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Abstract Solitary waves are localized gravity waves that preserve their consistency and
henceforth their visibility by the properties of nonlinear hydrodynamics. In this present
work, numerous group-invariant solutions of the (3+1)-dimensional KdV-type equation are
derived with the virtue of Lie symmetry analysis. Also, we obtain the corresponding infinites-
imal generators, Lie point symmetries, geometric vector fields, commutator table and a one-
dimensional optimal system of subalgebras. In addition, two-dimensional optimal system of
subalgebra is also obtained using one-dimensional optimal system. Several interesting sym-
metry reductions and corresponding group-invariant solutions of the equation are obtained
based on a one-dimensional optimal system of subalgebras. These group-invariant solutions
include special functions like the WeierstrassZeta function, W -shaped solitons, M-shaped
solitons, bright-dark solitons, solitary waves and rogue waves which we furnish for the first
time for this equation. The physical interpretation of the obtained solutions is discussed
graphically based on numerical simulation through Mathematica. Furthermore, nonlocal
conservation laws are studied via the Ibragimov approach for Lie point symmetries.

1 Introduction

Nonlinear evolution equations (NLEEs) and solitons are generally utilized to explain com-
plex nonlinear physical phenomena in many emerging engineering areas, such as fiber optics,
nonlinear dynamics, plasma physics, condensed matter, fluid dynamics, ion-acoustics, con-
vective fluids and quantum field theory [1]. In view of the substantial role of solitons and
nonlinear equations that play in these scientific fields, constructing exact analytic solutions
for the NLEEs is of great value.

Lie symmetry analysis is a powerful method, that is highly used for solving nonlinear
evolution equations (NLEEs) in many real-world physical problems in mathematical physics
and other nonlinear wave phenomena. Because it is a strong method, it can be applied to
various higher-order NLEEs, even if the equations are integrable or nonintegrable, linear or
nonlinear [2,3]. For a given NPDEs, there are many extensive applications in science and
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engineering from point symmetries, such as finding new solutions from relatively old ones [4],
reducing dimensions of NPDEs by using similarity reductions and obtaining group-invariant
solutions [5] and finding nonlocal conservation laws [6].

To obtain exact analytic solutions by applying Lie point symmetries, a one-dimensional
optimal system is constructed. Then, our main goal is to analyze the dynamical behavior of
the obtained solutions. An optimal system of symmetry algebra is studied through the char-
acteristic equations and used methodically to classify the obtained symmetry subalgebras
and group-invariant solutions. The concept of the optimal system was originated by Ovsian-
nikov [4]. This method was developed by Meleshko [7] and Ibragimov et al. [8]. However,
Olver [2] formulated the optimal system by applying the adjoint table and the corresponding
group classification. Nowadays, researchers are frequently following the modified method
introduced by Olver [2].

In the mid-nineteenth century, John Scott Russell first investigated shallow-water soli-
tary waves experimentally and noted their importance through nonlinear interactions [9,10].
Both Boussinesq and Rayleigh established mathematically the existence of steady solitary
waves on shallow water before KdV published their famous PDE, which was first originally
derived by Boussinesq [11–13]. After this work, the theory of solitary waves remained almost
untouched for 70 years until the mid-1960s when numerical studies by Zabusky and Kruskal
[14] discovered the robust nature of soliton interactions, prompting an explosion of refined
mathematical analysis on nonlinear PDEs. The history of solitary waves has been analyzed
by Miles [15], and that of water waves more generally by Darrigol [16]. In 1895, Korteweg
and de Vries (KdV) gave the first derivation of the NPDE

ut + 6uux + uxxx = 0. (1)

The evolution of small amplitude and long water waves down a canal of rectangular cross
section is described by the KdV Eq. (1). This equation is characterized by the special waves
which are known as solitons on shallow water surfaces [14]. Equation(1) has a number
of connections with physical problems like shallow-water waves with weakly nonlinear
restoring forces, ion-acoustic waves in plasma, acoustic waves on a crystal lattice and long
internal waves in a density-stratified ocean.

The inverse scattering method and many other approaches were used to solve the KdV
equation. Many other methods, such as the Hirota bilinear method, exp function method,
Kudryashov simplest equation method, Darboux transformation method, the tanh method,
and the Lie group of transformation method, were formally employed for solving this equation
to make further progress and to obtain more results and conclusions [2,3,9,17–28].

In this work, we study a (3+1)-dimensional KdV-type equation of the form

� := ut + 6ux uy + uxxy + uxxxxz + 60u2
x uz + 10uxxxuz + 20ux uxxz = 0, (2)

which was introduced by Lou [29] where five different types of multidromion solutions were
obtained. In this equation, u = u(x, y, z, t), (x, y, z) ∈ R

3 and t > 0, x is the direction of
propagation while y and z are transverse variables. Further, Wazwaz [30] investigated one-
and two-soliton solutions only with the help of a simplified form of Hirota’s direct method
established by Hereman and Nuseir [31]. In addition, the same problem was tackled by Ünsal
[32] and obtained complexiton and interaction solutions by Hirota direct method. Liu et al.
[33] constructed two homoclinic breather solutions and rogue wave solutions with the help
of another method extended homoclinic test. Also, Mao et al. [34] used Bell polynomial
approach to find Hirota’s bilinear form equation, for exploring the rogue wave solution, the
homoclinic breather wave solution, one-soliton solution and two-soliton solution. Wazwaz
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introduced the concept of non-singular complexiton solutions for nonlinear partial differential
equations in [35].

Motivated by the aforementioned references, the KdV Eq. (2) will be investigated by
using the Lie symmetry approach. The prime objective of this paper is to obtain several
symmetry reductions and numerous group-invariant solutions by using the Lie symmetry
method. We study various exact closed-form solutions of the equation via the computerized
symbolic calculations, including solitary waves solitons, single solitons, doubly solitons,
multi-solitons, W-shaped solitons, M-shaped solitons and dark-bright solitons. Furthermore,
the exact solutions of Eq. (2) are graphically analyzed through their profiles. This study
reveals that waves that propagate in a certain medium are solitary waves specifically special
M-shaped and W-shaped solitons. Eventually, we also discussed the physical interpretation
of Eq. (2) via numerical simulation. Also, we depict the explicit conservation laws for the
KdV equation.

The skeleton of the paper is organized as follows: In Sect. 2, we found the Lie point
symmetries of Eq. (2) using Lie group analysis and all the geometric vector fields are pre-
sented. Also, group transformations are discussed in detail. In Sect. 3, an optimal system
of a one-dimensional subalgebra of the Lie algebra L10 for Eq. (2) is constructed. We also
obtain two-dimensional optimal system of symmetry subalgebra. In Sect. 4, we obtain the
group-invariant forms and Lie symmetry reductions corresponding to the optimal system of
subalgebra and their exact analytic solutions. Numerical simulation of obtained solution is
discussed through Mathematica 11.3. Also, M-shaped and W-shaped soliton solutions are
constructed in this section. In Sect. 5, adjoint equation and conservation laws are established
using the nonlocal conservation theorem. The different dynamical wave structures of the
established soliton solutions are addressed in Sect. 6. Finally, the concluding remarks are
discussed in Sect. 7.

2 Lie symmetry analysis

In this section, we will utilize the powerful Lie symmetry method to obtain the numerous
group-invariant solutions for the KdV type equation. If Eq. (2) is invariant under a one-
parameter Lie group of transformations [2,3]:

x̃ = x + ε ξ1 + O(ε2), ỹ = y + ε ξ2 + O(ε2),

z̃ = z + ε ξ3 + O(ε2), t̃ = t + ε ξ4 + O(ε2),

ũ = u + ε η + O(ε2),

where ε is a one-parameter with infinitesimal generator

V = ξ1 ∂

∂x
+ ξ2 ∂

∂y
+ ξ3 ∂

∂z
+ ξ4 ∂

∂t
+ η

∂

∂u
, (3)

where ξ1, ξ2, ξ3, ξ4 and η are functions of independent variables, then the associated vector
field given by Eq. (3) generates a Lie point symmetry of Eq. (2). Moreover, Eq. (3) must
satisfy

pr(5)V(�)|�=0 = 0, (4)

where pr(5)V denotes the fifth prolongation. So, applying pr(5)V to Eq. (2), then we obtain

ηt + 6ηx uy + 6uxη
y + ηxxy + ηxxxxz + 120ηx ux uz + 60u2

xη
z + 10ηxxxuz
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+ 10uxxxη
z + 20ηx uxxz + 20uxη

xxz = 0, (5)

with coefficients

ηt = Dt (η) − uxDt (ξ
1) − uyDt (ξ

2) − uzDt (ξ
3) − utDt (ξ

4),

ηx = Dx (η) − uxDx (ξ
1) − uyDx (ξ

2) − uzDx (ξ
3) − utDx (ξ

4), (6)

etc., where Dx , Dy , Dz and Dt denote the total derivatives for x , y, z and t , respectively.
All the expressions of Eq. (6) into Eq. (4) are incorporated, and then by equating the same
powers of u and its derivatives to zero, we get the desired system of determining equations:

ηt = 0, 2ηu = −ξ4
t + ξ2

y , 6ηx = ξ2
t , 6ηy = ξ1

t ,

10ηz = ξ1
y , ξ4

u = ξ4
x = ξ4

y = ξ4
z = ξ4

t t = 0,

ξ1
u = 0, 2ξ1

x = ξ4
t − ξ2

y , ξ1
z = ξ1

t t = ξ1
t y = ξ1

yy = 0,

ξ2
u = ξ2

x = ξ2
z = ξ2

t t = ξ2
t y = ξ2

yy = 0,

ξ3
t = ξ3

u = ξ3
x = 0, 3ξ3

y = 10ξ2
t , ξ3

z = −ξ4
t + 2ξ2

y , (7)

where ηt = ∂η
∂t , ηx = ∂η

∂x , ηu = ∂η
∂u , ξ1

x = ∂ξ1

∂x , ξ4
t t = ∂2ξ4

∂t2 , ξ1
t y = ∂2ξ1

∂t∂y , etc. Solving coupled
partial differential equations given in Eq. (7) resulted in the following infinitesimal generators:

ξ1 = 1

4
(a1 − a5)x + a8t + a9 y + a10, ξ2 = 1

2
(a1 + a5)y + 3t

10
a4 + a7,

ξ3 = a4 y + a5z + a6, ξ4 = a1t + a3,

η = 1

4
(a5 − a1)u + x

20
a4 + y

6
a8 + z

10
a9 + a2, (8)

where ai , (1 ≤ i ≤ 10) are arbitrary parameters. Hence, Lie algebra of vector fields of Eq.
(2) is given as follows

V1 = x

4

∂

∂x
+ y

2

∂

∂y
+ t

∂

∂t
− u

4

∂

∂u
, V2 = ∂

∂u
,

V3 = ∂

∂t
, V4 = 3t

10

∂

∂y
+ y

∂

∂z
+ x

20

∂

∂u
,

V5 = −x

4

∂

∂x
+ y

2

∂

∂y
+ z

∂

∂z
+ u

4

∂

∂u
, V6 = ∂

∂z
,

V7 = ∂

∂y
, V8 = t

∂

∂x
+ y

6

∂

∂u
,

V9 = y
∂

∂x
+ z

10

∂

∂u
, V10 = ∂

∂x
. (9)

