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Abstract Piezoelectric stage has become promising actuator for wide applications of micro-
/nano-positioning systems represented mathematically with Bouc–Wen hysteresis model to
examine the efficiency. In this investigation, the numerical study of piezostage actuator based
on nonlinear Bouc–Wen hysteresis model is presented by neurocomputing intelligence via
Levenberg–Marquardt backpropagated neural networks (LMB-NNs). Numerical computing
strength of Adams method is implemented to generate a dataset of LMB-NNs for train-
ing, testing and validation process based on different scenarios of input voltage signals to
piezostage actuator model. The performance of LMB-NNs of nano-positioning system model
is validated through accuracy measures on means square error, histogram illustrations and
regression analysis.
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I Identity matrix
J Jacobian matrix
k Stiffness coefficient
LMB Levenberg–Marquardt backpropagation
m Mass of sliding object
MSE Mean square error
N Hidden layers neurons
NN Neural networks
p Downhill step
Q Step interval
R Regression value
T Time variable
W Weight matrix
X Input voltage
Z Number of sample data points
α, β, γ Hysteresis loop shape control parameters
Δ Piezoelectric coefficient
λ Nonnegative scalars of identity matrix

1 Introduction

Piezoelectric stage (PS) is an electromechanical device which produces motion in one degree
of freedom and is operated by piezoceramic actuators (PCAs). These piezoceramic actuators
have well positional accuracy with sub-nanometer resolution, highly stable with large block-
ing force and fast response with in milliseconds; therefore, they are extensively used in the
applications of micro- or nano-positioning systems like space antenna applications [1], lithog-
raphy systems [2], sensors applications [3], energy harvesting [4], micromechanical systems
[5] and micro-robotics [6]. The PCAs produced nonlinearity into a PS system because of hys-
teresis and piezoceramic polarization, while hysteresis is the response for the input voltage
with output displacement that highly destroy the positional accuracy of PS systems [7, 8].
Therefore, in nano-positioning applications, the hysteresis must be suppressed for high accu-
racy. Hence, precise modeling is still the challenging task for researchers. In order to cancel
out the nonlinear hysteresis effect, an inverse compensation is introduced to the PS system.
The nonlinear hysteresis model is categorized as operator-based hysteresis model [9] and
differential systems-based hysteresis model [10]. The common model of differential systems
used to explain the hysteresis of PS contains the Duhem model [11], Backlash model [12]
and Bouc–Wen model [13]. The operator-based hysteresis model contains Prandtl–Ishlinskii
model, [14] Krasnosel’skii–Pokrovkii model, [15] and Preisach model [16].

The recent, relevant, reported studies for electro-vibro dynamic hysteresis modeling of
piezostage actuator (PSA) in different applications include a feedforward control method-
ology of dynamic hysteresis inverse classic Preisach model [17], and proportional-integral-
derivative control [18] is proposed for PSA. Interval type-2 fuzzy system based on gradient
optimization is presented for hysteresis modeling and feedforward control of the PSA [19].
The design of hysteresis by autoregressive exogenous neural network for is presented in order
to enhance the performance accuracy of PSA for vibrations of helicopter vibrations [20].
Another approach for hysteresis compensation based on adaptive control of single neuron
is proposed to dynamically control the PSA input by utilizing the combination of super-
vised learning and Hebb learning rules [21]. A self-tuning neural network control approach
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is offered to apprehend the system accuracy by tracking PSA uncertainties and nonlinear
hysteresis [22]. A slide mode controller based on Prandtl-Ishlinskii model is introduced [23].
Another dynamic delay Prandtl–Ishlinskii model is presented to characterize the dynamic
and asymmetrical features of PSA in order to suppress the hysteresis effect [24]. Lee et al.
presented finite-time integral terminal sliding mode and time-delayed estimation approaches
in order to achieve fast, accurate, and robust force tracking performance [25]. The Elman
neural network-based dynamic hysteretic operator is used to alter the multi-valued mappings
of hysteresis [26]. A polynomial-based disturbance fractional-order model is presented to
describe the intricate PSA hysteresis effect that considerably suppressed hysteresis nonlin-
earity over a wide bandwidth [27]. A tracking control Pneumatic muscle PSA is presented,
based on echo state Gaussian process and nonlinear predictive control model for lower limb
exoskeleton [28]. Moreover, the recurrent neural network-based inversion model is intro-
duced to compensate the nonlinearities of PSA in order to get a high-accuracy, broadband
and less computational complexity [29].

