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Abstract The nonlocal integral elasticity and the modified strain gradient theory are con-
sistently integrated in the framework of the nonlocal modified gradient theory of elasticity.
The equivalent differential formulation of the constitutive law, equipped with appropriate
nonstandard boundary conditions, is introduced. The size-dependent effects of the dilatation
gradient, deviatoric stretch gradient, and symmetric rotation gradient in addition to the non-
locality are beneficially captured in the flexure problem of nano-beams. The well posedness
of the proposed nonlocal modified gradient problem is demonstrated via analytical exami-
nation of the elastostatic flexure and the wave dispersion phenomenon in nano-beams. The
dispersive behavior of flexural waves is verified in comparison with the molecular dynamics
simulation. The dominant stiffening effect of the gradient characteristic parameters asso-
ciated with the nonlocal modified gradient elasticity is confirmed. Both the stiffening and
softening responses of nano-structured materials are effectively realized in the framework
of the introduced augmented elasticity theory. The conceived nonlocal modified gradient
elasticity theory can accordingly provide a practical approach for nanoscopic study of the
field quantities.

1 Introduction

Despite the fact that nano-materials are nowadays considered as essential constituents of pio-
neering engineering, peculiar mechanical responses are reported through experimental results
and numerical simulations [1–4]. The classical elasticity theory is imprecise in describing
the physics of nano-materials, and accordingly, studying the behavior of media with nano-
structural features via augmented elasticity theories has been the focus of numerous investi-
gations, where recent reviews are tackled in [5, 6].

The smaller-is-stiffer phenomenon, detected by laboratory experiments [7–9], can be
properly taken into account in the framework of the strain gradient theory. The kinematics
of the strain gradient continuum is assumed to have additional degrees of freedom, and
consequently, the response of the medium is described by incorporating the gradients of the
displacement field [10]. Among various forms of the strain gradient elasticity, the modified
strain gradient theory, introduced by Lam et al. [9], has drawn more attentions in the literature.
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The elastic strain energy associated with the modified strain gradient theory comprises both
the first- and second-order gradients of the displacement field and can be described in terms of
the strain tensor, dilatation gradient vector, deviatoric stretch gradient tensor, and symmetric
rotation gradient tensor. The modified strain gradient theory is, therefore, supplied with
three gradient length-scale parameters reflecting the dilatation gradients, deviatoric stretch
gradients, and rotation gradients. The stiffening response of nano-structures, realized via
utilizing the modified strain gradient theory, is widely addressed in the literature; to mention
some representative works, let us recall [11–17].

The smaller-is-softer phenomenon, observed in experimental studies [18–20], can be alter-
natively captured consistent with the nonlocal elasticity theory. The nonlocal stress field at
any material point is assumed to be affected by the strain field at not only that material point
but also those of its vicinity. The nonlocality is described through an integral convolution
between an attenuation kernel and the kinematic field. The nonlocal kernel, enriched with
a nonlocal characteristic length, drastically decreases with distance based on the axiom of
attenuating neighborhood [21]. Restoring the nonlocal integral convolution with the differ-
ential constitutive law, however, leads to anomalous structural results [22–24]. Advanced
remedies are proposed in the literature to overcome the intrinsic anomalies associated with
the nonlocal differential formulation [25–29]. Nonlocal elasticity approach has been broadly
implemented to simulate the softening behavior of nano-structures, where recent contribu-
tions are addressed in [30–38].

The lack of consensus on the mechanical behavior of nano-sized structures, in solely
exhibiting the stiffening or softening effects, is revealed in view of experimental observa-
tions. Nano-materials can, de facto, demonstrate both the structural responses depending on
particular state conditions of the material [18, 22]. The nonlocal gradient theory of elastic-
ity is conceived as a response to the need to entail a more comprehensive elasticity theory
which is capable of capturing and describing both the structural responses at small scale. The
nonlocal gradient elasticity is established via unification of the nonlocal differential and the
simplified stain gradient models [39]. The resulted constitutive law is of higher order than the
one of the classical elasticity theories and accordingly should be equipped with additional
nonstandard boundary conditions. The proper choice of the nonstandard boundary conditions
is still an open controversial issue in the literature [40, 41]. The nonlocal gradient elasticity
theory, nevertheless, has recently received much attention and has been widely applied to
investigate various nano-structural problems; as representative recent advances are reported
in [42–46].