To obtain the group transformation which is generated by the infinitesimal generator, we
need to solve the following system of ordinary differential equations with the initial condition:

gi : (x, y, z, t, u) → (x̃, ỹ, z̃, t̃, ũ), (10)

which is generated by the generators of infinitesimal transformations Vi for 1 ≤ i ≤ 10. In
order to get some exact solutions from known ones, we should find the Lie symmetry groups
from the related symmetries. To get the Lie symmetry group, we should solve the following
problems For this purpose, we need to solve the following system of ODEs

d

dε
(x̃, ỹ, z̃, t̃, ũ) = σ (x̃, ỹ, z̃, t̃, ũ), when (x̃, ỹ, z̃, t̃, ũ)|ε=0 = (x, y, z, t, u),
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where ε is an arbitrary real parameter and

σ = ξ1ux + ξ2uy + ξ3uz + ξ4ut + ηu. (11)

So, we can obtain the Lie symmetry group

g : (x, y, z, t, u) → (x̃, ỹ, z̃, t̃, ũ). (12)

According to different ξ1, ξ2, ξ3, ξ4 and η, we have the following groups generated by each
point symmetries given in the following form:

g1 :(x, y, z, t, u) → (xeε, yeε, z, te4ε, ue−ε),

g2 :(x, y, z, t, u) → (x, y, z, t, u + ε),

g3 :(x, y, z, t, u) → (x, y, z, t + ε, u),

g4 :(x, y, z, t, u) → (x, y + 6tε, z + 60tε2 + 20yε, t, u + εx),

g5 :(x, y, z, t, u) → (xe−ε, ye2ε, ze4ε, t, ueε),

g6 :(x, y, z, t, u) → (x, y, z + ε, t, u),

g7 :(x, y, z, t, u) → (x, y + ε, z, t, u),

g8 :(x, y, z, t, u) → (x + 6εt, y, z, t, u + εy),

g9 :(x, y, z, t, u) → (x + 10εy, y, z, t, u + εz),

g10 :(x, y, z, t, u) → (x + ε, y, z, t, u).

The entries on the right side give the transformed point exp(x, y, z, t, u) = (x̃, ỹ, z̃, t̃, ũ).
The symmetry groups g2, g3, g6, g7 and g10 demonstrate the space and time invariance of
the equation. The well-known scaling symmetry turns up in g1, g4, g5, g8 and g9. We can
obtain the corresponding new solutions by applying above groups gi , 1 ≤ i ≤ 10.

If u = f (x, y, z, t) is a known solution of Eq. (2), then by using above groups gi , 1 ≤
i ≤ 10 corresponding infinite new solutions ui , 1 ≤ i ≤ 10 can be obtained as follows

u(1) = eε f1(xe−ε, ye−ε, z, te−4ε),

u(2) = f2(x, y, z, t) − ε,

u(3) = f3(x, y, z, t − ε),

u(4) = f4(x, y − 6tε, z − 60tε2 − 20yε, t) − εx,

u(5) = e−ε f5(xeε, ye−2ε, ze−4ε, t),

u(6) = f6(x, y, z − ε, t),

u(7) = f7(x, y − ε, z, t),

u(8) = f8(x − 6tε, y, z, t) − εy,

u(9) = f9(x − 10εy, y, z, t) − εz,

u(10) = f10(x − ε, y, z, t).

Similarity variables, similarity forms and group-invariant solutions associated with any
vector field V in (3) can be accomplished by its characteristic equation

dx

ξ1 = dy

ξ2 = dz

ξ2 = dt

ξ4 = du

η
. (13)

By applying the Lie symmetry reductions through the characteristic equation, then we obtain
numerous group-invariant solutions by allocating the appropriate values to arbitrary constants
ai (1 ≤ i ≤ 10). Subsequently, we compute one-dimensional and two-dimensional optimal
system of symmetry subalgebras to a (3+1)-dimensional KdV equation.
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Table 1 Commutation relations for Eq. (9)

* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0 1
4V2 −V3

1
2V4 0 0 − 1

2V7
3
4V8

1
4V9

−1
4 V10

V2 − 1
4V2 0 0 0 1

4V2 0 0 0 0 0

V3 V3 0 0 3
10V7 0 0 0 V10 0 0

V4 − 1
2V4 0 − 3

10V7 0 1
2V4 0 −V6 0 3

10V8 − 1
20V2

V5 0 − 1
4V2 0 − 1

2V4 0 −V6 − 1
2V7

1
4V8

3
4V9

1
4V10

V6 0 0 0 0 V6 0 0 0 1
10V2 0

V7
1
2V7 0 0 V6

1
2V7 0 0 1

6V2 V10 0

V8 − 3
4V8 0 −V10 0 − 1

4V8 0 − 1
6V2 0 0 0

V9 − 1
4V9 0 0 − 3

10V8 − 3
4V9 − 1

10V2 −V10 0 0 0

V10
1
4V10 0 0 1

20V2 − 1
4V10 0 0 0 0 0

3 Optimal system of Lie subalgebras

We construct invariant function of the symmetry algebra L10 [25,36,37] in this section. As
Olver [2] said, the investigation of that kind of an invariant is important as it places restrictions
on what stage, we can expect to simplify V. The ten-dimensional Lie algebra is generated
through the obtained symmetry generators, given by Eq. (9). Also, it is easy to verify that
the symmetry generators obtained in Eq. (9) form a closed Lie algebra whose commutation
relations are provided in Table 1. Infinitesimal generators given in Eq. (2) can be furnished
as a linear combination of Vi as

V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + a6V6 + a7V7 + a8V8 + a9V9 + a10V10.

(14)

We observed that commutator Table 1 is skew-symmetric where (i, j)th entry of Table 1 is
given by [Vi V j ] = Vi · V j − V j · Vi . Even, the generators Vi , 1 ≤ i ≤ 10 are linearly
independent.

Then, taking any subgroup g = eW (W = ∑10
j=1 b jV j ) to act on V , we have

Adexp(εW)(V) = e−εW V eεW , (15)

= V − ε[W, V ] + 1

2!ε
2[W, [W, V ]] − . . . (16)

= (a1V1 + · · · + anVn) − ε[b1V1 + · · · + bnVn, a1V1 + · · · + anVn] + O(ε2)

= (a1V1 + · · · + anVn) − ε(�1V1 + · · · + �nVn), (17)

where � = �(a1, ..., an, b1, ..., bn) can be obtained by using the commutator table. The
commutation relations are given in Table 1. Putting V = ∑10

i=1 aiVi and W = ∑10
j=1 b jV j

in Eq. (15) with

�1 = 0,

�2 = 1

60
(3a4b10 − 15a1b2 + 15a5b2 − 3a10b4 + 15a2(b1 − b5)
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+ 6a9b6 + 10a8b7 − 10a7b8 − 6a6b9),

�3 = −a3b1 + a1b3,

�4 = 1

2
(a4b1 − a1b4 + a5b4 − a4b5),

�5 = 0,

�6 = a7b4 − a6b5 + a6b6 + a4b7,

�7 = 1

10
(3a4b3 − 3a3b4 − 5a7(b1 + b5) + 5a1b7 + 5a5b7),

�8 = 1

20
(6a9b4 + 5a8(3b1 + b5) − 15a1b8 − 5a5b8 − 6a4b9),

�9 = 1

4
(a9(b1 + 3b5) − (a1 + 3a5)b9),

�10 = 1

4
(a1b10 − a5b10 + 4a8b3 + a10(−b1 + b5) + 4a9b7 − 4a3b8 − 4a7b9).

For any b j , 1 ≤ j ≤ 10, it requires

�1
∂φ

∂a1
+ �2

∂φ

∂a2
+ �3

∂φ

∂a3
· · · + �9

∂φ

∂a9
+ �10

∂φ

∂a10
= 0. (18)

Collecting the coefficients of all bi in the above equation, ten differential equations about
φ(a1, a2, . . . , a10) are obtained as

b1 : a10
∂φ

∂a10
+ 2a7

∂φ

∂a7
+ 4a3

∂φ

∂a3
= a9

∂φ

∂a9
+ 3a8

∂φ

∂a8
+ 2a4

∂φ

∂a4
+ a2

∂φ

∂a2
,

b2 : (a1 − a5)
∂φ

∂a2
= 0,

b3 : a8
∂φ

∂a10
+ 3

10
a4

∂φ

∂a7
+ a1

∂φ

∂a3
= 0,

b4 : 6a9
∂φ

∂a8
+ 10(a5 − a1)

∂φ

∂a4
= 6a3

∂φ

∂a7
+ 20a7

∂φ

∂a6
+ a10

∂φ

∂a2
,

b5 : a10
∂φ

∂a10
+ 3a9

∂φ

∂a9
+ a8

∂φ

∂a8
= 2a7

∂φ

∂a7
+ 4a6

∂φ

∂a6
+ 2a4

∂φ

∂a4
+ a2

∂φ

∂a2
,

b6 : 10a6
∂φ

∂a6
a9

∂φ

∂a2
= 0,

b7 : 6a9
∂φ

∂a10
+ 3(a1 + a5)

∂φ

∂a7
+ 6a4

∂φ

∂a6
+ a8

∂φ

∂a2
= 0,

b8 : 12a3
∂φ

∂a10
+ 3(3a1 + a5)

∂φ

∂a8
+ 2a7

∂φ

∂a2
= 0,

b9 : 20a7
∂φ

∂a10
+ 5(a1 + 3a5)

∂φ

∂a9
+ 6a4

∂φ

∂a8
+ 2a6

∂φ

∂a2
= 0,

b10 : 5(a1 − a5)
∂φ

∂a10
+ a4

∂φ

∂a2
= 0. (19)

As per the following references [25,26,36], the general invariant function of the symmetry
algebra L10 is

φ(a1, . . . , a10) = F(a1, a5),
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Table 2 Adjoint table of Lie algebra for (3+1)-dimensional KdV equation

Adg V1 V2 V3 V4 V5

V1 V1 V2e
−ε
4 V3eε V4e− ε

2 V5

V2 V1 + ε
4V2 V2 V3 V4 V5 − ε

4V2

V3 V1 − εV3 V2 V3 V4 − 3ε
10V7 V5

V4 V1 + ε
2V4 V2 V3 + 3ε

10V7 + 3ε2

20 V6 V4 V5 − ε
2V4

V5 V1 V2e
ε
4 V3 V4e

ε
2 V5

V6 V1 V2 V3 V4 V5 − εV6

V7 V1 − ε
2V7 V2 V3 V4 − εV6 V5 − ε

2V7

V8 V1 + 3ε
4 V8 V2 V3 + εV10 V4 V5 + ε

4V8

V9 V1 + ε
4V9 V2 V3 V4 + 3ε

10V8 V5 + 3ε
4 V9

V10 V1 − ε
4V10 V2 V3 V4 + ε

20V2 V5 + ε
4V10

Adg V6 V7 V8 V9 V10

V1 V6 V7e
ε
2 V8e− 3ε

4 V9e− ε
4 V10e

ε
4

V2 V6 V7 V8 V9 V10

V3 V6 V7 V8 − εV10 V9 V10

V4 V6 V7 + εV6 V8 V9 − 3ε
10V8 V10 + ε

20V2

V5 V6eε V7e
ε
2 V8e− ε

4 V9e− 3ε
4 V10e− ε

4

V6 V6 V7 V8 V9 − ε
10V2 V10

V7 V6 V7 V8 − ε
6V2 V9 − εV10 V10

V8 V6 V7 + ε
6V2 V8 V9 V10

V9 V6 + ε
10V2 V7 + εV10 V8 V9 V10

V10 V6 V7 V8 V9 V10

where F is an arbitrary function of two basic invariants a1 and a5 of Eq. (2). We form the
adjoint matrix to get an optimal system of Eq. (2). The adjoint representation table of the
ten-dimensional Lie algebra can be formulated in Table 2.