1.1 Related study

Different researchers present different approaches in order to optimize the system parameters
of this nonlinear effect of input and output displacements. The particle swarm optimization
(PSO) method is used to optimize the nonlinearity of Dahl model, Duhem model, generalized
Duhem and Bouc-Wen hysteresis models [11]. The parameter identification of Duhem model
is employed by genetic algorithm as well as clonal selection algorithm [30]. For Bouc-Wen
hysteresis model accuracy, the least square method has also been used [31]. Transitional
Markov chain Monte Carlo approach is exploited to optimize the parameters of Bouc–Wen
model [32]. Improved artificial bee colony algorithm is presented in order to identify hys-
teresis parameters [33]. Furthermore, the optimization of nonlinear effect of piezo actuator
for Bouc-Wen hysteresis model has been performed by hybrid adaptive differential evolution
[34]. Hence, the Bouc-Wen hysteresis model is commonly adaptive technique to model the
hysteresis of PS systems as only one auxiliary differential system is essential to explain the
behavior of hysteresis.

Numerical methods focused on soft computing paradigm are commonly used to solve var-
ious problems of differential systems [35, 36]. Some recently published studies of paramount
significance contain solution of mathematical model for Painlevé-II representing the dynam-
ics of nonlinear optics [37], nonlinear Bratu’s equation arising in electrically conducting solid
models [38, 39], reactive transport system of soft tissue [40], Van-der-Pol oscillatory nonlinear
systems [41, 42], convergent/convergent fluidic flow systems [43, 44], thin-film flow stud-
ies [45, 46], combustion theory [47], nonlinear circuit theory models [48, 49], astrophysics
[50], mathematical models involving Carbon nanotubes [51], heartbeat dynamic models [52],
dusty plasma [53], HIV infection spread models [54], atomic physics [55, 56], piezoelectric
transducer modeling [57], wind power [58, 59], load dispatch problem [60], financial models
[61, 62], nonlinear fractional dynamic modeling with Riccati fractional differential equations
(FrDEs) [63, 64] and Bagley–Torvik FrDEs [65].

1.2 System model: Bouc–Wen model for hysteresis modeling of piezoelectric actuator

The nano-position moving stage excited by piezo actuator (PA) is graphically demonstrated
in Fig. 1. By applying an input voltage x on the piezoelectric stack, the elongation is formed
in the stack due to piezoelectric effect, which exerts force on the sliding mass m and caused
essential displacement d. The unsymmetrical relationship between this output displacement
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Fig. 1 System model

Table 1 Piezo actuator settings Parameter Value

C 6.4665×103 Ns/m

k 1.7333×106 N/m

m 0.4763

n 1

δ 2.4825×10−5 m/v

α 0.5011

β 0.7017

γ 0.9997

and applied voltage is the hysteresis loop that can be described by Bouc-Wen model. The
standard Bouc-Wen model (BWM) is first presented by Bouc in 1967 [66] where the hysterical
act of external applied force and output displacement is numerically expressed in form of
function; then, in 1976 the generalized version of this function is proposed by Wen. This model
comprises of two equations, the nonlinear first-order state equation and the linear output
equation of input and state signals. It can be demonstrated in numerous variety of hysteresis
behavior depending on the selection of parameters. The electromechanical expression for
dynamic hysteresis model of piezo actuator can be described in Eqs. (1) and (2).

m d̈(t) + c ḋ(t) + k d(t) � k(δx(t) − h(t)), (1)

ḣ(t) � αδẋ(t) − β|ẋ(t)|h(t)|h(t)|n−1

− γ ẋ(t)|h(t)|n, (2)

where x signifies the input voltage, d is the output displacement, t indicates time variable,
c is the damping coefficient, h denotes hysteresis, k represents stiffness coefficient and δ

symbolize the piezoelectric coefficient. The parameters α, β, γ and n are the magnitude and
shape control variables of hysteresis, where α,β andγ control the basic shape, while order n is
responsible for the sharpness and smoothness of the hysteresis loop that switch the response
from elastic to plastic. The values of all these model parameters are given in Table 1.
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1.3 Problem statement and significance

The enriched importance of piezoelectric actuator attracts different researchers to implement
numerous techniques to observe the dynamics of system, but the soft computing technique
has not been exhaustively examined for the analysis of Bouc–Wen hysteresis model. The main
objective of this investigation is to exploit soft computing paradigm through the ability of
Levenberg–Marquardt backpropagated neural networks (LMB-NNs) to solve the differential
system representing in Eqs. (1–2). The proposed LMB-NNs can be a good alternative to be
exploited for Duhem model, Dahl model and Prandtl–Ishlinskii model.

