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Abstract The critical worldwide revolution towards clean energy has prompted the improve-
ment of studies on the fabrication of high-performance solar cells. In this regard, rendering
an accurate model of the solar cell for performance evaluation in the simulation could be
essential. So far, several models have been proposed for the solar cell, including single-diode
model (SDM), double-diode model (DDM), and three-diode model (TDM). By increasing
the number of diodes considered in the equivalent circuit in order to deliver a more accurate
model, the number of unknown parameters which must be identified will be increased as
well. Therefore, presenting an efficient algorithm to estimate these parameters becomes an
interesting issue in recent years. In this study, an improved optimization algorithm, called
springy whale optimization algorithm (SWOA), is proposed to estimate the model parameters
of solar cells. SWOA is a generalization of the WOA and has the advantages of high con-
vergence speed, global search capability, and high robustness over it. In order to inquire the
efficiency of SWOA, this algorithm is posed to estimate the parameters of models of solar cells
and photovoltaic (PV) modules as well; the simulation results authenticate the supremacy
of the proposed algorithm. Furthermore, the effectiveness of SWOA algorithm in the prac-
tical application has been evaluated using commercial modules, including polycrystalline
(SW255), multi-crystalline (KC200GT), and monocrystalline (SM55). This assessment is
carried out for various operating conditions under different irradiance and temperature con-
ditions, which yield variations in the parameters of the PV model. The results obtained from
various experimental setups confirm the high performance and robustness of the proposed
algorithm.

1 Introduction

Nowadays, it can be heard that renewable energy such as solar and wind must be taken into
account instead of conventional fossil and nuclear energy in order to save the world from
pollution and irrevocable damages. To use solar energy, we must be able to convert this
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energy into other forms that can be used in everyday life with the help of a suitable tool [1,
2]. Photovoltaic (PV) solar systems are a good tool to catch solar energy for electrical energy
transformation. Solar cells can be produced with different technologies and some of these
technologies, such as silicon cells, have matured and are widely used [3, 4]. Increasing the
efficiency and reliability of these technologies is one of the concerns of scientists. Under-
standing the processes related to power absorption and conversion in these cells and accurate
modeling can play an effective role in their proper prediction and design. Building a reliable
model of a solar module is one of the most important issues that researchers in photovoltaic
systems are looking for [5–7]. This model will be especially important when studying the
characteristics of the photovoltaic system.

Predicting the output power of the system and creating a system that can extract the maxi-
mum power, such as tracking the maximum power point, are features that photovoltaic system
modeling can help a lot [8]. A key issue in modeling photovoltaic modules is the nonlinear
relationship between current and output voltage, especially when solar arrays are affected
by rapidly changing weather conditions and shading [9, 10]. The main problem in modeling
is to identify the optimal values of the parameters by which the model best fits the exper-
imental data [8]. Also, to better understand the characteristics, evaluating the optimization
performance of a solar cell system, a precise mathematical model has a significant role for
researchers. Different models have been used to show the behavior of the system in different
operating conditions. These models range from simple hypotheses to models with complex
physical variables [11, 12]. The precision of these models is intent by the model parameters,
because some of the necessary information for optimization is not announced in the data
sheet provided by the factory. For this reason, it is necessary to obtain these parameters,
which may be turned into an optimization problem with a specific objective function [13].

In recent decades, several methods have been used to determine the optimal values in
solar cell models, which can be divided into conventional and heuristic algorithms [14,
15]. Conventional methods require coherence and derivability to be practical, involve heavy
computations, and converge to local and local solutions instead of global solutions [16].
The nonlinearity of the curve (I–V) makes conventional optimization techniques incapable
of effectively solving parameter recognition problems [17]. To address this issue, heuristic
optimization algorithms such as genetic algorithm, PSO algorithm, etc., have been used to
identify the parameters [18, 19]. Although these algorithms have better results than traditional
algorithms, they have some limitations, the most important of which are their entrapment in
local optimal points and early convergence to these points.

So far, several models have been introduced for solar cells, the most important of which
are single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM)
[20, 22]. Various algorithms have been posed to estimate the parameters of these models,
and many articles in this field have been published with appropriate results, but improving
the performance of algorithms and providing an algorithm with better convergence is still a
topic of interest for researchers in this field. In this regard, different kinds of optimization
algorithms can be found in literature such as genetic algorithms [18], sunflower optimiza-
tion algorithm [23], flexible particle swarm optimization algorithm [24], coyote optimization
algorithm [25], PG JAYA algorithm [26], lozi map [13], flower pollination algorithm [27],
artificial bee swarm optimization(ABSO) [28], generalized oppositional teaching–learning
based optimization(GOTLBO) [29], whale optimization algorithm [30], chaotic whale opti-
mization [31], and so on [32–34].

One of the newest methods introduced is the whale optimization algorithm (WOA) pre-
sented by [30]. WOA imitates the behavior of humpback whales. These whales detect the
position of the prey and then surround them. The WOA algorithm first finds the best search
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agent by producing whales and randomly distributing them in the search space. After that,
other search agents try to update their positions according to the best acheivemnet. This
algorithm has been given a lot of attention in optimization issues, including solar cells and
fuel cells parameters extraction and parameters estimation of DC motors [35], designing
photonic crystal filter [36], neural networks, and computing [37, 38], maximum power point
tracking [39–41], terminal voltage control [42], economic prediction [43, 44], and other
world problems [45–47]. Although WOA has performed better than previous algorithms in
solving complex nonlinear problems and multi-model objective function value, it still has
difficulty finding optimal solutions. In the algorithm presented in [31], the main idea is the
use of irregular maps to calculate and automatically attune the internal parameters of the
algorithm. This solution is very useful in complicated problems because; during the iteration
process, this scheme enhances the ability of internal parameters to explore for the best solu-
tion, which increases the efficiency of the algorithm. Although the CWOA algorithm tries
to unravel the problem of getting stuck in the local minimum, there is still the problem that
points that are far from the optimal points are ignored from the optimization cycle, which can
decline the search capability of the algorithm in complicated optimization problems. In this
regard, a modified version of WOA called a springy whale optimization algorithm (SWOA)
is presented as a modified optimization algorithm to extract the parameters of PV cell and
module models in this study. To ameliorate the performance of the algorithm, some changes
have been made in the movement of the whales. A removal phase has been added to apply
changes to the whale algorithm. In the first step of each phase, a predetermined number of
the worst whales are always removed and new whales are replaced in the new search space.
Making these modification to the algorithm reduces the likelihood of being trapped in local
minimums and elevates the rapidity of detecting optimal solutions. Furthermore, by removing
points that are far from the optimal parameters, we can enhance the search capability of the
proposed algorithm. To assess the sufficiency of the proposed algorithm, the performance of
this algorithm is tested in different scenarios derived from laboratory information.