The present study aimed to consistently introduce the contribution of the nonlocal integral
elasticity to the modified strain gradient theory. In comparison with the classical nonlocal gra-
dient model, the proposed nonlocal modified gradient elasticity theory, enriched with four
intrinsic length scales, can appropriately characterize the effects of nonlocality, dilatation
gradient, deviatoric stretch gradient, and symmetric rotation gradient. The nonlocal mod-
ified gradient theory is applied to nano-sized beams in flexure with the intention of more
accurately describing the inherent size effects. The paper is structured as follows. The flex-
ure of nano-beams consistent with the modified strain gradient theory is briefly recalled in
Sect. 2. The constitutive law of the nonlocal modified gradient theory is established utiliz-
ing a consistent variational approach and the nonstandard boundary conditions, required to
close the constitutive problem, is also introduced. In Sect. 3, the wave dispersion response of
nano-materials within the framework of the nonlocal modified gradient elasticity is analyt-
ically investigated and validated with the molecular dynamics simulation results. Section 4
is devoted to rigorously examine the elastostatic flexure of nano-beams via a practical solu-
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Fig. 1 Coordinate system and configuration of a beam in flexure

tion approach and, furthermore, is enriched by illustrative numerical results and discussions.
Section 5 summarizes the main outcomes and draws the concluding remarks.

2 Nonlocal modified gradient mechanics of beams in flexure

A homogenous elastic beam of length L � b−a and cross section � is considered and referred
to the orthogonal Cartesian coordinates where the x abscissa coincides with the longitudinal
centroidal axis and the z ordinate is oriented downwards. The beam ends, at x � a and x � b,
are restrained to prevent any rigid motion, as illustrated in Fig. 1. The beam is subjected to a
transverse loading q applied downwards at the top surface of the beam. The material possesses
the density ρ and elastic and shear moduli E and μ, respectively. The elasticity solution of
the flexure of cylinders [47, 48] can be applied to set forth the displacement field of the beam
consistent with the Euler–Bernoulli model as

u1 � −z∂xw(x, t), u2 � 0, u3 � w(x, t) (1)

with w being the transverse deflection. The total elastic strain energy U and the kinetic
energy T of the Euler–Bernoulli beam consistent with the modified strain gradient theory
[49, 50] are written as

U � 1

2

∫ b

a

[
DE (χ(x, t))2 + Dμ(∂xχ(x, t))2]dx −

∫ b

a
q(x)w(x, t)dx

T � 1

2

∫ b

a

[
Aρ(∂tw(x, t))2 + Iρ(∂xtw(x, t))2]dx (2)

where χ � ∂xxw denotes the curvature of the beam centroidal axis along with the so-called
higher-order stiffness parameters DE , Dμ defined as

DE � IE + Aμ

(
2�2

0 +
8

15
�2

1 + �2
2

)
, Dμ � Iμ

(
2�2

0 +
4

5
�2

1

)
(3)

where �0, �1, �2 are the gradient length-scale parameters related to the dilatation gradients,
deviatoric stretch gradients, and rotation gradients, correspondingly. The classical cross-
sectional mass Aρ , rotatory inertia Iρ , flexural stiffness IE , shear stiffness Iμ, and shear area
Aμ are furthermore defined by

Aρ �
¨

�

ρdA, Iρ �
¨

�

ρz2dA,

Aμ �
¨

�

μdA, IE �
¨

�

Ez2dA, Iμ �
¨

�

μz2dA. (4)

123



  559 Page 4 of 18 Eur. Phys. J. Plus         (2021) 136:559 

In view of the kinematic compatibility condition χ � ∂xxw, performing the first-order
variation of the Lagrangian functional L � T − U, followed by integration by parts, yields

δL �
∫ b

a

[−Aρ∂t tw(x, t) + Iρ∂xxttw(x, t) + q(x) − DE∂xxxxw(x, t)

+Dμ∂xxxxxxw(x, t)
]
δwdx +

(−DE∂xxw + Dμ∂xxxxw
)
∂xδw

∣∣
x�a,b

+
(
DE∂xxxw − Dμ∂xxxxxw

)
δw

∣∣
x�a,b − Dμ∂xxxw∂xxδw

∣∣
x�a,b. (5)

To simplify the first-order variation of the Lagrangian functional δL, the resultant flexural
moment M is introduced as

M � DEχ(x, t) − Dμ∂xxχ(x, t) � DE∂xxw(x, t) − Dμ∂xxxxw(x, t). (6)

Applying the Hamilton’s variational principle, the differential and boundary conditions of
dynamic equilibrium of the modified strain gradient beam, while assuming arbitrary variations
of the curvature field, are determined

∂xx M(x, t) � q(x) − Aρ∂t tw(x, t) + Iρ∂xxttw(x, t)

M∂xδw|x�a,b � ∂x Mδw|x�a,b � 0

Dμ∂xχ
∣∣
x�a,b � 0. (7)

To appropriately introduce the contribution of nonlocality to the modified strain gradient
beam model, the constitutive law is assumed to be governed by the elastic potential functional
F as

(8)

F � 1

2
DE

∫ b

a

∫ b

a
χ (x, t) ϕ (x − ξ, �c) χ (ξ, t) dξdx

+
1

2
Dμ

∫ b

a

∫ b

a
∂xχ (x, t) ϕ (x − ξ, �c) ∂ξχ (ξ, t) dξdx

where x, ξ are the points of the beam domain. The attenuation nonlocal kernel ϕ is assumed
to depend on a nonlocal characteristic length �c and moreover meet the positivity, symmetry,
normalization, and impulsivity properties [51].