1.4 Contribution and innovative insights

The creative elements of the designed computing infrastructure are briefly illustrated as:

• Novel application of neuro-heuristic technique based on Levenberg–Marquardt backprop-
agated neural networks (LMB-NNs) is presented to study the Bouc–Wen hysteresis model
for piezostage actuator.

• The dataset of Bouc–Wen hysteresis model is created by exploiting the strength of Adam
numerical solver for training, testing and validation purpose.

• The efficacy of the scheme is validated by variation in applied input voltage signals
to piezostage actuator model on accuracy through performance metrics based on mean
squared error, error histogram illustrations, as well as regression analyses.

• Apart from the proven competence of precise solution, other valued key characteristics of
the scheme are sound procedures, smooth execution, fast steady convergence, reliability
and extensibility.

1.5 Organization

The rest of the paper is organized as follows: Sect. 2 narrates methodology based on supervised
neural network employed for solving the hysteresis modeling of piezoelectric actuator. In
Sect. 3, outcomes with necessary interpretation are narrated, while concluding inferences are
listed in Sect. 4.

2 Methodology

In this section, the methodology is presented that consists of the three parts. Initially, the
creation of data set by Adams numerical method, then formulation of LMB-NNs and finally
the performance indices is discussed. The graphical abstract of design methodology is rep-
resented in Fig. 2. The steps of our proposed work are demonstrated in algorithms 1.

2.1 Adams numerical method

Adams numerical approach for first-order system is written as:

dy

dx
� f (x, y), (3)

Yl+1 � yl +

tl+1∫

tl

dy

dx
dt � yl +

tl+1∫

tl

f (y, t)dt, (4)
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Fig. 2 Graphical abstract of proposed methodology

where y signifies output of linear first-order ordinary differential equation, x represents the
input value, Yl+1 symbolize the first-order interpolation iterative approach, and t denotes the
time interval.

Adams methods are based on the principle of approximating the integral within the interval
(tl, tl+1) with a polynomial. There are two kinds of Adams methods, the explicit and the
implicit types. The Adams–Bashforth (AB) methods are called the explicit type, and the
Adams–Moulton (AM) methods are called the implicit type. The AB and AM methods of
the first order are essentially the methods of forward and backward Euler. The second-order
versions of these methods are very common (obtained by using a linear interpolant). In
Eq. (5), the second-order Adams–Bashforth (AB2) method is described.

Yl+1 � yl +
q

2
(3 f (yl , tl − f (yl−1, tl−1)) (5)

where q is the step interval. The Adams–Moulton second order (AM2) is an implicit method,
also referred to as the trapezoidal principle given below:

Yl+1 � yl +
q

2
( f (yl+1, tl+1 + f (yl , tl )) (6)

2.2 Levenberg–Marquardt backpropagation method

In 1944, Kenneth Levenberg and Donald Marquardt developed the Levenberg–Marquardt
algorithm, that exploits the strength of steepest decent method (SDM) and the Gauss–Newton
method (GNM). Due to the hereditary convergent efficiency of GNM and of SDM stability, the
algorithm is robust. The minimum function F(x) is initially determined in the LM algorithm
as:

F(x) �
l∑

i�1

(
( fi (x))2

2

)
, (7)

while J represents Jacobian of the function and the LM method proceed as:

(JT
a Ja + λa I )pa � −JT

a fa, (8)
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where λl represents positive scalar values, I stands for identity matrix, and p is downhill step.
The updated rule for weights in LBM-NNs algorithm is given as:

wa+1 � wa − (JT
a Ja + λa I )−1 Jaea, (9)

Here ea and wa are error and weight vector, respectively.
The convergence rate of the LM algorithm is higher than both GNM and SDM. LM

algorithms have two feasible alternatives for the path of the algorithm at each iteration. At
the same time, it can handle several parameters.