The continuation of this article as follows. Section 2 presents the mathematical relation-
ships governing cell models and PV modules. Section 3 hands out the general concepts of the
WOA algorithm. The principle idea about SWOA is given in detail in Sect. 4. Section 5 ren-
ders some simulation results regarding the experimental data set. Finally, Sect. 6 is devoted
to the conclusion.

2 Photovoltaic modeling and problem formulation

Several models of solar cells have been proposed so far that take into account the physical
losses of the solar cell, the most important of which are the SDM, DDM, and TDM. The SDM
only takes into account losses caused by internal resistors, connections, and connecting lines
between each solar cell and the module, so it does not have good accuracy. However, in the
more complex models mentioned, in addition to internal losses and connections, losses such
as leakage circuiting current and grain boundary are also considered. For this reason, the DDM
and TDM are more accurate than SDM. In the following, we will examine the mathematical
relationships governing the models and present the formulation of the problem.
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Fig. 1 Equivalent circuit of the
single-diode model

2.1 Photovoltaic cell model

2.1.1 Single-diode model (SDM)

The SDM includes a current source, a diode that produces the distributed current compo-
nent, and resistors RS and RSh which are responsible for losses caused by internal resistors,
connections, and other connecting lines between each solar cell and the module, respectively
[20]. The typical model of a single-diode solar cell is demonstrated in Fig. 1, where the output
current (IL) from the solar cell is the current produced by the current generator (Iph) minus
the currents flowing through the diode Id1 and the shunt resistor (Ish), respectively.

In many articles, this model is referred to as the five-parameter model, because in this
model, five parameters exist and can be represented by the vector θ as follows:

θ � [
Iph Rs Rsh ISD n

]
(1)

The equations of the practical model of a single diode are as follows:

IL � Iph − ID − Ish (2)

The diode current ID is expressed by the Shockley equation as:

ID �ISD

[
exp

(
(VL + IL Rs)

nVT

)
− 1

]

VT �KT

q
(3)

Furthermore, Ish is calculated from the following equation:

Ish � VL + IL Rs

Rsh
(4)

By combining Eqs. (1)–(4), the output current of the diode is obtained as follows:

IL � Iph − ISD

[
exp

(
q(VL + IL Rs)

nKT

)
− 1

]
− VL + IL Rs

Rsh
(5)

where ISD is the reverse saturation current of the diode, VT is thermal voltage equivalent, K
is the Boltzmann’s constant (q is the electronic charge, n is the diode ideality factor, and T
is the absolute temperature of the p–n junction in Kelvin, Rsh is the shunt resistance, and RS

is the series resistance.
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Fig. 2 Equivalent circuit of the
double-diode model

2.1.2 Double-diode model (DDM)

This model consists of a current source, series, and parallel resistors as well as two diodes.
Figure 2 shows a DDM of a solar cell. In this model, another diode is added to the SDM,
which is placed parallel to the SDM to transmit losses due to carrier recombination in the
depletion layer and surface recombination which is defined by Id2 [21]. The current of the
first diode (Id1) represents the current component, which is similar to the current Id1 in the
single-diode model.

Because another diode is attached to the model, the number of parameters will also change,
and in this model, seven parameters will be identified and optimized, which are given as
vectors in Eq. (6). Hence, we will encounter more challenging optimization problems.

θ � [
Iph Rs Rsh ISD1 ISD2 n1 n2

]
(6)

Using KCL law, the total output current for a solar cell will be calculated from Eq. (7):

IL � Iph − ID1 − ID2 − Ish (7)

Thus, the output current may be redefined as:

(8)

IL � Iph − ISD1

[
exp

(
q (VL + IL Rs)

n1kT

)
− 1

]
− ISD2

[
exp

(
q (VL + IL Rs)

n2kT

)
− 1

]

− VL + IL Rs

Rsh

2.1.3 Three-diode model (TDM)

Another model presented in [22] is the TDM, which takes into account more losses in com-
parison with two previous models of solar cells. According to Fig. 3, this model consists of
a current source, three diodes, and two resistors. Like DDM, two diodes are included in the
model due to losses of recombination and connections, and a third diode due to losses due
to recombination defect regions and grain boundary.

This model contains nine parameters that have to be identified. They can be combined in
the following vector:

θ � [
Iph Rs Rsh ISD1 ISD2 ISD3 n1 n2 n3

]
(9)

Using KCL law, the total output current for a solar cell will be calculated from Eq. (10):

IL � Iph − ID1 − ID2 − ID3 − Ish. (10)
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Fig. 3 Equivalent circuit of the
three-diode model

Fig. 4 Equivalent circuit of solar
PV module model

Thus, the output current may be redefined as:

IL �Iph − ISD1

[
exp

(
q(VL + IL Rs)

n1kT

)
− 1

]
− ISD2

[
exp

(
q(VL + IL Rs)

n2kT

)
− 1

]

− ISD3

[
exp

(
q(VL + IL Rs)

n3kT

)
− 1

]
− VL + IL Rs

Rsh
(11)

It should also be noted that analytical modeling of the three-diode model is difficult due to
a large number of parameters (nine parameters) and the small number of nonlinear equations.

2.2 Module model

In PV systems, the smallest unit includes several cells connected in series or in parallel to
produce more power and output current. This set of cells is known as a module. Figure 4
shows a module.

As we know, the current of each cell is the same, and the output current of each of them
is equal to IL; as a result, the output current ratio of the module can be written as Eq. (12).
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NS is the number of solar cells in series, and NP is the number of solar cells in parallel. It is
obvious that five unknown parameters (Iph, ISD, Rs, Rsh, n) need to be identified.

