quencies are significantly influenced by orientations of the fiber in the viscoelastic layer. It
is clear that the lowest and highest frequencies occur in θ � 30 and 45 orientations of the
viscoelastic layer’s fiber cases, respectively, as shown in Fig. 16. Accordingly, θ � 30 and
45 orientations of the viscoelastic layer’s fiber cases have the lowest and highest flexural
rigidity, respectively, and have the longest suppression time and shortest suppression time,
respectively, as appeared in Fig. 17. The effect of the variation of mode shapes on values of
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Fig. 11 Effect of the magnetostrictive layer thickness-to-core thickness ratio on the fundamental frequency,
hvc � 1.5

Fig. 12 The central displacement of the plate for various viscoelastic layer thickness-to-core thickness layer
ratios

the eigenfrequencies and the deflection is also deduced from the table, as shown in Fig. 18.
It is noted that the damping coefficient and damped natural frequency values increase and
the deflection reduces with decreasing the damping time greatly whenever the value of mode
numbers rises.

Another important point in vibration suppression of the structure is the effect of the
location of the magnetostrictive layer on the deflection damping process. Table 6 displays
the influence of this factor on the eigenfrequencies, maximum deflection, and damping time.
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Fig. 13 The central displacement of the plate for various magnetostrictive layer thickness-to-core thickness
ratios, hvc � 1.5

Fig. 14 Effect of the viscoelastic structural damping on the fundamental frequency of the plate

It is seen that the damping coefficient increases and the frequencies decrease whenever the
magnetostrictive layers move toward viscoelastic faces and away from the core of the plate.
Figure 19 shows the impact of the location of the magnetostrictive layer on the behavior of
the first linear frequencies with the change of the thickness ratio. It is worth noting that the
smart layers must be located under the viscoelastic layers and not vice versa, to improve the
vibration damping characteristics. In addition, the amplitude of the deflection and interval of
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Fig. 15 Effect of the viscoelastic structural damping on the central displacement of the plate

Table 5 Effect of the half wavenumbers on the damping and frequency parameters −αnm ± ωnm (rad s−1)

for various orientations of the fiber in the viscoelastic layers for the plate
[
θ face/m/90/0/90/core

]
s

Lamination scheme Mode

(1,1) (2,2) (3,3)
[
0core/m/90/0/90/core

]
s 98.548 ±1391.115 891.652 ±5269.865 3388.940 ± 11,230.457[

30core/m/90/0/90/core
]
s 91.849 ±1338.753 837.384 ±5110.690 3373.652 ± 10,799.724[

45core/m/90/0/90/core
]
s 123.061 ±1554.403 1293.155 ±5886.125 5548.225 ± 12,101.438[

60core/m/90/0/90/core
]
s 111.105 ±1478.173 1082.306 ±5592.971 4347.822 ± 11,813.227[

90core/m/90/0/90/core
]
s 115.943 ±1507.803 1191.247 ±5721.603 5058.028 ± 11,827.783

the suppression time decrease with moving the smart layer away from the plate core as seen
in Fig. 20.

6 Conclusions

A vibration investigation of a fiber-reinforced sandwich plate with a homogenous core is
carried out in this article. The studied simply supported plate has viscoelastic feces, contains
two actuated magnetostrictive layers, and rests on Kerr’s foundation. The dynamic system
described in the model is derived employing Hamilton’s principle and Kelvin–Voigt relation.
Influences of important parameters on Navier’s solution type of system are studied in detail.
The comprehensive results of the study reveal that:
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Fig. 16 The behavior of the fundamental frequency with change in the thickness ratio for various orientations

of the fiber in the viscoelastic layers in the plate
[
θ face/m/90/0/90/core

]
s
, KP � 5 × 106

Fig. 17 Controlled motion of the plate
[
θ face/m/90/0/90/core

]
s
.at the midpoint for various orientations of

the fiber in the viscoelastic layers

• For low-stiffness elastic foundations, the visco-magnetoelastic plate has small natural
frequencies and low stiffness, which implies that the plate takes a long interval of time to
the vibration suppression.
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Fig. 18 Controlled motion of the plate at the midpoint for various half wave numbers

Table 6 The eigenfrequencies, maximum deflection, and damping time for various locations of magnetostric-
tive layers

Lamination scheme −α11 ± ω11 (rad s−1) Wmax (mm) t (s)
[
0core/90/0/90/m/core

]
s 67.138 ±1475.106 0.678 0.034[

0core/90/0/m/90/core
]
s 77.647 ±1451.687 0.698 0.030[

0core/90/m/0/90/core
]
s 88.150 ±1431.835 0.698 0.026[

0core/m/90/0/90/core
]
s 98.548 ±1391.115 0.719 0.023[

m/0core/90/0/90/core
]
s 93.702 ±1304.728 0.766 0.025

• For high-stiffness elastic foundations, the visco-magnetoelastic plate has the largest natural
frequencies and smallest deflection with the shortest damping time, which implies that the
plate achieves the highest stiffness in this case.