The resultant moment in the nonlocal modified gradient beam is detected via setting equal
the directional derivative of the elastic potential functional F along a virtual curvature field
δχ (with compact support in the domain) to the virtual work of the flexural moment field.
Utilizing a standard variational procedure, the constitutive law of the flexural moment in the
framework of the nonlocal modified gradient elasticity theory is provided by

M(x, t) � DE

∫ b

a
ϕ(x − ξ, �c)χ(ξ, t)dξ − Dμ∂x

∫ b

a
ϕ(x − ξ, �c)∂ξχ(ξ, t)dξ. (9)

To derive the equivalent differential constitutive law, the attenuation nonlocal kernel is
considered to be the Helmholtz kernel function, defined as

ϕ(x − ξ, �c) � 1

2�c
exp

(
−|x − ξ |

�c

)
. (10)

In view of the mathematical approach addressed in [52, 53], the integro-differential con-
stitutive model Eq. (9), enriched with the Helmholtz kernel function Eq. (10), can be demon-
strated to be equivalent to the differential formulation

1

�2
c
M(x, t) − ∂xx M(x, t) � DE

�2
c

χ(x, t) − Dμ

�2
c

∂xxχ(x, t) (11)
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subject to the nonstandard boundary conditions at the beam ends

∂x M(a, t) − 1

�c
M(a, t) � Dμ

�2
c

∂xχ(a, t)

∂x M(b, t) +
1

�c
M(b, t) � Dμ

�2
c

∂xχ(b, t). (12)

Prescribing the nonstandard boundary conditions closes the constitutive problem on
bounded domains, and thus, the equivalence of the differential formulation to the integro-
differential constitutive model is assured. The flexural moment, as the output of the integral
convolutions of the constitutive law, can properly meet the equilibrium conditions. The con-
ceived nonlocal modified gradient elasticity theory, therefore, results in well-posed problem,
as put into evidence in the elastostatic and elastodynamic analyses of inflected beams.

Taking into consideration the impulsivity property of the nonlocal kernel, the modified
strain gradient model of nano-beams in flexure can be recovered as a special limiting case
of the conceived nonlocal modified gradient theory. The modified strain gradient law of
the flexural moment field and the corresponding higher-order boundary conditions can be
restored via vanishing of the nonlocal characteristic length as

M(x, t) � DEχ(x, t) − Dμ∂xxχ(x, t)

Dμ∂xχ(a, t) � Dμ∂xχ(b, t) � 0. (13)

The constitutive model of the nonlocal gradient beam in flexure and the associated non-
standard boundary conditions can be furthermore obtained via setting the stiffness parameters
as DE � IE and Dμ � �2

s IE , where �s is the gradient characteristic length consistent with
the simplified strain gradient theory,

1

�2
c
M(x, t) − ∂xx M(x, t) � IE

�2
c
χ(x, t) − �2

s IE
�2
c

∂xxχ(x, t)

∂x M(a, t) − 1

�c
M(a, t) � �2

s IE
�2
c

∂xχ(a, t)

∂x M(b, t) +
1

�c
M(b, t) � �2

s IE
�2
c

∂xχ(b, t). (14)

To study the diverse gradient effects, detectable in the framework of the nonlocal modified
gradient elasticity, the nonlocal gradient model can be considered as a suitable counterpart
for the comparison sake.

The so-called nonlocal couple stress model is introduced in the literature by integrating
the nonlocal differential model and the modified couple stress theory, while nanoscopic
effects of the dilatation gradient and the deviatoric stretch gradient are overlooked [54].
Close examination of the conceived size-dependent formulation reveals that the higher-order
stiffness parameter Dμ vanishes by setting zero the gradient length-scale parameters �0, �1.
A comparison of the homogenous nonstandard boundary conditions Eq. (12), in the absence
of the dilatation gradient and the deviatoric stretch gradient effects, with the equilibrium
conditions Eq. (7)1–2 will evince that the requirements dictated by the equilibrium cannot be
fulfilled. Indeed, the elastostatic flexure problem of a nano-sized beam consistent with the
nonlocal couple stress model incorporates a governing differential equation of the fourth-
order subjected to six boundary conditions including four classical boundary conditions and
two homogenous nonstandard boundary conditions. The resulted over-constrained boundary
value problem admits no solution, and the nonlocal couple stress model, therefore, results in
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ill-posed problems defined on bounded domains. A similar anomalous issue with reference to
the nonlocal differential model of elastic beams in flexure is addressed in [51]. Nevertheless,
the nanoscale effects of the gradient length-scale parameters along with the nonlocality can
be consistently characterized in the conceived framework of the nonlocal modified gradient
elasticity theory.