For Fs
i : g → g defined by V → Ad(exp(εiVi ).V) is a linear map, for i = 1, 2, ..., 10.

The matrix Mε
i of Fε

i , i = 1, 2, . . . , 10 with respect to basis {V1, ...,V10} are given below:

Mε
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0

0 e
−ε1

4 0 0 0 0 0 0 0 0
0 0 eε

1 0 0 0 0 0 0 0

0 0 0 e
−ε1

2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 e
ε1
2 0 0 0

0 0 0 0 0 0 0 e
−3ε1

4 0 0

0 0 0 0 0 0 0 0 e
−ε1

4 0

0 0 0 0 0 0 0 0 0 e
ε1
4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Mε
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ε2
4 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 − ε2

4 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(20)
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Mε
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 −ε3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 − 3ε3

10 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 −ε3

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Mε
4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ε4
4 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0
3ε2

4
20

3ε4
10 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 − ε4

2 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 ε4 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 − 3ε4

10 1 0
0 ε4

20 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Mε
5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0

0 e
ε5
4 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 e
ε5
2 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 eε

5 0 0 0 0

0 0 0 0 0 0 e
ε5
2 0 0 0

0 0 0 0 0 0 0 e
−ε5

4 0 0

0 0 0 0 0 0 0 0 e
−3ε5

4 0

0 0 0 0 0 0 0 0 0 e
−ε5

4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Mε
6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 −ε6 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 − ε6

10 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Mε
7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 − ε7
2 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 −ε7 0 0 0 0
0 0 0 0 1 0 − ε7

2 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 − ε7

6 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 −ε7

0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Mε
8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 3ε8
4 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 ε8

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 ε8

4 0 0
0 0 0 0 0 1 0 0 0 0
0 ε8

6 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Mε
9 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 ε9
4 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 3ε9

10 0 0
0 0 0 0 1 0 0 0 3ε9

4 0
0 ε9

10 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 ε9

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Mε
10 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 − ε10
4

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 ε10

20 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 ε10

4
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Similarly, one can find other matrices; hence, using these ten matrices we obtain the adjoint
group which is defined by the matrix

A = (Ai j )10×10 = Ad(e−ε1V1)Ad(e−ε2V2)Ad(e−ε3V3)Ad(e−ε4V4)Ad(e−ε5V5)

123
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Ad(e−ε6V6)Ad(e−ε7V7)Ad(e−ε8V8)Ad(e−ε9V9)Ad(e−ε10V10) (21)

given in Appendix I.

3.1 Optimal system of one-dimensional Lie subalgebras

In order to form the one-dimensional optimal system of Eq. (2), For the vectors, V =∑10
i=1 aiVi and W = ∑10

i=1 βiVi , we apply the adjoint transformations equation for Eq. (2)
is given by

(β1, β2, β3, β4, β5, β6, β7, β8, β9, β10) = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) · A. (22)

The following cases are considered to classify the one-dimensional Lie subalgebras of the
resulted nonclassical symmetries.
Case 1 a1 �= 0, a3 = 0, a4 = 0, a5 = 0, a9 = 0. Adopt one representative element T1 = V1.
Substituting β1 = 1, βi = 0, 2 ≤ i ≤ 10 into Eq. (22), we get

ε1 = ε3 = ε4 = ε5 = ε9 = 0, ε2 = −4

3
(3a2 − a7a8), ε7 = 2a7, ε8 = −4

3
a8, ε10 = 4a10

ε6 is an arbitrary constants.
Substituting a1 = 0, a5 = 0 in Eq. (22) provides new invariants

φ(a2, a2, a4, a6, a7, a8, a9, a10) = a3a9(a4)
3
2 . (23)

Due to the Remark 2 in [36], we have following three instances as: a3a9(a4)
3
2 = 1,

a3a9(a4)
3
2 = −1 and a3a9(a4)

3
2 = 0. By virtue of second invariant, the following sub-cases

are constructed and discussed below.
Case 2 a3 �= 0, ai = 0, i = 1, 2, 4, . . . , 9. Choose a representative element T2 = V3.
Substituting β3 = 1, βi = 0, 1 ≤ i ≤ 10, i �= 3 into Eq. (22), we get

ε1 = 0, ε4 = 0, ε5 = 0, ε8 = −a10,

ε2, ε3, ε6, ε7, ε9 and ε10 are arbitrary constant.
Case 3 a4 �= 0, a1 = 0, a3 = 0, a5 = 0, a9 = 0. Adopt one representative element w = V4.
Substituting β4 = 1, βi = 0, i = i = 1, 2, 3, 5, . . . , 10 into Eq. (22), we get

ε1 = ε5 = 0, ε3 = a10

a8
, ε4 = 1

3a8
(10a7a8 − 3a10), ε7 = a6, ε9 = −10

3
a8,

ε10 = −10

3
(6a2 − a6a8)

ε2, ε6 and ε8 are arbitrary constants.
Case 4 a6 �= 0, ai = 0, i = 1, 3, 4, 5, 7, 8, 9, 10. Adopt one representative element w = V6.
Substituting β6 = 1, βi = 0, i = 1, . . . , 5, 7, . . . , 10 into Eq. (22), we get

ε1 = ε5 = 0, ε9 = −10a2

a6

εi , i = 2, 3, 4, 6, 7, 8, 10 are arbitrary constants.
Case 5 a2 �= 0, a7 �= 0. Adopt one representative element w = a2V2 + V7, a2 ∈ {−1, 0, 1}.
Substituting β2 = β7 = 1, βi = 0, i = 1, 3, 4, 5, 6, 8, 9, 10 into Eq. (22), we get

ε1 = ε5 = 0, ε8 = − 3

10
a10ε4, ε9 = −a10

123
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ε2, ε3, ε4, ε6, ε7 and ε10 are arbitrary constants.
Case 6 a8 �= 0, ai = 0, i = 1, . . . , 7, 9. Adopt one representative element w = V8. Substi-
tuting β8 = 1, βi = 0, i = 1, . . . , 7, 9, 10 into Eq. (22), we get

ε1 = ε5 = ε7 = 0, ε3 = a10,

ε2, ε4, ε6, ε8, ε9 and ε10 are arbitrary constants.
Case 7 a9 �= 0, ai = 0, i = 1, 3, 4, 5, 6, 7. Adopt one representative element w = V9.
Substituting β9 = 1, βi = 0, i = 1, . . . , 8, 10 into Eq. (22), we get

ε1 = ε5 = 0, ε4 = 10

3
a8, ε6 = 5

3
(6a2 + a10a8 − a2

8ε3), ε7 = a10 − a8ε3,

ε2, ε4, ε6, ε8, ε9 and ε10 are arbitrary constants.
Case 8 a6 �= 0, a7 �= 0. Adopt one representative element w = a6V6 + V7, a6 ∈ {−1, 0, 1}.
Substituting β6 = β7 = 1, βi = 0, i = 1, . . . , 5, 8, 9, 10 into Eq. (22), we get

ε1 = ε5 = 0, ε8 = −3

5
(10a2 − a10a6) − 3

10
a10ε4, ε9 = −a10

ε2, ε3, ε4, ε6, ε7 and ε10 are arbitrary constants.
Case 9 a2 �= 0, a7 �= 0, a10 �= 0. Adopt one representative element w = V2 + V7 + V10.
Substituting β2 = β7 = β10 = 1, βi = 0, i = 1, 3, 4, 5, 6, 8, 9 into Eq. (22), we get

ε1 = ε5 = ε9 = 0, ε8 = −6(a2 − 1) − 3

10
ε4,

ε2, ε3, ε4, ε6, ε7 and ε10 are arbitrary constants.
Case 10 a7 �= 0, a8 �= 0, a10 �= 0. Adopt one representative element w = V7 + V8 + V10.
Substituting β7 = β8 = β10 = 1, βi = 0, i = 1, 2, 3, 4, 5, 6, 9 into Eq. (22), we get

ε1 = ε5 = 0, ε8 = 1

10
(−60a2 − 3a10ε4 + 3ε3ε4 + 10ε7), ε9 = 1 − a10 + ε3

ε2, ε3, ε4, ε6, ε7 and ε10 are arbitrary constants.
Case 11 a2 �= 0, a6 �= 0. Adopt one representative element w = V2 + V6. Substituting
β2 = β6 = 1, βi = 0, i = 1, 3, 4, 5, 7, 8, 9, 10 into Eq. (22) we obtain the solution

ε1 = ε5 = 0, ε8 = 1

10
(−60a2 − 3a10ε4 + 3a8ε3ε4 + 10a8ε7), ε9 = −a10 + a8ε3

ε2, ε3, ε4, ε6, ε7 and ε10 are arbitrary constants.
Similarly, we can find values of εi ’s for other members of optimal system. We concluded

that the one-dimensional optimal system of subalgebra for KdV-type equation is as follows:

(1) T1 = V1

(2) T2 = V3

(3) T3 = V4

(4) T4 = V6

(5) T5 = a2V2 + V7,

(6) T6 = V8

(7) T7 = V9

(8) T8 = a6V6 + V7,

(9) T9 = V2 + V7 + V10

(10) T10 = V7 + V8 + V10

(11) T11 = V2 + V6

123
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3.2 Optimal system of two-dimensional Lie subalgebras

Further, in this section we construct an optimal system of two-dimensional Lie subalgebras
with the help of one-dimensional optimal system [4].

Let < W > be a one-dimensional Lie subalgebra from previous section and consider the
problem of finding all two-dimensional Lie subalgebras containing < W >. To construct such
optimal system, we must find all possible V ∈ g such that < V, W > is a two-dimensional
Lie subalgebra. As required, < V, W > to be a two-dimensional Lie subalgebra, there must
be some constants λ and μ such that

[W, V ] = λW + μV (24)

which are to be determined. Here, we must find V such that < V, W > is a two-dimensional
vector space, and λ and μ satisfy (24). This gives number of algebraic equations whose
solutions will give the two-dimensional Lie subalgebras including < W >.