IL � NP · Iph − NP · ISD

⎡

⎣exp

⎛

⎝
q
(
VL

/
NS

+ IL · Rs/NP

)

nKT

⎞

⎠ − 1

⎤

⎦ −
NP · VL/NS

+ IL · Rs
Rsh

(12)

2.3 Objective function

The objective is to estimate the parameter values of the PV models in such a way that the
values obtained from the model are as closest as possible to the measured data. For this,
objective functions to be minimized for SDM, DDM and TDM are defined from (13) to (15),
respectively:

⎧
⎪⎪⎨

⎪⎪⎩

fk(VL , IL , θ) � Iph − ISD

[
exp

(
q(VL + IL Rs)

nKT

)
− 1

]
− VL + IL Rs

Rsh
− IL

θ �
[
Iph Rs Rsh ISD n

] (13)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fk(VL , IL , θ) � IL � Iph − ISD1

[
exp

(
q(VL + IL Rs)

n1kT

)
− 1

]

−ISD2

[
exp

(
q(VL + IL Rs)

n2kT

)
− 1

]
− VL + IL Rs

Rsh

θ �
[

Iph Rs Rsh ISD1 ISD2 n1 n2

]
(14)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fk(VL , IL , θ) � IL � Iph − ISD1

[
exp

(
q(VL+IL Rs )

n1kT

)
− 1

]
− ISD2

[
exp

(
q(VL+IL Rs )

n2kT

)
− 1

]

−ISD3

[
exp

(
q(VL+IL Rs )

n3kT

)
− 1

]
− VL+IL Rs

Rsh

θ �
[
Iph Rs Rsh ISD1 ISD2 ISD3 n1 n2 n3

]

(15)

Then, as shown in Eq. (16) [11, 48], by minimizing, the calculated root mean square error
(RMSE) is considered as the ultimate goal.

Consequently, parameter can be extracted by minimizing the objective function by seeking
for the answer vector θ within the limited area of practical parameters.

RSME(θ) �
√√√√ 1

N

N∑

i�1

fk(VL , IL , θ)2 (16)

where N shows the number of experimental data, θ is the decision variable, VL , and IL are
the measured voltage and current.

3 Data

Whales are extremely intelligent and emotional animals. The spindle-shaped cells that exist
in certain areas of their brain have developed traits such as the ability to think, learn, judge,
and social behaviors. Whales can hunt their prey individually and in groups. Some species
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can live with their families all their lives. One of the largest toothless whales is called the
humpback whale. The most fascinating factor about humpback whales is how they hunt [30].

The whale optimization algorithm simulates the behavior of humpback whales. These
whales detect the position of the prey and then surround them. The WOA algorithm finds the
best search agent after producing whales and randomly distributing them in the search space.
After that, other search agents try to update their positions according to the best search agent.
This behavior can be represented by the following equations [30]:

�D �
∣
∣
∣ �C · �X∗(t) − �X (t)

∣
∣
∣ (17)

�X (t + 1) � �X∗(t) − �A · �D (18)

where t is the current iteration, �A and �C is the coefficient vectors, �X∗(t), the location vector
represents the best answer ever obtained, �X (t) is the vector of place, | | is the absolute value,
and · represents the multiplication of element by element multiplication. It is important to
note that if there is a better answer in each iteration, �X∗(t) then should be updated.

The vectors �A and �C are obtained using the following formulas:

�A � 2�a · �r − �a (19)

�C � 2 · �r (20)

where �a represents a linear decrease from 2 to zero during the iterations (both in the explo-
ration and the exploitation phases) and �r represents a random vector in the interval [0,1]. By
setting the random values of �A in the interval [−1, 1], we can define the new location of the
search agent anywhere between the initial position of the agent and the position of the best
current agent.

Equation (18) will allow each search agent to update its position in the neighborhood of
the current best answer and simulate looping around the prey.

Humpback whales, in addition to the looping strategy around the prey, can also have a
spiral motion towards it. This motion can be simulated with the following formula [30]:

�X (t + 1) � �D◦ · ebl · cos(2πl) + �X∗(t)

�D◦ �
∣∣∣ �X∗(t) − �X (t)

∣∣∣ (21)

where �D◦ �
∣∣∣ �X∗(t) − �X (t)

∣∣∣ and indicates the distance of the ith wale to the prey (best

solution obtained so far), b represents a constant that will denote the shape of a logarithmic
helix, and l represents a random number in the interval [−1,1].

Note that the humpback whales move around the prey simultaneously, both in the form of
a contractile circle and along a spiral path. To model this simultaneous behavior, we assume
that there is a 50% probability that the contractile loop mechanism or spiral model can be
used to improve the position of the whales during optimization. The mathematical model is
as follows:

�X (t + 1) �
{ �X∗(t) − �A · �D if p ≥ 0.5

�D◦ · ebl · cos(2πl) + �X∗(t) if p ≥ 0.5
(22)

where p represents a random number in the interval [0,1].
In addition to the bubble net method, humpback whales randomly search for prey. They

search randomly, based on each other’s position. In order to create a new paradigm in opti-
mization policy, the random value is taken into account for �A (higher than 1 and lower than
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−1) to follow a new position in the search area. This mechanism allows the WOA algorithm
to perform a global search. The mathematical model of this work will be as follows [30]:

�D �
∣
∣
∣ �C · �Xrand − �X (t)

∣
∣
∣

�X (t + 1) � �Xrand − �A · �D (23)

where �Xrand represents a random location vector (a random whale) selected from the current
population.

4 Springy whale algorithm (SWOA)

Although the whale algorithm has a high rate of convergence, it is stuck in local minima and
thus in some cases does not converge to the global minimum. This problem manifests itself
better when the amount of unknown parameters to identify is large. In the proposed scheme,
changes have been made in the process of moving the whales towards the desired answer
so as to improve the performance of the algorithm. A removal phase has been added to the
classic whale algorithm to apply the changes. Toward the start of each stage, a certain number
of the worst whales will be removed and substituted by new whales in the new search space.
Making new early populations allows whales to acquire new ways to get the best response.
Regarding this amendment, the probability of being trapped in local minima decreases, and
the rapidity of detecting optimal solutions increases.