Artificial neural networks are composed of a series of linked units called artificial neurons.
A signal can be transmitted to another neuron through each synapse between neurons. The
state of neurons can easily be expressed by entries generally real number between [0, 1].
Neurons are usually arranged into layers’ structure with different types of transformation
functions. On their inputs, different layers can perform different types of transformations. In
this methodology, 20 to 100 hidden layers were used in order to achieve the desire output. The
basic structure of proposed neural network is shown in Fig. 3. Here, a Levenberg–Marquardt
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Fig. 3 Structure of supervised neural network

Fig. 4 Levenberg–Marquardt backpropagation

backpropagation algorithm-based neural network is presented to optimize the Bouc–Wen
hysteresis model of piezostage actuator graphically shown in Fig. 4.

2.3 Performance indices

The performance of our proposed work has been illustrated by regression analysis, error
histogram, curve fitting and mean square error.

2.3.1 Regression analysis

Regression analysis is a powerful form of statistics that help to analyze the relationship
of interest between two or more variables. Although there are several forms of regression
analysis, they all analyze the effect of independent variables over dependent variables. It is
most commonly used for forecasting and prediction, where its application overlaps greatly
with the field of machine learning. The regression method helps to confidently decide which
variables matter most, the relationship between these variables and which variable can be
ignored. Regression model shows that Yi is a function of Xi and ς , with ei which represents
a random statistical noise as given in Eq. (10).

Yi � f (Xi , ς) + ei . (10)
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Fig. 5 Comparison of performance and training states of input signals

2.3.2 Error histogram

Error histogram shows the differences between predicted values and targeted values obtained
after training a feedforward deep neural network. Since these error values show how expected
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Table 2 Datasets of displacement
(mm) for all three scenarios

t Case 1 Case 2 Case 3
d(t) d(t) d(t)

0.0 0.000000 0.000000 0.000000

0.5 0.122030 0.152181 0.056541

1.0 0.027461 0.173765 0.183241

1.5 0.141341 0.010512 0.072518

2.0 − 0.006967 0.184217 0.169077

2.5 0.042015 0.007524 0.085067

3.0 0.055632 0.152999 0.157971

3.5 0.024377 0.049344 0.094872

4.0 − 0.006702 0.037147 0.149341

4.5 0.022191 0.131104 0.102437

5.0 0.103459 0.060369 0.142754

5.5 0.134957 0.007781 0.108130

6.0 0.069603 0.047261 0.137877

6.5 − 0.001124 0.094198 0.112305

7.0 0.010395 0.090301 0.134320

7.5 0.072201 0.060561 0.115327

8.0 0.103859 0.027865 0.131761

8.5 0.079369 0.011089 0.117513

9.0 0.031153 0.007300 0.129875

9.5 − 0.001778 0.008679 0.119109

10 − 0.005499 0.010753 0.128487

values vary from the target values, they may also be negative. Bins represent the vertical bars
on the graph, and y-axis denotes number samples from given dataset. Zero line on graph
corresponds to the zero error.

2.3.3 Mean square error

The mean square error (MSE) of an estimator is used in statistics to calculate the average error
squares, i.e., the average square difference between the expected values and the real value. It
can be used as a loss function in order to analyze the model performance. The mathematical
expression of MSE is shown in Eq. (11).

MSE � 1

s

s∑
i�1

(Yi − 	

Y i )
2, (11)

where s is the number of sample data points, Y and
	

Y are true output and estimated output.
The error can be obtained from the difference of estimated and true output values.

3 Results and discussion

In this section, dynamic hysteresis model of piezo actuator using proposed LBM-NNs is
presented with numerical and graphical illustrations of outcomes. Results are presented for
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Fig. 6 Regression Analysis of training, testing and validation for all scenarios

all three cases of dynamic hysteresis model of piezo actuator by variation of input voltage
signal as per following details.

The solution of dynamic hysteresis model of piezo stage actuator is presented by taking
following three cases:

3.1 Case 1: piezoelectric actuator model with type 1 input

In this case study, dynamics of Bouc-Wen hysteresis model is represented in Eqs. (1) and
(2) for piezostage actuator with given initial conditions presented by choosing type 1 input
voltage signal in t ∈ [0, 10]. The initial conditions are:

d(0) � 0, d ′(0) � 0, h(0) � 0.