• The extra springs layer of Kerr’s foundations and the shear layer of Pasternak’s foundation
play strong roles in the vibration frequency behavior of the visco-magnetoelastic plate.
The shear layer stiffness is more efficient than the extra springs layer for vibration damping
of the plate. However, the study proves the superiority of the three-parameter Kerr’s model
compared to Pasternak-type or Winkler-type models to improve the vibration suppression
characteristics of the structures.

• Frequencies of the visco-magnetoelastic plate are very sensitive to the mode shapes and
the viscoelastic layer, magnetostrictive layer, and core thickness.

• The study findings emphasize that the viscoelastic layer, magnetostrictive layer, and core
thickness, magnetostrictive layer location, orientations of the fiber in viscoelastic layers,
velocity feedback gain have significant roles in the vibration control process of the visco-
magnetoelastic structures.
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Fig. 19 Effect of the location of the magnetostrictive layer on the fundamental frequency

Fig. 20 The central displacement of the plate for various laminations

• A notable increment in frequencies and decrement in deflection of the visco-magnetoelastic
plate as a result of increasing the geometric parameters.

• A notable decrement in the damping time and deflection of the visco-magnetoelastic plate
due to increasing the viscoelastic structural damping.
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Appendix 1

The coefficients Q
(r)
i j and qi j that appeared in Eqs. (7)–(9) are expanded as

Q
(r)
11 � Q(r)

11 cos4 θ(r) + 2
(
Q(r)

12 + 2Q(r)
66

)
cos2 θ(r) sin2 θ(r) + Q(r)

22 sin4 θ(r),

Q
(r)
12 �

(
Q(r)

11 + Q(r)
22 − 4Q(r)

66

)
cos2 θ(r) sin2 θ(r) + Q(r)

12

(
sin4 θ(r) + cos4 θ(r)

)
,

Q
(r)
22 � Q(r)

11 sin4 θ(r) + 2
(
Q(r)

12 + 2Q(r)
66

)
cos2 θ(r) sin2 θ(r) + Q(r)

22 cos4 θ(r),

Q
(r)
44 � Q(r)

44 cos2 θ(r) + Q(r)
55 sin2 θ(r),

Q
(r)
55 � Q(r)

55 cos2 θ(r) + Q(r)
44 sin2 θ(r),

Q
(r)
66 �

(
Q(r)

11 + Q(r)
22 − 2Q(r)

12 − 2Q(r)
66

)
sin2 θ(r) cos2 θ(r) + Q(r)

66

(
sin4 θ(r) + cos4 θ(r)

)
,

Q(r)
11 �

E1

(
1 − ν

(r)
23 ν

(r)
32

)
�

, Q(r)
12 �

E1

(
ν
(r)
21 + ν

(r)
31 ν

(r)
23

)
�

, Q(r)
22 �

E2

(
1 − ν

(r)
13 ν

(r)
31

)
�

,

Q(r)
44 � G(r)

23 , Q(r)
55 � G(r)

13 , Q(r)
66 � G(r)

12 ,

� � 1 − ν
(r)
21 ˚(r)12 − ν

(r)
23 ν

(r)
32 − ν

(r)
13 ˚(r)31 − 2˚(r)21 ν

(r)
13 ν

(r)
32 ,

ν
(r)
21 � ν

(r)
12 E (r)

22

E (r)
1

, ν
(r)
31 � ν

(r)
13 E (r)

3

E (r)
1

, ν
(r)
32 � ν

(r)
23 E (r)

3

E (r)
2

,

q31 � q31 cos2 θ + q32 sin2 θ, q32 � q32 cos2 θ + q31 sin2 θ,

q14 � (q15 − q24) sin θ cos θ, q24 � q24 cos2 θ + q15 sin2 θ,

q15 � q15 cos2 θ + q24 sin2 θ, q25 � (q15 − q24) sin θ cos θ,

q36 � (q31 − q32) sin θ cos θ,

where Ei , vi j and Gi j refer to Young’s moduli, Poisson’s ratios, and shear moduli, respec-
tively. The coefficients qi j denote the magnetostrictive modules.

Appendix 2

The coefficients Ŝi j , M̂i j and Ĉi j (i � 1, 2, 3) that appeared in Eq. (31) are expanded as the
following:

Ŝ11 �
(

1 + g
∂

∂t

∣∣∣∣
r�face

)[
D11

(nπ

a

)4
+ D22

(mπ

b

)4
+ (2D12 + 4D66)

(nπ

a

)2(mπ

b

)2
]

+
KPKu

Kl + Ku

(nπ

a

)2
+

KPKu

Kl + Ku

(mπ

b

)2
+

Kl Ku

Kl + Ku
,
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