3 Wave dispersion

A suitable augmented elasticity theory should be capable of effectively capturing the disper-
sive behavior of waves in materials with nanoscopic features. The wave dispersion relation
can be, furthermore, utilized in identification of the characteristic length-scale parameters
of the augmented elasticity theories; see e.g., recent researches on the wave propagation
phenomenon in nano-materials [55–58].

To determine the phase velocity of the wave dispersion, the differential condition of
equilibrium should be described in terms of the displacement field. The flexural moment is
first obtained employing the nonlocal modified gradient constitutive law Eq. (11) and the
dynamic equilibrium condition Eq. (7)1 as

M(x, t) � �2
c

(−Aρ∂t tw(x, t) + Iρ∂xxttw(x, t)
)

+ DE∂xxw(x, t) − Dμ∂xxxxw(x, t) (15)

where the transverse loading is allowed to vanish to study the elastodynamic response.
The dynamic equilibrium condition is then determined in terms of the transverse deflection
as

(16)

∂xx
(
DE∂xxw (x, t) − Dμ∂xxxxw (x, t)

) � −Aρ∂t tw (x, t) +
(
Iρ + �2

c Aρ

)
∂xxttw (x, t)

− �2
c Iρ∂xxxxttw (x, t) .

In dealing with the wave dispersion response, the condition of decay at infinity can be
suitably assumed, i.e., vanishing of the nonstandard boundary conditions at infinity is tacitly
met. The general solution of the wave response is accordingly expressed as

w(x, t) � W exp(ik(x − vt)) (17)

where i � √−1, k and v correspondingly stand for the wave number and the phase
velocity along with W denoting the wave amplitude. Imposing the wave dispersion solution
to the differential condition of dynamic equilibrium results in the sought phase velocity of
flexural waves associated with the nonlocal modified gradient elasticity theory

v � k
√
DE + k2Dμ√

Aρ + k2 Iρ
√

1 + k2�2
c

�
k
√
IE + Aμ

(
2�2

0 + 8
15�2

1 + �2
2

)
+ k2 Iμ

(
2�2

0 + 4
5�2

1

)
√
Aρ + k2 Iρ

√
1 + k2�2

c

(18)

where the stiffness parameters DE , Dμ are restored from Eq. (3). Notably, the phase
velocity of flexural waves consistent with the nonlocal gradient theory can be also obtained
via substituting the corresponding stiffness parameters [28].

To examine the effectiveness of the proposed nonlocal modified gradient elasticity in
describing the dispersive behavior of flexural waves, the phase velocity detected by molecu-
lar dynamics (MD) simulations for (10, 10) armchair CNTs is employed [59]. Implementing
the inverse theory approach, unknown parameters of a mathematical field can be determined
via minimizing the discrepancy between the reconstructed results and the limited data mea-
surements [60–62]. The physical properties of CNTs (10, 10) as referenced in [58, 63] are
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Table 1 Characteristic parameter
identification for MD simulations
of CNT (10, 10)

�c(nm) �s (nm) �0(nm) �1(nm) �2(nm)

Nonloc. mod.
grad. elast.

0.91931 – 0.01772 0.13749 0.55333

Nonloc. grad.
elast

0.87745 0.21310 – – –

Fig. 2 Comparison of the wave dispersion in CNT (10, 10) by MD simulations and augmented elasticity
theories

applied in the present inverse analysis. The wave dispersion response of CNTs (10, 10) is
reconstructed via a nonlinear least square optimization procedure. The identified character-
istic length-scale parameters associated with the nonlocal modified gradient elasticity and
the nonlocal gradient theory are given in Table 1.

The results of MD simulations in comparison with the predicted wave response associated
with the nonlocal modified gradient theory and the nonlocal gradient elasticity are graphically
illustrated in Fig. 2. The goodness of fit is assessed in the framework of the Chi-squared statis-
tics [64]. The reduced Chi-squared value is calculated as 5.37246 and 13.2994, respectively,
consistent with the nonlocal modified gradient elasticity and the nonlocal gradient theory.
Detected reduced Chi-squared values noticeably demonstrate that a better model fit, i.e., less
discrepancy between the reconstructed wave dispersion response and the MD simulations, is
attained utilizing the nonlocal modified gradient elasticity theory. Accordingly, the nonlocal
modified gradient elasticity can better capture the wave dispersion characteristics in a wider
range of wave numbers, compared to the counterpart results of the nonlocal gradient theory.
The qualitative aspects of the dispersive behavior, achieved by the MD simulation, can be also
captured with better accuracy in the framework of the nonlocal modified gradient elasticity
theory. This issue evidently exposes the importance of applying the appropriate augmented
elasticity theory, consistently enriched with intrinsic length-scale parameters, for nanoscopic
analysis of the field quantities.