To illustrate, we compute all two-dimensional Lie subalgebras which contain the one-
dimensional Lie subalgebra < V1 >. Let V = a2V2 +· · ·+a9V9 +a10V10 be a second basis
element of a desired two-dimensional Lie subalgebra. Using Table 1, we obtain

[V1, V ] = 1

4
a2V2 − a3V3 + 1

2
a4V4 − 1

2
a7V7 + 3

4
a8V8 + 1

4
a9V9 − 1

4
a10V10 (25)

which provides the left-hand side of Eq. (24). The problem here is to find a2, . . . , a10 not
simultaneously zero and λ and μ such that

λ = 0, μa2 = 1

4
a2, μa3 = −a3, μa4 = 1

2
a4,

μa5 = 0, μa6 = 0, μa7 = −1

2
a7, μa8 = 3

4
a8, μa9 = 1

4
a9, μa10 = −1

4
a10.

(26)

Case 1: When μ = 0 then, a2 = a3 = a4 = a7 = a8 = a9 = a10 = 0. Any a5 and a6,
not simultaneously zero, which is to be chosen arbitrarily. This gives a required member of
two-dimensional Lie subalgebras < a5V5 + a6V6, V1 >, (a5, a6) ∈ R

2 \ (0, 0).
Case 2: When μ �= 0 then, a5 = a6 = 0. As V �= 0, μ = 1

4 , is the only choice and
a2, a3, a4, a7, a8, a9, a10 which is to be chosen arbitrarily. This gives a required member of
two-dimensional Lie subalgebras < a2V2+a3V3+a4V4+a7V7+a8V8+a9V9+a10V10, V1 >

, (a2, a3, a4, a7, a8, a9, a10) ∈ R
7 \ (0, 0, 0, 0, 0, 0, 0).

Secondly, we compute all two-dimensional Lie subalgebras which contain the one-
dimensional Lie subalgebra < V6 >. Let V = a1V1 + · · · + a5V5 + a7V7 + a8V8 + a9V9 +
a10V10 be a second basis element of a desired two-dimensional Lie subalgebra. Using Table
1, we obtain

[V6, V ] = a5V6 + a9
1

10
V2 (27)

which provides the left-hand side of Eq. (24). The problem here is to find a1, a2, . . . , a10 not
simultaneously zero and λ and μ such that

λ = a5, μa2 = 1

10
a9, μa1 = 0, μa3 = 0,

μa4 = 0, μa5 = 0, μa7 = 0, μa8 = 0, μa9 = 0, μa10 = 0. (28)
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Case 3: When μ = 0 then, a9 = 0. Any a1, a3, a4, a5, a7, a8, a9 and a10 is not simul-
taneously zero, which is to be chosen arbitrarily. This gives a required member of two-
dimensional Lie subalgebras < a1V1 + · · · + a5V5 + a7V7 + a8V8 + a10V10, V6 >,
(a1, a3, a4, a5, a7, a8, a9, a10) ∈ R

8 \ (0, 0, 0, 0, 0, 0, 0, 0).
Case 4: When μ �= 0 then, a1 = a3 = a4 = a5 = a7 = a8 = a9 = a10 = 0. As
V �= 0, μ = 1 is the only choice and a2, which is to be chosen arbitrarily. This gives a
required member of two-dimensional Lie subalgebras < a2V2, V6 >, a2 ∈ R \ (0).

This process, applied to all the one-dimensional Lie subalgebras from previous section,
computes the two-dimensional Lie subalgebras which contain one-dimensional Lie subalge-
bras.

4 Group-invariant solutions

In this section, we restrict our study to the one-dimensional optimal system of Lie subalgebras
computed in previous section. We derive several Lie symmetry reductions and corresponding
group-invariant solutions with the help of one-dimensional optimal system of subalgebras.

4.1 Subalgebra T1 = V1:

For the infinitesimal generator

V1 = x

4

∂

∂x
+ y

2

∂

∂y
+ t

∂

∂t
− u

4

∂

∂u
, (29)

Thus, Eq. (13) becomes

dx
x
4

= dy
y
2

= dz

0
= dt

t
= du

u
4

. (30)

which gives

u(x, y, z, t) = F (X, Y, Z), (31)

where F (X, Y, Z) is similarity function in which similarity variables X, Y and Z can be
expressed as

X = xt−
1
4 , Y = yt−

1
2 , Z = z. (32)

Using Eq. (31) into Eq. (2), we get the following (2+1)-dimensional nonlinear reduced
equation with variable coefficients as first reduction of the equation given as

F − 4
(
10FZ

(
6F 2

X + FXXX
) + 20FXFXXZ + FXXXXZ + FXXY

)

+ 2FY (Y − 12FX ) + XFX = 0, (33)

where FX = ∂F
∂ X ,FY = ∂F

∂Y , etc. To solve Eq. (33), we obtain new set of infinitesimal given
as

ξX = − X

4
A1, ξY = Y

2
A1, ξZ = A1 Z + A2, ηF = A1

F
4

, (34)

where A1 and A2 are arbitrary constants.
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4.1.1 For A1 �= 0, A2 = 0 in Eq. (34)

With the help of characteristic Eq. (13), then function F can be written as

F = Z
1
4 G(r, s), (35)

through r = X Z
1
4 and s = Y√

Z
. Putting the similarity form in Eq. (33), we have following

reduced equation

60rG3
r + G(10Grrr + 60G2

r − 1) + Gr (24Gs + 60Grr − 40sGrrs + r(30Grrr)) + 4Grrs

+ 5Grrrr + rGrrrrr − 2s(Gs(1 + 60G2
r + 10Grrr) + Grrrrs) = 0. (36)

We could not find generators of Eq. (36) because of high nonlinearity. Hence, this equation
can be solved numerically.

4.1.2 For A1 = 0, A2 �= 0 in Eq. (34)

Using characteristic equations for this subcase, we obtain the similarity variables as follows

r = X and s = Y with F = G(r, s). (37)

By substituting F in Eq. (33), we have

G + 2Gs(s − 12Gr ) + rGr − 4Grrs = 0 (38)

Again, we can find infinitesimals for Eq. (38) given as

ξr = − r

2
b1, ξs = b1s, ξG = G

2
b1, (39)

where b1 is an arbitrary constant. Then, established characteristic equation for Eq. (39) is

dr

− r
2 b1

= ds

b1s
= dG

G
2 b1

. (40)

We obtain the similarity variable as w = r
√

s, and the similarity form is given by

G(r, s) = 1

r
R(w). (41)

Putting G in Eq. (38), we get

w2 R′′′ − R′ (−6wR′ + 6R + w2) = 0, (42)

which is a highly nonlinear ODE. where ′ denotes the derivative with respect to w. One
particular result is given below

R(w) = 1

6
w2, (43)

Using Eqs. (43), (41), (37) in Eq. (31), one obtains

u(x, y, z, t) = x y

6 t
. (44)
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4.2 Subalgebra T2 = V3 = ∂
∂t :

Solving characteristic equations in this case yields

u(x, y, z, t) = F (X, Y, Z), (45)

with X = x , Y = y, Z = z. On inserting Eq. (45) into Eq. (2), reduced equation is

6FXFY + 20FXFXXZ + FXXY + 10FZ (6F 2
X + FXXX) + FXXXXZ = 0. (46)

Then, the solution form for Eq. (46) is

F (X, Y, Z) = c1 tanh
(
c1 X − 4c3c2

1Y + c3 Z + c4
) + c2. (47)

with ci (1 ≤ i ≤ 4) being arbitrary constants. Hence, Eq. (47) gives

u(x, y, z, t) = c1 tanh
(
c1x − 4c3c2

1 y + c3z + c4
) + c2, (48)

Applying Lie symmetry method, Eq. (46) admits infinitesimals as

ξX = X

2
(A3 − A1) + Y A5 + A6, ξY = A3Y + A4,

ξZ = A1 Z + A2, ηF = 1

2
(A1 − A3)F + Z

10
A5 + A7, (49)

with ξX , ξY , ξZ and ηF and Ai (1 ≤ i ≤ 7) being arbitrary constants. Moreover, some
particular cases are discussed below.

4.2.1 Case A2 �= 0

Corresponding Lagrange’s equations are given below

dX

0
= dY

0
= dZ

1
= dF

0
. (50)

By solving Eq. (50), we obtain

F = G(r, s), (51)

through r = X and s = Y . Thus, we have

6GsGr + Grrs = 0. (52)

Substituting G(r, s) = H(ζ ) where ζ = a r + b s with a and b being constants in Eq. (52),
we obtain an ordinary differential equation in H as

6H ′2 + aH ′′′ = 0. (53)

The general solution of (53) is given as

H(ζ ) = a
(−a−1)− 1

3 W eierstrass Zeta

[
(−a−1)

1
3 (ζ ) + c1; {0, c2}

]

+ c3. (54)

with c1, c2 and c3 being arbitrary constants. Hence, using Eqs. (54) and (51), we obtain
WeierstrassZeta function solution for governing KdV

u(x, y, z, t) = a
(−a−1)− 1

3 W eierstrass Zeta

[
(−a−1)

1
3 (ax + by + c1); {0, c2}

]

+ c3.

(55)
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(a) a = 0.3, b = 1. (b) a = 1, b = 1. (c) a = 1.5, b = 1.

(d) a = 0.3, b = 4. (e) a = 1, b = 4. (f) a = 1.5, b = 4.

(g) a = 1, b = 1. (h) a = 1, b = 5. (i) a = 1, b = 20.

Fig. 1 The physical structures of Lump-type solitons and multi-solitons profiles for (55) with parameters
c1 = 154, c2 = 0.003, c3 = 2717 for (a)–(f) and c1 = 1, c2 = 0.3, c3 = 1 for (g)–(i)

4.2.2 Case A3 �= 0

Lagrange’s system for this case is

dX
X
2

= dY

Y
= dZ

0
= dF

−F
2

. (56)

By solving Eq. (56), we obtain

F = G(r, s)√
Y

, (57)

through similarity variables r = X/
√

Y and s = Z . Substituting the value of F into Eq. (46),
we obtain

2Grrrrs − 3Grr − 2Gr (3G + 3(r − 20Gs)Gr − 20Grrs) − (r − 20Gs)Grrr = 0. (58)

Again, Eq. (58) admits infinitesimal generators as

ξr = − r

2
b1, ξs = b1s + b2, ξG = G

2
b1, (59)
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where b1 and b2 are arbitrary constants. Using generators (59), solution G(r, s) takes the
form as

G(r, s) = R(w)
√

s, (60)

where w = r
√

s. Inserting Eq. (60) into Eq. (58), we have

w R(5) + 5R(4) − 3R′′ + 6R′[(R + wR′)(10R′ − 1) + 10R′′]
+ 10R + w(30R′ − 1)]R′′′ = 0. (61)

Eq. (61) is a highly nonlinear ODE and cannot be solved easily. Assuming R(w) as polynomial
with constants, we get

R(w) = 1

10
w + γ, (62)

where γ is the arbitrary constant. Ultimately, group-invariant solution is

u(x, y, z, t) = xz

10y
+ γ

√
z

y
. (63)

4.2.3 Case A4 �= 0

By solving characteristic equations, we obtain

F = G(r, s), (64)

with r = X and s = Z . On inserting the value of F solution (64) into Eq. (46), we get

20GrGrrs + 10Gs(6G2
r + Grrr) + Grrrrs = 0. (65)

Similarity transformation method (STM) provides the following generators infinitesimal

ξr = b1r + b2, ξs = f (s), ξG = −Gb1 + b3, (66)

where real parameters b1, b2 and b3 are real arbitrary constants. Using Eq. (66), we obtain
the solution G(r, s) as

G(r, s) = b3r + R(w)

b1r + b2
, with w = b1r + b2

b1s
. (67)

Inserting Eq. (67) into Eq. (65), we obtain ordinary differential equation as

b4
1w

4 R(5) + 20b2
1w

2 R(3)
(
b1wR′ − b1 R + b2b3

) + 10R′b3
1w

3 R(3) − 30b3
1w

2 R′ R′′

− 60R′ (b1 R − b1wR′) (
b2

1 + b1wR′ − b1 R + 2b2b3
) + 60b2b3(b

2
1 + b2b3)R′ = 0.