Preliminary, Elimination Period (ep) (this parameter is added to the classical algorithm and
is defined based on the number of iterations) and elimination percent (et) (this parameter is
added to the classical algorithm and is determined based on the initial population percentage)
are set.

(Th) represents the percentage of the maximum or minimum of the search space. For
instance, let us define Th� 95 and the initial search space for the parameters is in the interval
[−1, 1]. In each elimination phase, the value of each parameter in the particle is checked,
and if it is greater than 95% of the absolute value of the search space, then one unit adds to
the search space of that parameter.

The implementation steps of the improved whale algorithm are shown in Fig. 5. The
changes applied to the classical algorithm by the blue blocks are shown in this figure.

A prospect of the usage of this method of identifying the unknown parameters of the solar
cell system is given in Fig. 6. According to Fig. 6, after repeating the algorithm, each time, the
error between the measured current and the extracted current is determined, and by placing
this value in Eq. (16), the RMSE will be calculated. The purpose of modifying the classical
whale algorithm and to introduce the SWOA algorithm was to minimize the RMSE value.

5 Experimental results and discussions

In this section, to evaluate the performance of the proposed algorithm, we identify the param-
eters of the solar cell model and the PV module using the SDM, the DDM, the TDM, and
the module model. Voltage–current experimental data from [24, 26] have been chosen as
criterion used to test and contrast different methods. These data relate to a commercial sil-
icon solar cell (French RTC Company) with a diameter of 57 mm, at a temperature of 33
°C and 1 sun (1000 w/m2) and a commercial solar module called Photowatt-PWP201 with
36 polycrystalline cell series at a temperature of 45 °C and 1 sun (1000 w/m2). Then, the
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Fig. 5 Flowchart of the SWOA algorithm

parameters of three types of widely used modules called polycrystalline (SW255), multi-
crystalline (KC200GT), and monocrystalline (SM55) have been identified under different
radiation and temperature conditions. Then, to test the accuracy of the parameters identified
in standard radiation and temperature (TSTC � 25◦C,GSTC � 1000w/m2), the behavior of
the relevant module was investigated in different radiation and temperature. As a result, it
was observed that its behavior with the appropriate error is similar to the diagrams in the
module datasheet [9, 49]. Also, the simulation results will be associated with comparing
SWOA and some algorithms mentioned in the previous section. These tests were performed
in MATLAB 2016b.
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Fig. 6 Overview for parameters estimation of PV Cell models using SWOA

Table 1 Parameters ranges of RTC France PV cell and PV module [26]

Parameter RTC France PV PWP201 PV module

Lower value Upper value Lower value Upper value Lower value Upper value

Iph(A) 0 1 0 2 0 2 ISC
Isd1, Isd2, Isd3(μA) 0 1 0 50 0 100
Rs (�) 0 0.5 0 2 0 2
Rsh(�) 0 100 0 1000 0 5000
n1, n2 1 2 1 50 1 4

n3 2 5 1 50 – –

To ensure that the exploration space for each problem is identical, the domains correlated
with each parameter are maintained as used in the previous literature. Table 1 demonstrates
the limited areas for each parameter of the PV cell model and module [26].

In this paper, for a broader comparison, the algorithms used in each section are different.
With the exception of the number of iterations and the number of populations, which are
estimated at 5,000 and 30, respectively, the other parameters of the algorithm are set based
on the main reference.

5.1 Parameters of RTC France solar cell

In Table 2, the results for estimating the 5 parameters for the SDM are given by SWOA and
10 other algorithms called whale optimization algorithm (WOA) [30], chaotic whale opti-
mization algorithm (CWOA) [31], performance-guided JAYA(PGJAYA) [26], flexible parti-
cle swarm optimization (FPSO) [24], improved JAYA (IJAYA) [16], bird mating optimizer
(BMO) [24], generalized oppositional teaching learning based optimization (GOTLBO) [29],
artificial bee swarm optimization (ABSO) [28], genetic algorithm (GA) [18], and particle
swarm optimization algorithm (PSO) [19].
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Table 2 Precise results for SDM of RTC France

Algorithm Iph(A) Isd1(μA) Rs (�) Rsh(�) n1 RMSE

SWOA 0.76077551 0.32302318 0.03637706 53.71886754 1.48110897 9.8602e−04

CWOA [8] 0.76077 0.3239 0.03636 53.7987 1.4812 9.8602e−04

WOA 0.76075413 0.32436114 0.03636524 54.10454052 1.481519944 9.8615e−04

PGJAYA [5] 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602e−04

FPSO [4] 0.7607 0.3230 0.03637 53.7185 1.4811 9.8602e−04

IJAYA [6] 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603e−04

BMO [4] 0.7607 0.3247 0.0363 53.8716 1.4817 9.8608e−04

GOTLBO [7] 0.7608 0.3297 0.0363 53.3664 1.4833 9.8856e−04

ABSO [3] 0.76080 0.30623 0.03659 52.2903 1.47583 9.9124e−04

PSO [1] 0.7607 0.400 0.0354 59.012 1.5033 1.38e−03

GA [2] 0.7619 0.8087 0.0299 42.3729 1.5751 1.8704e−02

Since no previous data are available for the accurate values of the parameters, the RMSE
value is choosing as an index to demonstrate the precision of the parameter estimation. In
this comparison, CWOA, FPSO, and PGJAYA methods were able to reach the lowest RMSE
value like the SWOA method, and the GA method was able to reach the maximum value.

Tables 3 and 4 show the results for estimating seven parameters for the DDM and nine
parameters for the TDM by SWOA and 10 other algorithms, respectively. As can be seen
in Tables 3 and 4, the proposed algorithm was able to achieve a better RMSE than other
algorithms. It can also be seen that the SWOA algorithm has achieved a lower RMSE value for
the TDM than for the other two models. By looking closely at these results, two conclusions
can be drawn: First, the TDM is a more accurate model for showing the performance of the
RTC FRANCE cell, because in this model, most methods achieved a better RMSE than in the
other two models, and second, the SWOA algorithm has a better ability to identify models with
more unknown parameters, because it can get a better answer than other algorithms. However,
as the number of unknown parameters increased, the rest of the algorithms performed worse,
reaching very close RMSE values to the DDM. It should be noted that the best results for
all algorithms in TDM were included in the table after 30 runs and were not taken from
published results.