Nanoscopic effects of the nonlocal and gradient characteristic parameters on the dispersive
behavior of flexural waves are also graphically depicted. The non-dimensional form of the
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Fig. 3 Wave dispersion by nonlocal modified gradient theory: effects of gradient parameters on the phase
velocity

gyration radius r , nonlocal characteristic parameter ζ , gradient characteristic parameters
η j , ηs , wave number k, and phase velocity v are introduced for the sake of consistency

r � 1

L

√
Iμ
Aμ

, ζ � �c

L
, η j � � j

L
, ηs � �s

L
, k � kL , v � vL

√
Aρ

IE
. (19)

3D variation of the phase velocity in terms of the logarithmic scaling of the non-
dimensional wave number k[65] is shown in Figs. 3 through 5 where the size effects of
each characteristic parameter are separately investigated. In all the numerical illustrations,
the varying gradient and nonlocal parameters are assumed to range in the interval [0, 0.5],
as the (logarithm of) non-dimensional wave number k is ranging in the interval

[
10−1, 101

]
.

The non-dimensional gyration radius is also prescribed as r � 1/20.
The effects of the gradient length-scale parameters associated with the nonlocal modified

gradient elasticity are studied in Fig. 3 in the absence of the nonlocal parameter ζ → 0+. It is
deduced from the illustrative results that a larger value of each gradient parameter η j involves
a larger value of the phase velocity. The phase velocity of flexural waves, accordingly, reveals
a stiffening response in terms of the gradient characteristic parameter η j . Remarkably, the
dilatation gradient parameter η0 and the deviatoric stretch gradient parameter η1, respec-
tively, have the highest and the lowest stiffening effects. While the phase velocity of the
wave dispersion associated with the non-vanishing rotation gradient η2 overestimates the
counterpart result corresponding to the deviatoric stretch gradient η1, it is strictly lower than
the phase velocity associated with the non-vanishing dilatation gradient η0. The stiffening
effect of the deviatoric stretch gradient parameter η1 in the framework of the nonlocal modi-
fied gradient elasticity is consequently compared with the counterpart results of the nonlocal
gradient theory in Fig. 4, as the nonlocal characteristic parameter tends to zero ζ → 0+. The
phase velocity of the wave dispersion corresponding to the nonlocal gradient theory underes-
timates the counterpart results consistent with the nonlocal modified gradient elasticity with
non-vanishing deviatoric stretch gradient η1. In comparison with the nonlocal gradient the-
ory, the dominant stiffening effect of the gradient characteristic parameters associated with
the nonlocal modified gradient elasticity is thus confirmed. Effects of the nonlocal length-
scale parameter on the dispersive behavior of flexural waves are studied in Fig. 5, for equal
values of the gradient parameters assumed as η1 � ηs � 1/4. The phase velocity associated
with both the augmented elasticity theories decreases by increasing the nonlocal parameter
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Fig. 4 Wave dispersion by augmented elasticity theories: effects of gradient parameters on the phase velocity

Fig. 5 Wave dispersion by augmented elasticity theories: effects of the nonlocal parameter on the phase
velocity

ζ , and consequently, a softening response in terms of the nonlocal characteristic parame-
ter is realized. The wave dispersion response of the nonlocal modified gradient elasticity
is observed to overestimate the counterpart results of the nonlocal gradient theory. In all
the numerical illustrations, the phase velocity of the augmented elasticity theories remains
unchanged for low wave numbers, as the phase velocity is well known not to be sensitive to
the nano-material properties for large wavelengths. The discrepancy between the dispersive
behaviors of flexural waves is significantly enhanced at higher wave numbers.

4 Elastostatic flexure

To capture the nanoscopic effects in the elastostatic flexure, the flexural response of structural
schemes of applicative interest as fixed-end and cantilever beams is investigated. The beam is
considered to be subjected to a uniform transverse loading q0. A practical solution approach
is employed to derive the analytical solution of the flexure problem by integrating differential
equations of lower orders. Integrating the differential condition of equilibrium Eq. (7)1, while
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ignoring the inertial terms, leads to the expression of the equilibrated flexural moment M in
terms of integration constants �1, �2

M(x) �
∫ x

a

∫ ξ

a
q(ς)dςdξ + �1x + �2. (20)

The flexural curvature χ is determined up to integration constants �3, �4 via solving the
constitutive differential law Eq. (11)

χ(x) � �3 exp

(√
DE

Dμ

x

)
+ �3 exp

(
−

√
DE

Dμ

x

)