(68)

Eq. (68) is a complex nonlinear ordinary differential equation. General solution is not easy
to obtain, but one solution is given below

R(w) = γw + b2b3

b1
+ b1, (69)

where real parameters γ are the arbitrary constant. Using Eqs. (69), (67), (64) in Eq. (45),
corresponding rational function solution u is obtained as

u(x, y, z, t) = γ

b1z
+ b1

b1x + b2
+ b3

b1
. (70)
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4.2.4 Case A5 �= 0

The Lagrange’s equations read as

dX

Y
= dY

0
= dZ

0
= dF

Z
10

. (71)

which produces

F = XZ

10Y
+ G(r, s), (72)

with variables r = Y and s = Z . Thus, one obtains

sGs + rGr = 0. (73)

The general solution is given as

G(r, s) = f
( s

r

)
. (74)

Hence, using Eqs. (74), (72) in Eq. (45), the invariant solution is

u(x, y, z, t) = xz

10y
+ f

(
z

y

)

. (75)

with f being arbitrary function of y and z.

4.3 Subalgebra T3 = V4:

Using characteristic equation for V4 = 3t
10

∂
∂y + y ∂

∂z + x
20

∂
∂u , we obtain

u(x, y, z, t) = F (X, Y, T ) + xy

6t
, through X = x, Y = −5y2

3t
+ z, T = t.

On inserting the similarity solution in Eq. (2), reduction equation is

XFX + T (FT + 20FXFXXY + 10FY (6F 2
X + FXXX) + FXXXXY) = 0. (76)

Also, infinitesimals for Eq. (76) are

ξX = X

4
(A1 − A2) + A4T, ξY = A2T + A3, ξT = A1T, ηF = F

4
(A2 − A1) + A5,

(77)

where Ai (1 ≤ i ≤ 5) are arbitrary constants. For completeness, reduced equations and
invariant solutions for subcases are furnished in Table 3.

4.4 Subalgebra T4 = V6:

With the help of Lagrange system for T4 = ∂
∂z we found invariants as X = x, Y = y, T = t

and u = F (X, Y, T ). By putting u in Eq. (2), we get

FXXY + 6FXFY + FT = 0. (78)

The solution of Eq. (78) is

F = c1 tanh

(

c1 X − c3Y

4c2
1

+ c3T + c4

)

+ c2. (79)
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Table 3 Deductions for Eq. (2) in subalgebra T3 = V4

Subcase Similarity variables Reduced equations Group-invariant solutions

A1 �= 0, and F = T − 1
4 G(r, s) G + Gr (−3r − 80Grrs) u = xy

6t − x
√

3b1t z−5b1 y2+3b2t
6
√

5
√−b1t

other Ai ’s are zero r = X T − 1
4 , s = Y −40Gs (6G2

r + Grrr) − 4Grrrrs = 0

A2 �= 0, and F = Y − 1
4 G(r, s) 4rGr + s[4Gs + 5(2G(6G2

r + Grrr) u = xy
6t − x

√
5
(
5y2−3t z

)

30t

other Ai ’s are zero r = XY
1
4 , s = T +6Gr (2Grr + r(2G2

r + Grrr))

+Grrrr) + rGrrrrr] = 0

A3 �= 0, and F = G(r, s) sGs + rGr = 0 u = xy
6t + f

( x
t
)

other Ai ’s are zero r = X, s = T

A4 �= 0, and F = G(r, s) Gs = 0 u = xy
6t + f

(

z − 5y2

3t

)

other Ai ’s are zero r = Y, s = T

with c1, c2, c3 and c4 being arbitrary constants. Using Eq. (79), kink-type solution is obtained
as

u(x, y, z, t) = c1 tanh

(

c1x − c3 y

4c2
1

+ c3t + c4

)

+ c2. (80)

Moreover, by using wave transformation w = aX + bY − cT where a, b and c are constants
in Eq. (78), putting F(x, y, t) = H(w), we get

a2bH (3)(w) + 6abH ′(w)2 − cH ′(w) = 0. (81)

Solving Eq. (81), we obtain

H(w) = cw

6ab
+ a1. (82)

Eventually, solution of Eq. (2)

u(x, y, z, t) = c(ax + by − ct)

6ab
+ a1, (83)

where a1 is an arbitrary constant.

4.5 Subalgebra T5 = a2V2 + V7:

4.5.1 For a2 = 0

Subalgebra reduces to V7 = ∂
∂y , and using its characteristic equation the corresponding

invariant form is

u(x, y, z, t) = F (X, Z , T ), (84)

with X = x, Z = z, T = t . On inserting solution in Eq. (2), we found the following reduction
equation

FXXXXZ + 20FXXZFX + 10FZ (6F 2
X + FXXX) + FT = 0. (85)
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The solution for Eq. (85) is

F (X, Z , T ) = c2 + c1 tanh

(

c1 X − c3

16c4
1

Z + c3T + c4

)

. (86)

where c1, c2, c3 and c4 are arbitrary constants. Using Eq. (86) in Eq. (84), the kink-type
solution of Eq. (2) is

u(x, y, z, t) = c2 + c1 tanh

(

c1x − c3

16c4
1

z + c3t + c4

)

. (87)

Again, new set of infinitesimals for Eq. (85) are

ξX = X

4
(A1 − A3) + A5, ξZ = A3 Z + A4, ξT = A1T + A2,

ηF = F
4

(A3 − A1) + A6, (88)

where Ai (1 ≤ i ≤ 6) are arbitrary constants.

When A1 = 0, A3 = 0 in Eq. (88)

Characteristic equations are given by

dX

A5
= dZ

A4
= dT

A2
= dF

A6
. (89)

Using Eqs. (89), the solution with similarity variables is given by

F =
(

A6

A2

)

T + G(r, s), with the help of r = X −
(

A5

A2

)

T, s = Z −
(

A4

A2

)

T . (90)

Substituting the above invariant form in Eq. (85), the reduced equation is given as

A6 − Gr (A5 − 20A2Grrs) + Gs(−A4 + 10A2(6G2
r + Grrr) + A2Grrrrs = 0. (91)

Again, new set of infinitesimal generators are

ξr = b2, ξs = b1, ηG = b3, (92)

where b1, b2 and b3 are integral constants and group-invariant solution is

G =
(

b3

b1

)

s + R(w), where w = r −
(

b2

b1

)

s. (93)

Using the value of G in Eq. (91), we have

A2b2 R(5) + (10A2(R(3) + 6R′2) − A4)(b3 − b2 R′)
− R′(20A2b2 R(3) + A5b1) + A6b1 = 0. (94)

Unfortunately, the solution for Eq. (94) is extremely difficult to solve analytically, and we
can assume one particular solution given as

R(w) = b w + c, (95)
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where b and c. Here, b in terms of other constants is given as follows

b = −
3
√

5A8 + 1
216

√
A7

30A2b2
+

52/3
(
−20A2b2

3 − A4b2
2 + A5b1b2

)

30b2
3
√

A8 +
√

A7
1080

+ b3

3b2
,

where

A7 = 29160000A4
2

(
40A2b3

3 − 3b2b3(2A4b2 + A5b1) + 9A6b1b2
2

)2

+
(
−3600A2

2b2
3 − 180A2b2(A4b2 − A5b1)

)3
,

A8 = −200A3
2b3

3 + 15A2
2b2(2A4b2b3 + A5b1b3 − 3A6b1b2).

Hence, using Eqs. (95), (90) in (84), solution for Eq. (2) is given as

u(x, y, z, t) = A2(b1(bx + c) + z(b3 − bb2)) + t (A4bb2 − A4b3 − A5bb1 + A6b1)

A2b1
.

(96)

4.5.2 For a2 = 1

Thus, corresponding subalgebra reduces to V2 + V7 = ∂
∂y + ∂

∂u , and using its characteristic
equation, the similarity solution is

u(x, y, z, t) = y + F (X, Z , T ), (97)

where the similarity variables X = x, Z = z, T = t . Putting above value of u in (2), one
obtain

FXXXXZ + 10FXXXFZ + 2FX (3 + 30FXFZ + 10FXXZ) + FT = 0. (98)

The solution for Eq. (98) is given by

F = c5 + c2 tanh(Xc2 + Zc3 − 2T c2(3 + 8c2
2c3) + c4). (99)

Hence, with the help of Eq. (99) in (97), one gets

u(x, y, z, t) = y + c5 + c2 tanh(xc2 + zc3 − 2tc2(3 + 8c2
2c3) + c4). (100)

The case for a2 = 0 is already discussed when we take subalgebra V7. Similarly, we do for
a2 = −1 to obtain solution of Eq. (2).

4.6 Subalgebra T6 = V8:

Using the characteristic equation for V8 = t ∂
∂x + y

6
∂
∂u , we get

u(x, y, z, t) = xy

6t
+ F (Y, Z , T ), (101)

with Y = y, Z = z, T = t . Making the use of u in (2), we have

3T 2FT + 5Y 2FZ + 3Y TFY = 0. (102)

By solving Eq. (102), we obtain

F (Y, Z , T ) = g

(
T

Y
,

3Z T − 5Y 2

3T

)

. (103)
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(a) (b) (c)

Fig. 2 The physical structure of W-shaped soliton profile for (104) presents doubly soliton, travel-

ing wave along the x-axis for g

(
t
y ,

3zt−5y2

3t

)

= tanh2
(

3t z−5y2

3y

)

+ tanh2

(

2t3

y3 + 2
(

3t z−5y2
)

t

)

+

tanh2

⎛

⎝

(
3t z−5y2

)2

9t2 + 2t2

y2 + 1

⎞

⎠

(a) (b) (c)

Fig. 3 The physical struture of M-shaped soliton profile for (104) shows doubly soliton, and 2D

plot exhibits solitary waves for g

(
t
y ,

3zt−5y2

3t

)

= sech2
(

3t z−5y2

3y

)

+ sech2

(

2t3

y3 + 2
(

3t z−5y2
)

t

)

+

sech2

⎛

⎝

(
3t z−5y2

)2

9t2 + 2t2

y2 + 1

⎞

⎠

Hence, using Eq. (103) in Eq. (101), we get the desired group-invariant solution

u(x, y, z, t) = xy

6t
+ g

(
t

y
,

3zt − 5y2

3t

)

. (104)

Choosing two suitable values of arbitrary function g(·, ·) in the form of tanh function via Fig.
2 and sech function via Fig. 3 is demonstrated.