Since all meta-heuristic methods start with random points, for a fair comparison, it is
necessary to run each method several times and then examine the results. Table 5 demonstrates
the results of the studied algorithms during 30 runs. In the first part of this table, which is
related to the SDM, it can be seen that most of the methods showed good stability and
resistance. But when we increase the number of unknown parameters and move on to the
TDM, the algorithms face a difficult challenge. This challenge has led to articles that offer
new methods for identifying a cell or solar module parameters. As can be seen from Table
5, SWOA in all three models was able to show considerable stability compared to other
algorithms. Also, note that the performance of the CWOA algorithm is also good compared
to other algorithms.

Table 6 provides information on the estimated current by the SWOA algorithm and the
relative error of all three models studied in this paper. To ensure the accuracy of the estimated
parameters, it is sufficient to consider the relative error of the current obtained from Eq. (24).
As you can see, given that the relative error value is very small, it can be concluded that the
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Fig. 7 RMSE evolution of the algorithms for the SD model of RTC France

Fig. 8 RMSE evolution of the algorithms for the DD model of RTC France

parameters have been extracted correctly and the SWOA method was able to estimate the
SDM, DDM, and TDM output current well.

Rerr � IL − Ite
Ite

(24)

Another factor that should be in a good way is the speed of getting the best answer. To
show the convergence speed of the proposed algorithm, the cost function convergence process
(RMSE) for SDM, DDM, and TDM is shown in Figs. 7, 8, and 9, respectively. To ensure that
the SWOA has a high convergence rate, it was compared with all the algorithms in Table 5.
As shown in Figs. 7, 8, and 9, the SWOA convergence rate is higher than other algorithms.
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Fig. 9 RMSE evolution of the algorithms for the TD model of RTC France

Table 7 Detailed results for SDM of PWP201

Algorithm Iph(A) Isd1(μA) Rs (�) Rsh(�) n1 RMSE

SWOA 1.03051437 3.48221882 1.20127228 981.96750868 1.34999095 2.425074e−03

CWOA 1.03164979 3.09598060 1.21219669 827.54687808 1.33768079 2.451685e−03

WOA 1.03393368 2.49034859 1.23192419 644.59884712 1.31542184 2.635768e−03

JAYA 1.0307 3.4931 1.2014 1000 1.3514 2.42778e−03

STLBO 1.0305 3.4824 1.2013 982.0387 1.3511 2.42507e−03

TLABC 1.0305 3.4826 1.2013 982.1815 1.3512 2.42507e−03

CLPSO 1.0304 3.6131 1.1978 1000 1.3551 2.42806e−03

BLPSO 1.0305 3.5176 1.2002 992.7901 1.3522 2.42523e−03

DE/BBO 1.0303 3.6172 1.1969 1000 1.3552 2.42825e−03

5.2 Parameters identification of Photowatt-PWP201 PV module

In Table 7, the results for estimating 5 parameters for the SDM are given by SWOA and 9
other algorithms including WOA [30], CWOA [31], PGJAYA [26], JAYA [51], STLBO [8],
TLABC [32], CLPSO [33], BLPSO [34], DE/BBO [52].

In this comparison, STLBO and TLABC methods were able to reach the lowest RMSE
value like the SWOA method and WOA and CWOA methods reached the highest value.
Note that these two methods performed relatively well in identifying the parameters of the
RT. FRANCE system.

Tables 8 and 9 show the results for estimating seven parameters for the DDM and nine
parameters for the TDM model by the SWOA and nine other algorithms, respectively. Accord-
ing to Table 8, the SWOA method obtained the lowest RMSE value compared to other
methods.

Though the RMSE values acquired in the two WOA and SWOA algorithms in DDM
are adjacent to each other, and even WOA achieves better results, when we challenge the
algorithms and increase the number of parameters from 7 to 9 (TDM), we see that SWOA
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Table 8 Detailed results for DDM of PWP201