− exp

(√
DE

Dμ

x

) ∫ x

a

1

2
√
DE Dμ

exp

(
−

√
DE

Dμ

ξ

)(
M(ξ) − �2

c∂ξξ M(ξ)
)
dξ

+ exp

(
−

√
DE

Dμ

x

) ∫ x

a

1

2
√
DE Dμ

exp

(√
DE

Dμ

ς

)(
M(ς) − �2

c∂ςς M(ς)
)
dς. (21)

The transverse deflection w is lastly detected via integrating the kinematic compatibility
condition χ � ∂xxw up to integrations constant �5, �6 as

w(x) �
∫ x

a

∫ ξ

a
χ(ς)dςdξ + �5x + �6. (22)

Unknown integration constants � j ( j � 1..6) are evaluated by prescribing four classical
boundary conditions Eq. (7)2 in addition to two nonstandard boundary conditions Eq. (12).
The exact analytical solution of the flexure problem of nano-sized beams is accordingly
derived.

Numerical behavior of the elastostatic flexure of a nonlocal modified gradient beam with
kinematic constraints of applicative interest as subjected to a uniform transverse loading q0

is graphically demonstrated and compared with the counterpart result corresponding to the
nonlocal gradient theory. For the consistency of illustrations, the non-dimensional transverse
deflection of the beam w is introduced in the numerical illustrations as

w � IE
q0L4 w. (23)

The normalized maximum transverse deflections of fixed-end and cantilever nonlo-
cal modified gradient beams under uniform transverse load are studied here. Analytically
detected deflections are, moreover, normalized utilizing the corresponding transverse defor-
mations of the local beam model wLOC. Effects of the nonlocal characteristic parameter ζ and
the dilatation gradient parameter η0, deviatoric stretch gradient parameter η1, and rotation
gradient parameter η2 on the flexural response of nano-beams are studied in Figs. 6 and 7,
correspondingly, for fixed-end and cantilever beams. The comparison of the flexural behavior
of nano-beams in the frameworks of the nonlocal modified gradient elasticity and the nonlo-
cal gradient theory is shown in Figs. 8 and 9, respectively, for fixed-end and cantilever beams.
The varying gradient and nonlocal parameters are assumed to range in the same interval as
the wave dispersion analysis. The non-dimensional gyration radius is again set to 1/20.

It is deduced from the illustrated flexural behavior of nano-beams associated with either of
the augmented elasticity theories that the nonlocal characteristic parameter ζ has the effect
of increasing the transverse deflection, and accordingly, a softening response in terms of
the nonlocal characteristic parameter is confirmed. The transverse deflection of nano-beams
associated with the nonlocal modified gradient elasticity and the nonlocal gradient theory
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Fig. 6 Fixed-end nano-beams subject to a uniform load: effects of characteristic parameters on the normalized
deflection

Fig. 7 Cantilever nano-beams subject to a uniform load: effects of characteristic parameters on the normalized
deflection

Fig. 8 Comparison of augmented elasticity theories for uniformly loaded fixed-end nano-beams

decreases by increasing either of the gradient characteristic parameters η j , ηs , and thus,
a stiffening response in terms of the gradient characteristic parameters is realized. In the
framework of the nonlocal modified gradient theory, the dilatation gradients parameter η0
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Fig. 9 Comparison of augmented elasticity theories for uniformly loaded cantilever nano-beams

Table 2 Normalized maximum
deflection of a fixed-end
nano-beam: (a) Nonloc. grad.
elast. and (b) Nonloc. mod. grad.
(η1 �� 0)

wmax/wLOC

(a) Nonloc. grad. elast.

ζ η � 0 η � 0.1 η � 0.2 η � 0.3 η � 0.4 η � 0.5

0+ 1.0000 0.70943 0.38297 0.21685 0.13492 0.09081

0.1 2.14666 1.40357 0.75147 0.42472 0.26408 0.17769

0.2 4.06285 2.56354 1.36728 0.77210 0.47992 0.32287

0.3 6.81998 4.23259 2.25336 1.27193 0.79049 0.53177

0.4 10.4577 6.43474 3.42244 1.93141 1.20025 0.80739

0.5 14.9999 9.18439 4.88219 2.75485 1.71189 1.15153

wmax/wLOC

(b) Nonloc. mod. grad. elast. (η1 �� 0)