4.7 Subalgebra T7 = V9:

For V9 = y ∂
∂x + z

10
∂
∂u , using characteristic equation we get
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(a) (b) (c)

Fig. 4 The physical structure of single soliton profile for (108) with g

(
z
y ,

3zt−5y2

3z

)

= tanh

[
3t z−5y2

3y

]2

shows perspective view of the real part of the dark-bright soliton solution, the wave propagation pattern of the
wave along the y-axis

u(x, y, z, t) = F (Y, Z , T ) + xz

10y
, (105)

with invariants Y = y, Z = z, T = t .
Putting the above invariant solution in Eq. (2), we have

FT + 3Z

5Y 2 (ZFZ + YFY ) = 0. (106)

which has the general solution

F = g

(
Z

Y
,

3Z T − 5Y 2

3Z

)

. (107)

Hence, using Eq. (107) in Eq. (105), we get the desired group-invariant solution is

u(x, y, z, t) = xz

10y
+ g

(
z

y
,

3zt − 5y2

3z

)

. (108)

Some particular solutions are shown in Figs. 4 and 5.

4.8 Subalgebra T8 = a6V6 + V7:

For a6 = 1, T8 becomes V6 +V7 = ∂
∂y + ∂

∂z and using its characteristic equation, we get the
desired invariant solution as u(x, y, z, t) = F (X, Y, T ), with X = x, Y = y − z and T = t .
Thus, the reduction equation is

FT + (1 − 20FX )FXXY − 2FY (−3F − X + 30F 2
X + 5FXXX) − FXXXXY = 0 (109)

By solving Eq. (109), we found the value of F as

F = c1 + 1√
5

tanh(
1

2
√

5
X + 4

25
T c3 − Y c3 − c2) (110)

with c1, c2 and c3. Hence, using Eq. (110), the group-invariant solution in this case is

u(x, y, z, t) = c1 + 1√
5

tanh

(
1

2
√

5
x + 4

25
c3t − (y − z)c3 − c2

)

(111)
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(a) (b) (c)

Fig. 5 The physical structure of single-soliton profile for (108) with g

(
z
y ,

3zt−5y2

3z

)

= sech

[
3t z−5y2

3y

]2

shows perspective view of the real part of the bright-dark soliton solution, the wave propagation pattern of the
wave along the y-axis

Following similar procedure we reduce Eq. (2) to ODEs and hence obtain solution for the
case a6 = −1.

4.9 Subalgebra T9 = V2 + V7 + V10:

In this case subalgebra is given by

V2 + V7 + V10 = ∂

∂x
+ ∂

∂y
+ ∂

∂u
,

and using corresponding characteristic equations, we have u(x, y, z, t) = y + F (X, Z , T ),
with X = x − y, Z = z and T = t . Putting the value of u into (2), we have

FT + (−6 + 60FZ )F 2
X + FX (6 + 20FXXZ) + (10FZ − 1)FXXX + FXXXXZ = 0 (112)

Solving Eq. (112), we get

F (X, Z , T ) = 10c2c1 + 1

10c2
tanh

(
1

20c2
X + Zc2 − (750c2

2 − 1)

2500c3
2

T + c4

)

(113)

where c1, . . . , c4 are arbitrary constants. Hence, one obtains

u(x, y, z, t) = 10c2c1 + 1

10c2
tanh

(
1

20c2
(x − y) + zc2 − (750c2

2 − 1)

2500c3
2

t + c4

)

(114)

Moreover, generators of Eq. (112) are
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ξx = 1

4
(18t + x)b1 + 1

4
(6t − x)b3 + b5, ξz = b3z + b4, ξt = b1t + b2,

ηF = 1

40
(−10b1 + 10b3)u + 1

40
zb1 + 3

40
b3z + b6, (115)

where b1, . . . , b6 are arbitrary constants. The characteristic equation is

dX
1
4 (18t + x)b1 + 1

4 (6t − x)b3 + b5
= dZ

b3z + b4
= dT

b1t + b2

= dF
1

40 (−10b1 + 10b3)u + 1
40 zb1 + 3

40 b3z + b6
. (116)

Let b3 = b1, then group-invariant is

F (X, Z , T ) = G(r, s) + 1

10

(

Z − (b4 − 10b6) log(b1 Z + b4)

b1

)

, (117)

where

r = (6b2 − b5) log(b1T + b2)

b1
− 6T + X, s = b1 Z + b4

b2
1T + b1b2

. (118)

Reduced (1+1)-dimensional equation is given as
(
b1sGr (20Grrs + 6b2 − b5) + b1sGrrrrs − 6(b4 − 10b6)G

2
r − (b4 − 10b6)Grrr

)

−b1sGs
(
b1s − 10

(
6G2

r + Grrr
)) = 0. (119)

Under the condition b6 = b4
10 , then above equation can be recast as

b1s
(
Gs

(
60G2

r + 10Grrr − b1s
) + Gr (20Grrs + 6b2 − b5) + Grrrrs

) = 0. (120)

Using infinitesimals, we write characteristic equation as

dr

d1
= ds

0
= dG

d2
. (121)

Then, we obtained G(r, s) = d2r
d1

+ R(w), where w = s. We get the desired ODE as

b1d2s(6b2 − b5)

d1
− b1s R′(s)

(

b1s − 60d2
2

d2
1

)

= 0. (122)

The primitive is

R(s) = e1 + d2(6b2 − b5) log
(
b1d2

1 s − 60d2
2

)

b1d1
. (123)

Using back substitution, we obtain group-invariant solution is

u(x, y, z, t) = a1 −
b5d2 ln

(
d2

1 (b1z+b4)

b1t+b2
− 60d2

2

)

b1d1
+

6b2d2 ln

(
d2

1 (b1z+b4)

b1t+b2
− 60d2

2

)

b1d1

− b5d2 ln(b1t + b2)

b1d1
+ 6b2d2 ln(b1t + b2)

b1d1
− 6d2t

d1
+ d2x

d1
− d2 y

d1
+ y + z

10
.

(124)
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4.10 Subalgebra T10 = V7 + V8 + V10:

For the infinitesimal generator

V7 + V8 + V10 = (t + 1)
∂

∂x
+ ∂

∂y
+ y

6

∂

∂u
,

ultimately gives u(x, y, z, t) = F (X, Z , T ), where Y = x − y(1 + t), Z = z and T = t .
Putting the above value of u into governing equation, we have

FT + 20FXFXXZ + FXXXXZ − (1 + T − 10FZ )(6F 2
X + FXXX) = 0. (125)

Infinitesimals of Eq. (125) are

ξX = 2

3
b̃1 X + b̃4, ξZ = −5

3
b̃1 Z + b̃3, ξT = b̃1T + b̃2,

ηF = 1

30
(−3Z − 20F )b̃1 + 1

10
Zb̃2 + b̃5, (126)

with b̃1, b̃2, b̃3, b̃4 and b̃5 being the arbitrary constants.
Case I: If b̃1 �= 0, then using Eq. (126)

d X
2
3 X + b1

= d Z
−5
3 Z + b2

= dT

T + b3
= dF

1
30 (−3Z − 20F ) + 1

10 Zb3 + b4
, (127)

where b1 = b̃4

b̃1
, b2 = b̃3

b̃1
, b3 = b̃2

b̃1
, b4 = b̃5

b̃1
, then similarity forms of original equation yield

F (X, Z , T ) = (3b2 − 5Z)2/5G(r, s) + 1

20
(3b2(b3 − 1) + 2(−b3 Z + 15b4 + Z)), (128)

with similarity variable

r = 3b1 + 2X

2(b3 + T )2/3 and s = −1

5
(3b2 − 5Z)(b3 + T )5/3. (129)

The second reduction in this case

− 60 × 52/5s2/5Gr (2Grr + 5sGrrs)

+ 3 × 52/5s2/5
(
−50sGs − 20G − (5s)3/5

) (
6 52/5s2/5G2

r + Grrr

)

+ 5s (2rGr − 5sGs) − 15sGrrrrs − 6Grrrr = 0. (130)

Clearly, one nontrivial solution of Eq. (130)

G(r, s) = c, a constant, (131)

Eventually, group-invariant solution of Eq. (2)

u(x, y, z, t) = 1

20
(3b2(b3 − 1) + 2(−b3z + 15b4 + z)) + c(3b2 − 5z)2/5 + y2

12
. (132)

which presents a parabolic wave profile in y − z plane.
Case II: If b̃1 = 0, then using Eq. (126) then we obtain

dX

b4
= dZ

b3
= dT

b2
= dF

1
10 Zb2 + b5

, (133)
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then similarity forms of KdV-type equation yield

F (X, Z , T ) = G(r, s) +
b2 Z2

2 + 10b5 Z

10b3
, (134)

where similarity variables s = Z − b3T
b2

and r = X − b4 Z
b3

.
The second reduction of Eq. (2) produces

b2

((
6G2

r + G(3,0)(r, s)
)

(10b3Gs − 10b4Gr + b2s − b3 + 10b5)

+20Gr (b3Grrs − b4Grrr) + b3Grrrrs)

− b2b4Grrrrr − b2
3Gs = 0. (135)

Infinitesimals of Eq (135) are

ξr = d1, ξs = 0, ηG = d2, (136)

where d1 and d2 are arbitrary constants. In order to find corresponding third reduction using
Eq. (136), we obtain the correspond group-invariant form

G(r, s) = d2r

d1
+ R(w), (137)

with w = s, which leads to ordinary differential equation given as

6b2d2
2

(
b2s + 10b3 R′(s) − b3 − 10b4d2

d1
+ 10b5

)

d2
1

− b2
3 R′(s) = 0. (138)

The solution of (138) is

R(w) = 6b2d2
2

( 1
2 b2d1w

2 − b3d1w − 10b4d2w + 10b5d1w
)

b3d1
(
b3d2

1 − 60b2d2
2

) + c1. (139)

Eventually, the group-invariant solution of (2) is

u(x, y, z, t) =
6b2d2

2

(

−10b4d2

(
z − b3t

b2

)
+ 10b5d1

(
z − b3t

b2

)
+ 1

2 b2d1

(
z − b3t

b2

)2 − b3d1

(
z − b3t

b2

))

b3d1

(
b3d2

1 − 60b2d2
2

)

+
b2z2

2 + 10b5z

10b3
+

d2

(
− b4z

b3
− (t + 1)y + x

)

d1
+ c1 + y2

12
. (140)

which exhibits also a parabolic wave profile in x, y, z, t .