The type 1 input voltage signal is shown in Eq. (12).

x(t) � 5e−0.1t(sin(6π te−0.346t − 1.5) + 1
)
, (12)

Using Eq. (12), the updated Bouc-Wen hysteresis model for piezoelectric actuator is given
in Eqs. (13–14). (

md̈(t) + cḋ(t) + kd(t) + kh(t)

−5δke−0.1t(sin
(
6π te−0.346t − 1.5

)
+ 1

)
)

� 0, (13)

ḣ(t) � (
αδ − γ |h(t)|n)

(−5e−0.1t (−6πe−0.346t + 6.522te−0.346t )
cos

(
1.5 − 6π te−0.346t ) − 0.5e−0.1t (1 − sin

(
1.5 − 6π te−0.346t ))

)
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Fig. 7 Case 1: curve fitting: a output displacement curve fitting, b input signal 1, c hysteresis loop

− β

∣∣∣∣∣−5e−0.1t

( −6πe−0.346t

+6.522te−0.346t

)
cos

(
1.5

−6π te−0.346t

)
− 0.5e−0.1t

(
(1− sin

(
1.5

−6π te−0.346t

))∣∣∣∣∣h(t)|h(t)|n−1.

(14)

3.2 Case 2: Piezoelectric actuator model with type 2 input

In this case study, a type 2 input voltage signal for time t ∈ [0, 10] is shown in Eq. (15)
chosen for the dynamic of BWM of piezoelectric actuator described in Eqs. (16–17).

x(t) � 5e−0.13t(cos(3π te−0.09t − 3.15) + 1
)

, (15)
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Fig. 8 Case 2: curve fitting a output displacement curve fitting, b input signal 2, c hysteresis loop

(
md̈(t) + cḋ(t) + kd(t) + kh(t)

−5δke−0.13t(cos
(
3π te−0.09t − 3.15

)
+ 1

)
)

� 0, (16)

ḣ(t) � (
αδ − γ |h(t)|n)

⎛
⎜⎜⎝−0.65e−0.13t

⎛
⎜⎜⎝

1 + cos
(
3.15 − 3e−0.09tπ t

)

−5e−0.13t

(−3e−0.09tπ

+0.84823e−0.09t t

)
sin

(
3.15 − 3e−0.09tπ t

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠

−β

∣∣∣∣∣−0.65e−0.13t

(
1 + cos

(
3.15−
3e−0.09tπ t

))
− 5e−0.13t

(−3e−0.09tπ+

0.84823e−0.09t t

)
sin

(
3.15−
3e−0.09tπ t

)∣∣∣∣∣h(t)|h(t)|n−1.

(17)
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Fig. 9 Case 3: a Output displacement curve fitting, b input signal, c hysteresis loop

3.3 Case 3: Piezoelectric actuator model with type 3 input

In this case study, a type 3 signal in t ∈ [0, 10] shown in Eq. (18) is selected as an input
signal of piezoelectric actuator in order to determine the dynamics of Bouc-Wen hysteresis
model.

x(t) � 5 + 3.4e−0.24t (cos 2π t), (18)
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Fig. 10 Error histogram for all three cases
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Table 3 Performance analysis for all three cases of proposed piezo actuator model

Case Hidden layer
neurons

Mean square error Performance Gradient Mu Epoch

Training Validation Testing

1 20 1.073e−06 6.227e−06 0.4945 8.3166E−05 6.66E−03 1.0E−07 786

2 100 3.965e−03 0.024098 0.014664 0.024098 0.015532 1.0E−07 134

3 50 2.738e−04 3.243e−04 4.767e−04 3.2433E−04 0.038832 1.0E−08 329

Now Eqs. (1) and (2) turn in the form of Eqs. (19–20).(
md̈(t) + cḋ(t) + kd(t) + kh(t)

−5δk + 3.4e−0.24t kδ(cos 2π t)

)
� 0, (19)

ḣ(t) �
(

αδ−
γ |h(t)|n

)( −21.3628e−0.24t sin(2π t)

−0.816e−0.24t cos(2π t)

)
− β

∣∣∣∣∣
−21.3628e−0.24t sin(2π t)

−0.816e−0.24t cos(2π t)

∣∣∣∣∣h(t)|h(t)|n−1.