Algorithm Iph(A) Isd1(μA) Isd2(μA) Rs (�) Rsh(�) n1 n2 RMSE

SWOA 1.031434 2.63811 1.0001e−06 1.235632 821.6525 1.320995 2.77788 2.0530e−03

CWOA 1.0332 2.6759 1.52820 1.23312 715.4537 1.5499 1.2844 2.2137e−03

WOA 1.0323 2.5129 1.0000e−06 1.2392 744.7153 1.3173 1.3173 2.0465e−03

JAYA 1.0326 2.6896 4.1973 1.2240 748.3831 1.3234 2.3680 2.2178e-
03

STLBO 1.0328 2.5708 1.6899 1.2137 712.2977 1.3218 1.7314 2.2785e-
03

TLABC 1.0331 2.6762 1.5280 1.2334 715.4478 1.5499 1.2832 2.2138e-
03

CLPSO 1.0291 0.0010 9.3813 0.0314 75.6531 1.0000 1.5755 3.3925e-
03

BLPSO 1.0265 9.2998 2.2586e-
02

0.0301 1000 1.5225 1.4164 3.7559e-
03

DE/BBO 1.0318 0.32774 2.4306e-
06

1.2061 845.2495 1.3443 1.3443 2.400e-03

Table 9 Detailed results for TDM of PWP201

Algorithm Iph(A) Isd1(μA) Isd2(μA) Isd3(μA) Rs(�) Rsh(�) n1 n2 n3 RMSE

SWOA 1.0305 3.4822e-
06

1.0000e-
6

1.0000e-
6

1.2012 981.9781 1.4029 1.8671 2 2.0166e-
03

CWOA 1.0305 3.4788 7.2209e-
5

7.9930e-
02

1.2005 992.7808 1.4032 1.9996 1.6487 2.4250e-
03

WOA 1.0270 3.9028 2.0334e-
4

6.0996e-
02

1.1910 966.4183 1.4157 1.9992 1.6278 2.5814e-
03

JAYA 1.0263 2.4380 8.4019 2.4413e-
01

1.1911 710.7260 1.3885 1.8790 1.3544 2.7525e-
03

STLBO 1.0327 0 5.3435 2.4748 1.1448 1000 1.8457 1.4547 1.9590 3.4186e-
03

TLABC 1.0264 9.1106 2.0912e-
02

6.3249e-
02

1.0869 602.9147 1.5220 1.3011 1.5370 3.7258e-
03

CLPSO 1.0419 3.43995 6.6266e-
07

35.1499 1 755.0178 1.9938 1.2982 1.9987 9.9858e-
03

BLPSO 1.0344 4.7853 1.16444 2.6812e-
03

1 1000 2 1.5566 2 6.3626e-
03

DE/BBO 1.0307 0 3.2036 3.1737 1.1952 996.3251 1.7749 1.3965 1.9564 2.4916e-
03

algorithm showed excellent performance compared to other algorithms and WOA, along with
other algorithms, has achieved even worse results than the DDM. However, the TDM is a
more accurate model than the DDM. Examining Tables 7, 8, and 9, it is discernible that the
SWOA algorithm has reached a lower RMSE value than the SDM and DDM. It should also
be noted that the best results for all algorithms in the TDM were included in Table 9 after 30
runs and were not taken from another article.

Table 10 shows the results of the studied algorithms during 30 runs. In the first part of
this table, which is related to the SDM, it can be seen that most of the methods showed good
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Table 10 Comparison between RMSE values of SDM, DDM, TDM of PWP201 obtained by different evolu-
tionary methods after 30 runs

Algorithm SWOA CWOA WOA JAYA STLBO TLABC CLPSO BLPSO DE/BBO

SDM

Min 2.4250e-
03

2.4516e-
03

2.6357e-
03

2.427e-
03

2.4250e-
03

2.4250e-
03

2.4280e-
03

2.4252e-
03

2.4282e-
03

Mean 2.4250e-
03

2.4524e-
03

2.7236e-
03

2.5194e-
03

2.5146e-
03

2.4817e-
03

2.6481e-
03

2.4561e-
03

2.4283e-
03

Max 2.4250e-
03

2.4556e-
03

2.8201e-
03

2.8171e-
03

2.7419e-
03

2.6134e-
03

2.7194e-
03

2.5104e-
03

2.4284e-
03

DDM

Min 2.0530e-
03

2.2137e-
03

2.0465e-
03

2.2178e-
03

2.2785e-
03

2.2138e-
03

3.3925e-
03

3.7559e-
03

2.400e-
03

Mean 2.0701e-
03

2.3898e-
03

2.8476e-
03

3.2472e-
03

2.7113e-
03

2.3147e-
03

3.4461e-
03

4.2541e-
03

3.4618e-
03

Max 2.0950e-
03

2.4250e-
03

3.0151e-
03

3.6218e-
03

2.8669e-
03

2.5634e-
03

3.7684e-
03

4.6119e-
03

4.1284e-
03

TDM

Min 2.0166e-
03

2.4250e-
03

2.5814e-
03

2.7525e-
03

3.4186e-
03

3.7258e-
03

9.9858e-
03

6.3626e-
03

2.4916e-
03

Mean 2.0301e-
03

2.4431e-
03

3.0105e-
03

3.2225e-
03

3.4315e-
03

4.1060e-
03

1.1320e-
02

9.8649e-
03

1.0514e-
02

Max 2.1650–03 2.4619e-
03

3.2315e-
03

3.6642e-
03

3.5994e-
03

4.6119e-
03

1.6131e-
02

1.3112e-
02

1.2549e-
02

stability and resistance. It is very important to note that in practice, an algorithm is efficient
that, in addition to quickly finding the optimal point, also has good stability. As you can see
from Table 10, this algorithm did not show good stability, while SWOA showed very good
stability.

When we add to the number of unknown parameters and move on to the TDM, we are
facing algorithms with a difficult challenge. But as can be seen from the table, SWOA in all
three models was capable of demonstrating excellent stability compared to other algorithms
and once again was able to succeed in this challenge. This success is due to SWOA’s high
ability to search globally. It should also be noted that the CWOA method showed good stability
in the TDM but could not reach the minimum RMSE value, which shows the weakness of
this algorithm in global search.

Table 11 is set up to ensure the accuracy of the parameters estimated by the SWOA. As
you can see, the relative error value is very low, which points the exactitude of the identified
parameters, and the SWOA method was able to estimate well the output current of the single-
diode model, DDM, and TDM. Also, in this table, it can be seen that SWOA has reached a
lower RMSE value with the TDM than the other two models. To prove it, it is sufficient to
calculate the total value of the relative errors of each model separately and compare them
with each other. It can be seen that the result of this sum in the model of TDM is less than
the DDM and a SDM.

To show the convergence speed of the proposed algorithm, the cost function convergence
process (RMSE) for single-diode, double-diode, and three-diode PWP201 models is shown
in Figs. 10, 11, and 12, respectively. To ensure that the SWOA has a high convergence rate,
it was compared with all the algorithms in Table 10. As can be seen from these figures, the
SWOA convergence rate is higher than other algorithms.
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Table 11 Relative error for each measurement

DATA VL (v) IL (A) SDM DDM TDM

Ite(A) Rerr Ite(A) Rerr Ite(A) Rerr

1 0.1248 1.0315 1.02912214 0.00231056 1.02913415 0.00229887 1.02986474 0.00158783

2 1.8093 1.0300 1.02738438 0.00254589 1.02745419 0.00247778 1.02778417 0.00215592

3 3.3511 1.0260 1.02574214 0.00025138 1.02573417 0.00025916 1.02584367 0.00015239

4 4.7622 1.0220 1.02410397 -0.00205445 1.02410103 − 0.00205158 1.02312491 − 0.00109948

5 6.0538 1.0180 1.02228338 − 0.00419001 1.02014231 − 0.00210001 1.02180506 − 0.00372386

6 7.2364 1.0155 1.01991735 − 0.00433109 1.01941831 − 0.00384367 1.01951694 − 0.00394004

7 8.3189 1.0140 1.01635076 − 0.00231294 1.01724647 − 0.00319142 1.01571486 − 0.00168832