Remark The obtained group-invariant solutions including the WeierstrassZeta function, M-
shaped solitons, W-shaped solitons, multi-solitons and rational function solutions which
are entirely different compared to other researchers works [29,32–34]. Also, the different
dynamical structures of these solutions have rich localized structures due to the existence of
free parameters in the infinitesimals.
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4.11 Subalgebra T11 = V2 + V6:

For the infinitesimal generator

V2 + V6 = ∂

∂z
+ ∂

∂u
,

we have following characteristic equation

dx

0
= dy

0
= dz

1
= dt

0
= du

1
. (141)

The similarity form of the solution of Eq. (2)

u(x, y, z, t) = F (X, Y, T ), (142)

with similarity variables X = x, Y = y and T = t . Inserting the value of u into (2), we have

FT + 6FXFY + 60F 2
X + FXXY + 10FXXX = 0. (143)

To solve Eq. (143), we obtain new set of infinitesimal generators given as

ξX = − X

2
(X − 10Y )A1 + 1

2
(−X + 30Y )A4 + A6T + A7,

ξY = A3T + A4Y + A5,

ξT = A1T + A2,

ηF = 1

6
(−3A1 + 3A4)F + 1

6
(X − 20Y )A3 + 1

6
Y A6 + A8, (144)

where A1, A2, A3, A4, A5, A6, A7 and A8 are arbitrary constants.
For A2, A5, A7 and A8 being nonzero and taking all other constants zero, we obtain

following characteristic equations

dX

1
= dY

1
= dT

1
= dF

1
. (145)

The function F can be written as

F (X, Y, T ) = T + G(r, s), (146)

through r = X − T, s = Y − T . Putting the similarity form in Eq. (143), we have following
reduced equation

1 − Gs − Gr + 6Gs Gr + 60G2
r + Grrs + 10Grrr = 0. (147)

Again we can find infinitesimals for Eq. (143) given as

dr
1
3 (−r + 40s)B1 + B3

= ds

B1s + B2
= dG

1
9 (−r + s + 3G)B1 + B4

, (148)

where B1, B2, B3, B4 are arbitrary constants. Let us take B1 = 0, then the desired character-
istic equations are given as

dr

B3
= ds

B2
= dG

B4
. (149)

We obtain the similarity variable as w = r − B3
B2

, and the similarity form is given by

G(r, s) = B2

B4
s + R(w), (150)
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Putting G in Eq. (147), we obtain

B2 − B4 + R′(−B2 + B3 + 6B4 + (60B2 − 6B3)R′) + (10B2 − B3)R′′′ = 0 (151)

Primitives for Eq. (151) are

R(w) = α + (B2 − B3 − 6B4 + √
ξ)w

2(60B2 − 6B3)
,

R(w) = α + (B2 − B3 − 6B4 − √
ξ)w

2(60B2 − 6B3)
(152)

where ξ = −239B2
2 + 22B2 B3 + B2

3 + 228B2 B4 − 12B3 B4 + 36B2
4 and α is an arbitrary

constant. Using Eqs (152), (150), (146) in (142), we obtain

u(x, y, z, t) = α + t + z + B4

B2
(y − t) + (B2 − B3 − 6B4 + √

ξ)w

2(60B2 − 6B3)
(B2(t − x) + B3(y − t)), (153)

u(x, y, z, t) = α + t + z + B4

B2
(y − t) + (B2 − B3 − 6B4 − √

ξ)w

2(60B2 − 6B3)
(B2(t − x) + B3(y − t)). (154)

In summary, the physical interpretation of the resulting soliton solutions is illustrated by
various three-dimensional, two-dimensional and contour graphs through numerical simula-
tion. The constructed group-invariant solutions involve many arbitrary constants and arbitrary
functions, thereby exhibiting rich physical structures and including the existing solutions in
the literature.

5 Adjoint equation and conservation laws

5.1 Necessary preliminaries and adjoint equation

For a given differential equation, there is a close connection between Lie symmetries and
conservation laws as established by Noether’s theorem. To derive conservation laws of Eq.
(2), we use the following Theorem proved by Ibragimov [6,38].

Theorem 1 Any symmetry (Lie point, Lie-Bäcklund, nonlocal symmetry)

X = ξ i (x, u, u(1), ...u(s))
∂

∂xi
+ η(x, u, u(1), ...u(s))

∂

∂u
, (155)

of Eq. (2) provides a conservation law Di (Ci ) = 0 for the system consisting of Eq. (2) and
the adjoint equation

F∗(x, u, v, u(1),V(1)...u(s),V(s)) = δ(pF)

δu
= 0. (156)

The conserved vector is given by

Ci = ξ iL + W

[
∂L
∂ui

− D j

(
∂L
∂ui j

)

+ D jDk

(
∂L

∂ui jk

)

− . . .

]

(157)

+ D j (W )

[
∂L
∂ui j

− Dk

(
∂L

∂ui jk

)

. . .

]

+ D jDk(W )

[
∂L

∂ui jk
. . .

]

, (158)

where W and L are defined as

W = η − ξ j u j , L = p(x)F(x, u, u(1), ...u(s)). (159)
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For a conserved vector, the following conservation equation holds:

Dx (Cx ) + Dy(C y) + Dz(Cz) + Dt (Ct ) = 0 (160)

where Cx = Cx (t, x, y, z, u, ...), C y = C y(t, x, y, z, u, ...), Cz = Cz(t, x, y, z, u, ...), Ct =
Ct (t, x, y, z, u, ...).

A formal Lagrangian for three-dimensional KdV-type equation is

L = p(x, y, z, t)[ut + 6ux uy + uxxy + uxxxxz + 60u2
x uz + 10uxxxuz + 20ux uxxz]. (161)

Here, p(x, y, z, t) is a new dependent variable also known as adjoint variable. According to
Eq. (161), we obtain

∂L
∂ux

= −px (6uy + 120uzux + 20uxxz)p(120ux uxz + 6uxy + 120uzuxx + 20uxxxz),

∂L
∂uy

= −6pyux − 6puxy,
∂L
∂uz

= −pz(60u2
x + 10uxxx) − p(120ux uxz + 10uxxxz),

∂L
∂ut

= pt ,
∂L

∂uxxz
= −20uxz pxx − 40pxzuxx

− 20ux pxxz − 40px uxxz − 20pzuxxx − 20puxxxz,

∂L
∂uxxy

= −pxxy,
∂L

∂uxxx
= −30uxz pxx − 30px uxxz − 10uz pxxx

− 10puxxxz,
∂L

∂uxxxxz
= −pxxxxz (162)

The adjoint equation for (3+1)-dimensional KdV-type equation is given by

F∗ = δL
δu

= 0, (163)

where

δL
δu

= ∂L
∂u

− Dx
∂L
∂ux

− Dy
∂L
∂uy

− Dz
∂L
∂uz

− Dt
∂L
∂ut

− DxDxDy
∂L

∂uxxy
− DxDxDx

∂L
∂uxxx

− DxDxDz
∂L

∂uxxz
− DxDxDxDxDz

∂L
∂uxxxxz

, (164)

where Dx ,Dy,Dz and Dt denote the total differentiation with respect to x, y, z and t , respec-
tively. Substituting Eq. (164) into Eq. (163), the adjoint equation for the (3+1)-dimensional
KdV-type equation is expressed by

F∗ = −pt − 6pyux − 6puxy − 50uxz pxx − 40pxzuxx − 20ux pxxz

− 70px uxxz − px (6uy + 120uzux + 20uxxz) − pxxy − 10uz pxxx − 20pzuxxx

− pz(60u2
x + 10uxxx) − 30puxxxz − p(120ux uxz + 10uxxxz)

− p(120ux uxz + 6uxy + 120uzuxx + 20uxxxz) − pxxxxz. (165)

Clearly, when p = u, we obtain

− ut − 12uyux − 180uzu2
x − 240uux uxz − 12uuxy − 120uuzuxx

− 90uxzuxx − 110ux uxxz − uxxy − 40uzuxxx − 60uuxxxz − uxxxxz = 0. (166)

It is easily obtain that on substituting u instead of p in adjoint equation (2) is not recovered.
Thus, (3+1)-dimensional KdV-type equation is not self-adjoint ”.
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5.2 Conservation laws

Using Lagrangian in Eq. (161) and Theorem 1 for Eq. (2), the general form of conservation
laws is given as

Cx = ξ1L + W

(
∂L
∂ux

+ Dxx
∂L

∂uxxx
+ Dxz

∂L
∂uxxz

+ Dxy
∂L

∂uxxy
+ Dxxxz

∂L
∂uxxxxz

)

+ Wx

(
∂L

∂uxx
− Dx

∂L
∂uxxx

− Dy
∂L

∂uxxy
− Dz

∂L
∂uxxz

− Dxxz
∂L

∂uxxxxz

)

+ Wy

(
∂L

∂uxy
− Dx

∂L
∂uxxy

)

+ Wz

(
∂L

∂uxz
− Dx

∂L
∂uxxz

− Dxxx
∂L

∂uxxxxz

)

+ Wxx

(
∂L

∂uxxx
+ Dxz

∂L
∂uxxxxz

)

+ Wxy

(
∂L

∂uxxy

)

+ Wxz

(
∂L

∂uxxz
+ Dxx

∂L
∂uxxxxz

)

+ Wxxx

(

−Dz
∂L

∂uxxxxz

)

+ Wxxz

(

−Dx
∂L

∂uxxxxz

)

+ Wxxxz
∂L

∂uxxxxz
,

Cy = ξ yL + W

(
∂L
∂uy

+ Dxx
∂L

∂uxxy

)

+ Wx

(

−Dx
∂L

∂uxxy

)

+ Wxx

(
∂L

∂uxxy

)

,

Cz = ξ zL + W

(
∂L
∂uz

+ Dxx
∂L

∂uxxz
+ Dxxxx

∂L
∂uxxxxz

)

+ Wx

(

−Dx
∂L

∂uxxz
− Dxxx

∂L
∂uxxxxz

)

+ Wxx

(

Dxx
∂L

∂uxxxxz

)

+ Wxxx

(

−Dx
∂L

∂uxxxxz

)

+ Wxxxx

(
∂L

∂uxxxxz

)

,

Ct = τL + W
∂L
∂ut

, (167)

with W = η − ξx ux − ξyuy − τut .
In this article, we consider conservation laws related with two infinitesimal symmetries

V3 and V10. They are given as follows: For the symmetry V3 = ∂
∂t , we have W = −ut . Now,

using Eqs. (162) in Eq. (167), the corresponding conservation laws are

Cx = uyt px − puxyt − uxzt (20pux + pxx ) − (10puz + pxz)uxxt

+ uxt (py + 10uz px + 20pzux + 30puxz + pxxz)

− ut (20ux pxz + 40px uxz + pxy + 10uz pxx + 20pzuxx

+ 2p(3uy + 60uzux + 25uxxz)) + px uxxzt

+ uzt (20px ux + 20puxx + pxxx ) + pzuxxxt − puxxxzt ,

C y = px uxt − ut (6pux + pxx ) − puxxt ,

Cz = −(20pux + pxx )uxxt + uxt (20px ux + 20puxx + pxxx ) + px uxxxt

− ut (20ux pxx + 40px uxx + 30p(2u2
x

+ uxxx ) + pxxxx ) − puxxxxt ,

Ct = −put + p(ut + 6uyux + 60uzu2
x + 20ux uxxz + uxxy + 10uzuxxx + uxxxxz),

(168)

For the symmetry V10 = ∂
∂x , we have W = −ux . Now, using Eqs. (162) in Eq. (167), the

corresponding conservation laws are

Cx = −20u2
x pxz + px uxy − ux (20px uxz + pxy + 10uz pxx) + pyuxx + 10uz px uxx

+ uxx pxxz − pxxuxxz + p(ut − 60uzu2
x + 50uxzuxx − 50ux uxxz) + uxz pxxx

− pxzuxxx + px uxxxz + pzuxxxx,

C y = −ux pxx + px uxx − p(6u2
x + uxxx,
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Cz = −20u2
x pxxuxx pxxx − pxxuxxx − ux (20px uxx + pxxxx) + px uxxxx

− p(60u3
x − 20u2

xx + 50ux uxxx + uxxxxx),

Ct = −pux ,

(169)

Similarly, one can obtain other conservation laws corresponding to each Lie point symmetry.
Making use of explicit solutions of Eq. (165), nonlocal conservation laws in case of each Lie
point symmetries can be obtained for (3+1)-dimensional KdV-type equation.