(20)

Initially, the dataset for all three cases was created with Adams numerical method by
using ‘NDSolver’ in Mathematica platform. Different datasets for each analysis were created
with step size 0.1 in order to find the solution of dynamic Bouc-Wen hysteresis model with
supervised neural network. The datasets for all three cases with different input signals for
selected twenty points with step size 0.5 are numerically represented in Table 2. The number
of data points created for each case is 101 with step size 0.1. Furthermore, these datasets were
imported into MATLAB for implementation of SNN where 90% of data points is used for
training the model, 5% is for testing, and leftover 5% is used for validation purpose of obtained
results. Performance analysis for all three cases of proposed dynamic hysteresis model of
piezo actuator are numerically shown in Table 2, where the hidden layer neurons were kept
20, 50 and 100 according to achieve better performance. The best observed performance
value for case 1 is 8.3166E−05 in 786th epoch, for case 2 is 0.024098 in 134th epoch and
for case 3 is 3.2433E−04 in 329th epoch. The values of step size (Mu), gradient and mean
square error (MSE) are also shown in table. To verify the model accuracy, the MSE is used
that has shown optimal values for all three cases. The MSE values of training, testing and
validation of proposed model for case 1 are 1.073e−06, 0.4945 and 6.227e−06, respectively.
The case 3 shows minimum MSE value for testing of system that is 4.767e−04 with step
size (Mu) of 1.0E−08 in 329th epoch as compared to other two cases.

The obtained results are also graphically shown in form of performance analysis, regres-
sion analysis of training, testing and validation, curve fitting of output displacement and
model error and histogram. The performance analysis of dynamic hysteresis piezo actuator
for all three cases is graphically illustrate in Fig. 5 where the MSE values are plot against
each epoch for training, validation and testing of model. The best MSE value is achieved
at case 1 for validation that is 8.31E−05 at 786 epoch. The gradient, Mu and validation
check at 786 epochs are also graphically shown. The best line for case 1 is observed near
10−4, for case 2 is around 10−2 and for case 3 is closed to 10−3. These graphs show that
for all cases the accurate MSE value is taken; however, a bit degradation in performance of
model for testing and validation is observed due to un-biasness, while the training provides
best values in all graphs although during validation and testing process the target at input
were not defined. The algorithm stability is shown by state estimation due to Mu. The state
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estimation of proposed model is actually the step size (Mu), gradient and validation check at
each epoch shown in Fig. 5; here, the gradient is used to find another vector at each epoch
during training. The Mu represents the step size of used algorithm, and the term validation
check is generalized measure of the model. The convergence results for smaller Mu of all
three cases are shown by these graphs; however, the best convergence is observed in case 3
where the Mu value is 1E−08 at 329 epoch.

The regression analysis of dynamic hysteresis piezo stage actuator for training, testing
and validation are graphically demonstrated in Fig. 6; here, the prediction and forecasting are
graphically demonstrated. It shows that the value of regression (R) is achieved approximately
1 for all three cases, which determines the closed correlation between the targets and the output
vectors.

In order to find accuracy of dynamic hysteresis model of piezo actuator, the fitness graphs
are plotted. And hence the error of all three cases is found. Input signals, model hysteresis,
training states of fitness graphs and errors of dynamic hysteresis piezo stage model for case
1 are shown in Fig. 7, that of case 2 are shown in Fig. 8 and that of case 3 are shown in Fig. 9,
respectively.

Further analysis is performed through histogram where the error is plot verses instances
for all data points including training, testing and validation with 20 bins. The histogram for
all three case is shown in Fig. 10. Most data points are observed to converge toward a zero
error line with less extreme values. On the left side of the target line, the negative error is
plotted, while the positive error is plotted on the right side. In case 1, the targeted zero error
line occurred at − 0.1 where it falls into the bin; in case 2, the zero error falls into the bin at
0.035, and in case 3, the zero error line lies at − 0.003 on error axis (Table 3).

4 Conclusion

In this research work, an neurocomputing heuristics is presented to model differential equa-
tions of nonlinear Bouc-Wen hysteresis model and optimized with the LMB-NNs. The dataset
of piezostage actuator is created by Adams numerical method. Various experiments based
on variation of input voltage signal for actuation of piezostage actuator model are conducted
in order to validate, train and test the system. A neural networks approach for nonlinear
hysteresis modeling of piezoelectric actuator has exposed remarkable, efficient and stable
results with highest accuracy in terms of mean squared error, regression analyses and error
histogram. The best testing result is obtained in case 3 where the MSE value is 4.767e−04.
The best performance is 8.3166E−05 which is achieved by case 1 with step size 1.0E−07
in 786 epochs. The minimum error is shown by case 3 where the zero error line lies on −
0.004.

The proposed neurocomputing intelligence algorithm can be a good alternative to be
implemented on renewed applications in broad fields [67–73].
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