8 9.3097 1.0100 1.01049138 − 0.00048628 1.01031843 − 0.00031517 1.01004315 − 0.00004272

9 10.2163 1.0035 1.00067872 0.00281936 1.00065473 0.00284340 1.00040487 0.00309387

10 11.0449 0.9880 0.98465332 0.00339883 0.98493476 0.00311212 0.98476472 0.00328533

11 11.8018 0.9630 0.95969740 0.00344128 0.95991837 0.00321030 0.96021830 0.00289694

12 12.4929 0.9255 0.92304877 0.00265557 0.92344862 0.00222143 0.92398779 0.00163661

13 13.1231 0.8725 0.87258819 − 0.00010107 0.87247186 0.00003225 0.87342684 − 0.00106115

14 13.6983 0.8075 0.80731016 0.00023514 0.80721973 0.00034720 0.80730449 0.00024217

15 14.2221 0.7265 0.72795785 − 0.00200266 0.72715264 − 0.00089752 0.72724318 − 0.00102191

16 14.6995 0.6345 0.63646620 − 0.00308925 0.63574691 − 0.00196133 0.63569476 − 0.00187945

17 15.1346 0.5345 0.53569608 − 0.00223276 0.53516713 − 0.00124658 0.53510716 − 0.00113465

18 15.5311 0.4275 0.42881614 − 0.00306925 0.42815627 − 0.00153278 0.42800114 − 0.00117088

19 15.8929 0.3185 0.31866864 − 0.00052921 0.31825665 0.00076463 0.31809476 0.00127395

20 16.2229 0.2085 0.20785709 0.00309301 0.20795448 0.00262326 0.20817415 0.00156527

21 16.5241 0.1010 0.09835419 0.02690083 0.09795918 0.03104170 0.09799476 0.03066735

22 16.7987 − 0.0080 − 0.00816935 − 0.02073040 − 0.00846771 − 0.05523453 − 0.00863574 − 0.07361731

23 17.0499 − 0.1110 − 0.11096846 0.00028415 − 0.11142587 − 0.00382200 − 0.11101564 − 0.00014088

24 17.2793 − 0.2090 − 0.20911761 − 0.00056241 − 0.20954826 − 0.00261639 − 0.20861489 0.00184603

25 17.4885 − 0.3030 − 0.30202235 0.00323699 − 0.30259468 0.00133948 − 0.30230147 0.00231070

Fig. 10 RMSE evolution of the algorithms for the SD model of PWP201
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Fig. 11 RMSE evolution of the algorithms for the DD model of PWP201

Fig. 12 RMSE evolution of the algorithms for the TD model of PWP201

5.3 Experimental test

In this section, the effect of temperature and radiation changes on voltage-current curves
is investigated. In this regard, three different types of PV modules, called monocrys-
talline (SM55) module [54], multi-crystalline (KC200GT) module [55], and polycrystalline
(SW255) module [49], have been taken into account. The experimental data of these solar
modules, under STC, have been taken directly from the manufacturer’s datasheet, which is
summarized in Table 12.

PV current is a function of temperature and radiation that can be written as Eq. (25):

Iph � (Iph_STC + Ki�T )
G

GSTC
(25)

wherein Iph_STC is the light generated current at STC, �T � T − TSTC (TSTC � 25◦C),
G is the surface irradiance of the cell, and GSTC (1000w/m2) is the irradiance at STC. The
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Table 12 STC specifications for
the three modules used in the
experiments

Parameters SM55 KC200GT SW255

Maximum power (Pmax(W )) 55 200 255

Voltage at Pmax (Vppm(V )) 17.4 26.3 31.4

Current at Pmax (Ippm(A)) 3.15 7.61 8.15

Open-circuit voltage (Voc(V )) 21.7 32.9 37.8

Short-circuit current (Isc(A)) 3.45 8.21 8.66

KV (mV/°C) − 76 −123 − 30

Ki (mV/°C) 1.40 3.18 4

Number of cells 36 54 60

Table 13 Identified parameters with the SWOA algorithm at STC

Parameters SM55 KC200GT SW255

Iph(A) 3.46575503 8.21860582 8.67223408

Isd1(μA) 2.26360312e-04 0.00143601 0.01620409
Rs (�) 0.32241761 0.24093983 0.12261139
Rsh(�) 311.82004454 774.212315 825.147321
n1 1.0008282340 1.05528589 1.21928131

RMSE 0.02078510 0.01821364 0.01452717

constant Ki is the short-circuit current coefficient, normally provided by the manufacturer.
The following equation can be used to describe the saturation flow with respect to temperature
change [55].

ISD � (ISC_STC + Ki�T )

exp[q(VOC_STC + Kv�T )/nkTN] − 1
(26)

Kv k is coefficient of open-circuit voltage, the value of which is declared by the manufacturer.
From the values presented in the datasheet, the parameters of the selected PV modules

are determined using the WHHO algorithm in MATLAB m_script. The results obtained for
the three investigated modules are given in Table 13. This table shows that the RMSE value
of the proposed method is very small for all the three modules.

The current–voltage and power–voltage curves of the SM55 module are shown in Fig. 13
for different amounts of radiation at a constant temperature T � 25 °C. Figure 14 shows the
specifications of the SM55 module for different temperature values at a constant radiation
sun � 1000w/m2.

The I–V and P–V curves of the KC 200GT module are shown in Fig. 15 for various values
of irradiance and at T � 25 °C. Figure 16 presents the I–V and the P–V characteristics of
this module for different values of temperature and at an irradiance of sun � 1000w/m2.