6 Results and discussion

The exact analytical wave solutions are obtained with the help of symbolic computation via
Lie symmetry analysis for a (3+1)-KdV equation. The dynamical behavior of obtained solu-
tions demonstrates the different lump-type soliton solutions for adequate choice of arbitrary
independent functions and free parameters. Some important physical structures are obtained,
and a summary of the profiles of the solutions is as follows:
Figure 1 shows the physical structures of Lump-type solitons and multi-soliton profiles for
(55) with parameters c1 = 154, c2 = 0.003, c3 = 2717. Properties of such solitons reveal
that solitons do not transform their size and shapes when they are associated with each
other and complete elastic nature is described by the wave structures. In this figure, we
have shown elastic behavior with parameters (a) a = 0.3, b = 1, (b) a = 1, b = 1, (c)
a = 1.5, b = 1, (d) a = 0.3, b = 4, (e) a = 1, b = 4, (f) a = 1.5, b = 4. Moreover,
annihilation has been achieved for parameters (g) a = 1, b = 1, c1 = 1, c2 = 0.3, c3 = 1,
(h) a = 1, b = 5, c1 = 1, c2 = 0.3, c3 = 1, (i) a = 1, b = 20, c1 = 1, c2 = 0.3, c3 = 1. In
this figure, we have observed annihilation of multisoliton into a stationery wave profile for
Eq. (55) by changing the specific arbitrary constants as c1 = 1, c2 = 0.3, c3 = 1.
Figure 2 exhibits the physical structure of W-shaped soliton profile for (104) presents

doubly soliton, traveling wave along the x-axis for g
(

t
y ,

3zt−5y2

3t

)
= tanh2

(
3t z−5y2

3y

)
+

tanh2
(

2t3

y3 + 2
(
3t z−5y2)

t

)

+tanh2
((

3t z−5y2)2

9t2 + 2t2

y2 + 1

)

. Moreover, two-dimensional wave

profiles and contour plots are demonstrated in this figure for parameters z = 0.9654, t = 6
and x = 1, 5, 10. An important observation is the amplitude, the velocity and the shape of
the soliton remains constant.
Figure 3 shows the physical struture of M-shaped soliton profile for (104) shows dou-

bly soliton; 2D plot exhibits solitary waves for g
(

t
y ,

3zt−5y2

3t

)
= sech2

(
3t z−5y2

3y

)
+

sech2
(

2t3

y3 + 2
(
3t z−5y2

)

t

)

+ sech2
((

3t z−5y2
)2

9t2 + 2t2

y2 + 1

)

. In this figure, three-dimensional

plot is sketched using z = 0.9654, t = 6, two-dimensional plot shows M-wave propagation
for x = 3.5, z = 0.9654 and a contour plot is also exhibited for z = 0.9654, t = 6. Such
solitary waves type precisely M-shaped and W-shaped solitons described the propagation of
ultrashort pulses in optical fibers [39].
Figure 4 represents V-type physical structure of single soliton profile for (108) with

g
(

z
y ,

3zt−5y2

3z

)
= tanh

[
3t z−5y2

3y

]2
shows perspective view of the real part of the dark-bright

soliton solution and the wave propagation pattern of the wave along the y-axis. It includes
three-dimensional plots for z = 1, t = 15, wave propagation using two-dimensional plot for
x = 2, z = 1, t = 15 and contour plot for z = 1, t = 15.
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(a) (b) (c)

Fig. 6 The physical structure of kink wave soliton profile (111) for c1 = 0.4873, c2 = 0.3374 and c3 =
0.3984 shows strip single soliton in 3D plot; 2D plot with three values of x and corresponding contour shape

Figure 5 exhibits the physical structure of single soliton profile for (108) with g
(

z
y ,

3zt−5y2

3z

)
=

sech
[

3t z−5y2

3y

]2
and shows perspective view of the real part of the bright-dark soliton solution,

the wave propagation pattern of the wave along the y-axis. It includes three-dimensional plot
for z = 1, t = 14, wave propagation using two-dimensional plot for x = 2, z = 1, t = 14 and
contour plot for z = 1, t = 14. Such types of solutions are new soliton solutions obtained in
this work that can help us with understanding the propagation of solitons through a nonlinear
medium.
Figure 6 shows the physical structure of Kink wave soliton profile (111) for c1 = 0.4873,
c2 = 0.3374 and c3 = 0.3984 which describes strip single soliton in 3D plot; 2D plot
with three values of x and corresponding contour shape [40]. Using the values of certain
free parameters, we can control the solitons propagation direction and speed and reduce the
interactions between them as well.

It is interesting to notify that the established solutions in this article have not been reported
in the literature. Furthermore, the wide diversity of features and physical parameters of these
generated soliton solutions are illustrated with the assistance of 3D plots, considering the
suitable choice of involved arbitrary independent functions and other constants. Such type of
investigation is highly recommended in the areas of progressive research and development.

7 Conclusion

Applications of the Lie group-theoretic method are well defined for constructing Lie point
symmetries and group-invariant solutions of three-dimensional KdV-type equation. The geo-
metric vector fields spanned by ten basic Lie point symmetries are obtained with the help of
computerized symbolic computation Maple. An optimal system of ten symmetry subalgebras
is established to classify all the symmetry reductions. By using the optimal system, Eq. (2) is
converted into numerous NPDEs with less order. In this work, symbolic computation is used
for numerical simulation of various solutions and different types of solutions are derived and
interpreted via three-dimensional and two-dimensional graphs through Mathematica 11.3.
The obtained solutions are given by equations (44), (55), (70), (75), (80), (83), (96), (104),
(108), (111), (100), (114), (124), (132), (140) which are entirely different compared to the
works [33,34]. Using the Ibragimov approach, we constructed nonlocal conservation laws
for some Lie point symmetries. The obtained conservation laws can be used in the construc-
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tion of new numerical schemes and stability analysis of solutions so obtained. Some exact
analytic solutions in the shapes of kink waves, traveling waves, single solitons, doubly soli-
tons, curved-shaped multi-solitons and explicit WeierstrassZeta are constructed by Lie group
of transformation method. Moreover, this work reveals that some traveling waves which
propagate are solitary wave types precisely M-shaped, W -shaped solitons and dark-bright
solitons.
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8 Appendix I

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 A12 −ε3
1
4 eε5/2ε4 0 A16 A17 A18

ε9
4 A110

0 e
ε5−ε1

4 0 0 0 0 0 0 0 0
0 A32 eε1 0 0 1

20 (−3)eε1+ε5ε2
4 A37 0 0 A310

0 A42 0 e
ε5−ε1

2 0 −e
ε5−ε1

2 ε7 A38 A48 0 A410

0 A52 0 − 1
2 eε5/2ε2 1 1

2 eε5/2ε2ε7 − ε6 − ε7
2 A58

3ε9
4 A510

0 eε5 ε9
10 0 0 0 eε5 0 0 0 0

0 1
6 e

ε1+ε5
2 ε8 0 0 0 0 e

ε1+ε5
2 0 0 A710

0 A82 0 0 0 0 0 A88 0 A810

0 A92 0 0 0 0 0 1
10 (−3)e− ε1

4 − ε5
4 ε4 A98 A910

0 1
20 e

ε1+ε5
4 ε4 0 0 0 0 0 0 0 A1010

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(170)

where Ai j are given below

A12 = 18eε5ε3ε9ε
2
4 + 15eε5/2(ε10 − 4ε3ε8 − 2ε7ε9)ε4 + 300eε5/4ε2 − 100ε7ε8

1200
,

A52 = 1

120

(−30eε5/4ε2 − 3eε5/2(ε10 − 2ε7ε9)ε2 − 2(5ε7ε8 + 6ε6ε9)
)
,
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A16 = 3

20
eε5ε3ε2

4 − 1

4
eε5/2ε4ε7,

A17 = 1

10

(
−3eε5/2ε3ε4 − 5ε7

)
,

A18 = 3

40

(
10ε8 + eε5/2ε4ε9

)
,

A42 = 1

20
e

ε5−ε1
2 (ε10 − (ε3 + ε4)ε8 − 2ε7ε9),

A58 = 1

20

(
5ε8 − 3eε5/2ε2ε9

)
,

A82 = − 1

60
e− 3ε1

4 − ε5
4

(
3eε5/2ε3ε4 + 10ε7

)
,

A98 = e− ε1
4 − 3ε5

4 ,

A110 = 1

20

(
−6eε5/2ε3ε4ε9 − 5(ε10 + 4ε3ε8 + 2ε7ε9)

)
,

A310 = eε1ε8 + 3

10
eε1+ ε5

2 ε4ε9,

A410 = −3

10
e

ε5−ε1
2 (ε3 + ε4)ε9,

A32 = 1

20
eε1+ ε5

2 ε4ε8 − 3

200
eε1+ε5ε2

4ε9,

A37 = 3

10
eε1+ ε5

2 ε4,

A38 = −3

10
e

ε5−ε1
2 (ε3 + ε4),

A48 = 3

10
e

ε5−ε1
2 ε9,

A88 = e− 3ε1
4 − ε5

4 ,

A92 = 1

20
e− ε1

4 − 3ε5
4

(
eε5/2ε4ε7 − 2ε6

)
,

A510 = 1

4
(ε10 − 2ε7ε9),

A710 = e
ε1+ε5

2 ε9,

A810 = −e− 3ε1
4 − ε5

4 ε3,

A910 = −e− ε1
4 − 3ε5

4 ε7,

A1010 = e
ε1−ε5

4 .
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