ζ η1 � 0 η1 � 0.1 η1 � 0.2 η1 � 0.3 η1 � 0.4 η1 � 0.5

0+ 1.0000 0.49211 0.19535 0.09744 0.05726 0.03742

0.1 2.14666 0.99716 0.39259 0.19543 0.11476 0.07497

0.2 4.06285 1.84115 0.72222 0.35919 0.21085 0.13773

0.3 6.81998 3.05554 1.1965 0.59482 0.34911 0.22802

0.4 10.4577 4.65782 1.82226 0.90569 0.53153 0.34715

0.5 14.9999 6.65846 2.60361 1.29388 0.75931 0.49590

and the deviatoric stretch gradient parameter η1 exhibit the highest and the lowest stiffening
response, as deducible from Figs. 6 and 7. While the transverse deflection of nonlocal modi-
fied gradient beams with non-vanishing values of the rotation gradient parameter η2 is strictly
lower than the flexural response of nano-beams with non-vanishing deviatoric stretch gra-
dient parameter η1, it overestimates the transverse deflection of nonlocal modified gradient
beams with non-vanishing dilatation gradient parameter η0. Nanoscopic effects of the non-
local modified gradient elasticity with non-vanishing deviatoric stretch gradient parameter
η1 are thus compared with the counterpart flexural results of the nonlocal gradient theory in
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Table 3 Normalized maximum
deflection of a fixed-end nonlocal
modified gradient beam: (a)
Nonloc. mod. grad. elast.
(η0 �� 0) and (b) Nonloc. mod.
grad. elast. (η2 �� 0)

wmax/wLOC

(a) Nonloc. mod. grad. elast.(η0 �� 0)

ζ η0 � 0 η0 � 0.1 η0 � 0.2 η0 � 0.3 η0 � 0.4 η0 � 0.5

0+ 1.0000 0.21321 0.06348 0.02925 0.01667 0.01073

0.1 2.14666 0.43140 0.12805 0.05896 0.03359 0.02163

0.2 4.06285 0.79604 0.23595 0.10861 0.06187 0.03983

0.3 6.81998 1.32069 0.39121 0.18006 0.10256 0.06602

0.4 10.4577 2.01293 0.59605 0.27432 0.15625 0.10059

0.5 14.9999 2.87727 0.85183 0.39202 0.22328 0.14374

wmax/wLOC

(b) Nonloc. mod. grad. elast. (η2 �� 0)

ζ η2 � 0 η2 � 0.1 η2 � 0.2 η2 � 0.3 η2 � 0.4 η2 � 0.5

0+ 1.0000 0.37500 0.13044 0.06250 0.03615 0.02344

0.1 2.14666 0.80500 0.28000 0.13417 0.07759 0.05031

0.2 4.06285 1.52360 0.52994 0.25393 0.14685 0.09522

0.3 6.81998 2.55750 0.88956 0.42625 0.24651 0.15984

0.4 10.4577 3.92170 1.36410 0.65361 0.37799 0.24510

0.5 14.9999 5.62500 1.95650 0.93750 0.54217 0.35156

Figs. 8 and 9. The transverse deflections of nano-beam consistent with the nonlocal gradient
elasticity overestimate the counterpart flexural response of nonlocal modified grained beams
with non-vanishing deviatoric stretch gradient parameter η1. This issue is notably occurred
in consequence of the dominant stiffening effect of the gradient characteristic parameters
η j corresponding to the nonlocal modified gradient elasticity in comparison with the gradi-
ent parameter ηs associated with the nonlocal gradient theory. For vanishing of the gradient
characteristic parameters, the flexural response of nano-beams in either of frameworks of the
augmented elasticity theories coincides in terms of the nonlocal characteristic parameter. The
local flexural behavior is inevitably recovered, as the characteristic parameters tend to zero.
The size-dependent flexure of a fixed-end nano-beam is observed to be more affected by the
characteristic parameters compared with the cantilever beam. Tables 2, 3, 4 and 5, respec-
tively, summarize the normalized maximum transverse deflections of fixed-end and cantilever
nano-beams, detected in the frameworks of the nonlocal modified gradient elasticity and the
nonlocal gradient theory, for different values of the characteristic parameters.

5 Concluding remarks

Two main frameworks of the gradient elasticity theory and the nonlocal elasticity model are
widely applied in the literature to address the structural response of materials at nanoscale.
The gradient and nonlocal theories of elasticity yield to dissimilar stiffening and softening
responses of nano-structures. Integrating the nonlocal and gradient approaches is accordingly
of major interest in nano-mechanics. In the present study, the contribution of the nonlocal
integral elasticity is appropriately introduced to the modified strain gradient theory via a con-
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Table 4 Normalized maximum
deflection of a cantilever
nano-beam: (a) Nonloc. grad.
elast. and (b) Nonloc. mod. grad.
elast. (η1 �� 0)

wmax/wLOC

(a) Nonloc. grad. elast.