Figure 17 describes I–V and P–V characteristics of the SW255 for ranging of irradiance
from 200w/m2 to 1000w/m2 and at T � 25 °C. The I–V curve for different temperatures are
not provided in the data sheet issued by the factory.
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(a) (b)

Fig. 13 Comparison between the proposed method and the manufacturer Data of the SM55 module for different
irradiances, T � 25 °C, a I-V curve, b P–V curve

(a) (b)

Fig. 14 Comparison between the proposed method and the manufacturer Data of the SM55 module for different
temperatures, G � 1000 w/m2, a I–V curve, b P–V curve

5.4 The effects of the temperature and irradiance on the module parameters

In Table 14, the results for estimating the 5 parameters for the SDM are given by SWOA
for the widely used SM55, KC200GT, and SW255 modules. Model inputs are radiation,
temperature, series resistance, parallel resistance. The voltage–current (V–I) characteris-
tic of photovoltaic cells depends on two factors: temperature and radiation. With decreasing
temperature and increasing radiation, the output power increases, and with increasing temper-
ature and decreasing the output power decreases. Radiation and temperature are directly and
inversely related to the output power, respectively. Tables 14 and 15 show that the estimated
parameters Iph(A) and Isd1(μA) change with changing temperature or radiation conditions,
but the variables Rs(�), Rsh(�) and n1 change under different conditions and remain almost
constant. From a physical point of view, the parameter Iph is photo-current and with increas-
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(a) (b)

Fig. 15 Comparison between the proposed method and the manufacturer Data of the KC 200GT module for
different irradiances, T � 25 °C, a I-V curve, b P–V curve

(a) (b)
Fig. 16 Comparison between the proposed method and the manufacturer Data of the KC 200GT module for
different temperatures,G � 1000 w/m2, a I–V curve, b P–V curve

ing radiation level, its value increases, which is observable in Table 14. The parameter Isd1

is the reverse saturation current of the diode and its value relies on the temperature. As the
temperature gains, the quantity of photons absorbed increases and, as a result, their amount
increases. This circumstance is certified by the results presented in Table 15 [26, 50].

Besides, it can be found that the resistance value of the Rs series for monocrystalline and
multi-crystalline is less than 0.4.

With respect to the ideal factor of diode n1, its value is almost fixed for a specific model
under dissimilar circumstances, but its value is distinguished for different types of PV models
[26]. It should be noted that the extracted results are close to the results of other methods
[19, 24, 29].
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Table 14 Estimated optimal parameters by SWOA for three types of PV modules at different irradiance and
temperature of 25 °C

Parameters SM55 KC200GT SW255

G � 1000w
/
m2

Iph(A) 3.46575503 8.21860582 8.67223408

Isd1(μA) 2.26360312e-04 0.00143601 0.01620409
Rs (�) 0.32241761 0.24093983 0.12261139
Rsh(�) 311.82004454 774.212315 825.147321
n1 1.0008282340 1.05528589 1.21928131

RMSE 0.02078510 0.01821364 0.01452717
G � 800w

/
m2

Iph(A) 2.77740892 6.57193101 6.93736802

Isd1(μA) 4.49785556e-04 8.9120147e-04 0.01243336
Rs (�) 0.33164013 0.32179412 0.14935662
Rsh(�) 336.02512933 763.647913 846.784153
n1 1.02415864 1.04264782 1.20698547

RMSE 0.01135360 0.02152142 0.01950175
G � 1000w

/
m2

Iph(A) 2.07926408 4.82284077 5.208789881

Isd1(μA) 2.71771063e-04 4.2146083e-03 0.009040316
Rs (�) 0.33577536 0.31772024 0.201092676
Rsh(�) 377.580024882 759.811947 923.1425146
n1 1 1.08142513 1.191102785

RMSE 0.01120774 0.00710521 0.015320447
G � 400w

/
m2

Iph(A) 1.38394610 3.31456952 3.476994332

Isd1(μA) 3.24616001e-04 2.141771e-03 0.020786671
Rs (�) 0.30977844 0.31223096 0.256109019
Rsh(�) 334.02806096 761.347814 910.452136
n1 1.00277773 1.06412677 1.245142018

RMSE 0.00783996 0.01022338 0.011781460
G � 200w

/
m2

Iph(A) 0.68648791 1.67697515 1.746816956

Isd1(μA) 0.02177540 4.4909963e-04 0.033177967
Rs (�) 0.30933169 0.36141251 0.388661405
Rsh(�) 369.56648088 720.314121 912.3147851
n1 1.23756313 1.05124741 1.274607072

RMSE 0.00264573 0.00707896 0.009995405
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(a) (b)

Fig. 17 Comparison between the proposed method and the manufacturer Data of the SW255 module for
different irradiances, T � 25 °C, a I–V curve, b P–V curve

Table 15 Optimal estimated parameters by WHHO for three modules at different temperature and constant
irradiance of 1000 W/m2

PV
modules

Temperature Iph(A) Isd1(μA) Rs (�) Rsh(�) n1 RMSE

20 °C 3.43012610 0.15141237 0.32493172 458.1486 1.38416982 9.2631e-
04

30 °C 3.45167312 0.17954136 0.31647831 475.6415 1.37621438 9.0532e-
04

SM55 40 °C 3.46913647 1.06184731 0.31594137 511.3479 1.41213461 3.4263e-
03

50 °C 3.47816739 3.15948234 0.32153476 584.6174 1.38362494 3.4161e-
03

60 °C 3.49462817 6.84165721 0.32130415 498.2461 1.40346171 3.7561e-
03

25 °C 8.21051643 2.23145e-
03

0.34157893 765.3519 1.06158614 1.51238e-
03

KC200GT 50 °C 8.29314912 0.12638419 0.33614281 820.1674 1.08631425 2.6791e-
03

75 °C 8.37712648 1.64179431 0.33671429 806.9413 1.07641739 4.3149e-
03

6 Conclusion

In this study, a novel improved optimization algorithm called springy whale optimization
algorithm (SWOA) is proposed. SWOA has several advantages such as enhancing the per-
formance, high convergence speed, global search capability, and high robustness over WOA.
So as to look over the efficiency of SWOA, this algorithm is employed to estimate the
parameters of SDM, DDM, TDM and also photovoltaic (PV) modules; the simulation results
prove the supremacy of the presented algorithm. Moreover, the effectiveness of SWOA algo-
rithm in the practical application has been assessed using commercial modules, including
polycrystalline (SW255), multi-crystalline (KC200GT), and monocrystalline (SM55). This
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evaluation is accomplished for different operating conditions under different irradiance and
temperature conditions, which yield changes in the parameters of the PV model. Finally,
the results obtained from various experimental tests confirming the high performance and
robustness of the proposed algorithm.
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