ζ η � 0 η � 0.1 η � 0.2 η � 0.3 η � 0.4 η � 0.5

0+ 1.0000 0.96800 0.90315 0.84112 0.79432 0.76160

0.1 1.4400 1.3600 1.2484 1.1470 1.0715 1.0188

0.2 1.9600 1.8160 1.6421 1.4883 1.3743 1.2951

0.3 2.5600 2.3360 2.0843 1.8648 1.7028 1.5905

0.4 3.2400 2.9200 2.5749 2.2766 2.0571 1.9049

0.5 4.0000 3.5680 3.1139 2.7238 2.4371 2.2384

wmax/wLOC

(b) Nonloc. mod. grad. elast. (η1 �� 0)

ζ η1 � 0 η1 � 0.1 η1 � 0.2 η1 � 0.3 η1 � 0.4 η1 � 0.5

0+ 1.0000 0.52599 0.21722 0.10980 0.06488 0.04252

0.1 1.4400 0.74825 0.30811 0.15561 0.09192 0.06023

0.2 1.9600 1.00932 0.41465 0.20928 0.12359 0.08097

0.3 2.5600 1.30917 0.53686 0.27082 0.15989 0.10474

0.4 3.2400 1.64782 0.67473 0.34021 0.20084 0.13155

0.5 4.0000 2.02527 0.82825 0.41747 0.24641 0.16139

Table 5 Normalized maximum
deflection of a cantilever nonlocal
modified gradient beam: (a)
Nonloc. mod. grad. elast.
(η0 �� 0) and (b) Nonloc. mod.
grad. elast. (η2 �� 0)

wmax/wLOC

(a) Nonloc. mod. grad. elast. (η0 �� 0)

ζ η0 � 0 η0 � 0.1 η0 � 0.2 η0 � 0.3 η0 � 0.4 η0 � 0.5

0+ 1.0000 0.22915 0.06918 0.03198 0.01824 0.01175

0.1 1.4400 0.32583 0.09826 0.04541 0.02590 0.01669

0.2 1.9600 0.43935 0.13239 0.06117 0.03489 0.02248

0.3 2.5600 0.56972 0.17156 0.07925 0.04520 0.02912

0.4 3.2400 0.71693 0.21577 0.09967 0.05684 0.03662

0.5 4.0000 0.88098 0.26503 0.12240 0.06981 0.04497

wmax/wLOC

(b) Nonloc. mod. grad. elast. (η2 �� 0)

ζ η2 � 0 η2 � 0.1 η2 � 0.2 η2 � 0.3 η2 � 0.4 η2 � 0.5

0+ 1.0000 0.37500 0.13044 0.06250 0.03615 0.02344

0.1 1.4400 0.54000 0.18783 0.09000 0.05205 0.03375

0.2 1.9600 0.73500 0.25565 0.12250 0.07084 0.04594

0.3 2.5600 0.96000 0.33391 0.16000 0.09253 0.06000

0.4 3.2400 1.21500 0.42261 0.20250 0.11711 0.07594

0.5 4.0000 1.50000 0.52174 0.25000 0.14458 0.09375
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sistent variational scheme. The conceived nonlocal modified gradient elasticity theory can
suitably characterize the nonlocality effects as well as the effects of the dilatation gradient,
deviatoric stretch gradient, and symmetric rotation gradient, overlooked in the framework
of the classical nonlocal gradient model. The established augmented elasticity theory is
applied to nano-sized beams in flexure with kinematic constrains of applicative interest in
nano-engineering. The integro-differential constitutive law is consistently restored with the
equivalent differential formulation equipped with the proper form of the nonstandard bound-
ary conditions. The size-dependent constitutive law and associated higher-order boundary
conditions of the nonlocal elasticity model, modified strain gradient theory, and nonlocal gra-
dient elasticity are demonstrated to be restored under particular ad hoc assumptions. A further
discussion is made on the so-called nonlocal couple stress framework, deduced via overlook-
ing the nanoscopic effects of the dilatation gradient and the deviatoric stretch gradient. The
over-constrained boundary value problem governing the flexure of a nano-sized beam consis-
tent with the nonlocal couple stress model is evinced to be ill-posed. On the contrary, the well
posedness of the introduced nonlocal modified gradient problem is illustrated by rigorous
examination of the elastostatic flexure and the wave dispersion phenomenon. The MD sim-
ulations results are utilized to successfully identify the characteristic parameters associated
with the nonlocal modified gradient theory. The qualitative aspects of the wave dispersive
behavior are realized to be captured with a better accuracy in the framework of the nonlocal
modified gradient elasticity theory. The importance of applying the proposed augmented
elasticity theory to more accurately reflect the size-dependency of nano-structured materials
is therefore demonstrated. A practical solution approach is applied to derive the analytical
solution of the flexure problem. Numerical behavior of the transverse deflection of the nonlo-
cal modified gradient beam is graphically illustrated in comparison with the nonlocal gradient
elasticity counterpart results. Nanoscopic effects of different gradient length-scale parame-
ters are thoroughly studied, and the dominant stiffening effect of the gradient characteristic
parameters associated with the nonlocal modified gradient elasticity theory is confirmed. The
established augmented elasticity theory can advantageously capture and simulate both the
stiffening and softening structural responses of nano-materials and, accordingly, provides a
beneficial approach for nanoscopic analysis of the field quantities.
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