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Abstract On the mixed nonzero—zero backgrounds, the vector fundamental breathers, soli-
tons and rogue waves of the coupled higher-order nonlinear Schrodinger system with sign-
alternating nonlinearity are investigated. Using the Lax pair and Darboux transformation, we
produce a family of vector solutions on the mixed backgrounds. Via the breather-to-soliton
conversion, we show the vector solitons on the mixed backgrounds. We show the vector
fundamental rogue waves of ultra-high peak amplitude on the mixed backgrounds.

1 Introduction

Propagation of two or more components with different spectral peaks, modes, or polarization
states in nonlinear media can be described by some coupled nonlinear Schrodinger (NLS)
systems [1-7]. Such coupled NLS systems have been considered and investigated in multidis-
ciplinary areas, e.g., nonlinear optics, plasma physics and Bose-Einstein condensates [1-7].
With the Ablowitz—Kaup—Newell-Segur (AKNS) method, the coupled NLS system with
nonlinear coupling terms describing the potential dynamics of two orthogonally polarized
modes in a nonlinear optical fiber has been proposed as [8]

iQ1r + Q1ax +2(1Q11° = 21021 Q1 — 20703 =0, (1a)
i 02 + Q2xx +2Q1011° = 1021102 +20307 = 0, (1b)
where Q1(x,t) and Q2 (x, t) are the slowly varying complex amplitudes in two interacting
optical modes, the variables x and ¢, respectively, correspond to the space and time coordi-

nates, and the asterisk denotes the complex conjugate. Equation (1) could also be rewritten
as a matrix form

iQr + Qux +2QQ*Q =0, 2)
with
(01 O
Q= <—Q2 Ql) ' )
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Solitons of a class of matrix NLS equations have been investigated using the inverse scattering
transform [9]. It is noted that Eq. (1) correspond to the case 3 in [9] with the identification
go = iQ1 and g1 = —g_1 = Q> and case 4 in [9] with the identification g9 = Q> and
g1 = —q—1 = Q1. Some other integrable matrix systems such as novel resonant wave
interaction equations have been found in [10].

Besides, considering higher pulse input powers, one should include the higher-order effects
in the basic NLS models [11-17]. Specifically, in optics, the third-order dispersion and self-
steepening effects have been used to describe the propagation of ultrashort pulses along
a fiber [11-17]. Motivated by the above reasons, we introduce the following matrix NLS
equation with higher-order effects (i.e., the matrix form of Hirota equation [18]):

iQr + Qux +2QQQ + iaQuyx + 6i0QQ*Q, =0, “

where « denotes the perturbation strength of higher-order effects. With (3), we rewrite Eq. (4)
as

i01 + Quex + 2010117 = 210211 Q1 — 20703 + i Q1xxx

+6ia(|Q11* — 1021 Q1x — 6ia(Q1 0% + 0207) Q2r = 0, (5)
102 + Qocx + 210117 = 1021102 + 20307 + it Q2
+6ia(|011> = 102 Q2 + 6ia(Q20F + 0105 Q1 =0, (5b)

where the coefficients of the self-phase modulation and cross-phase modulation still have
the opposite signs. When « # 0, System (5) involves the third-order dispersion and self-
steepening effects.

In this paper, we will show some dynamics of fundamental solitons and rogue waves
of System (5). Firstly, we will obtain the vector breather solutions on the mixed (nonzero—
zero) backgrounds. Here, the mixed background means that one component has nonzero
background, while another one has zero background with x — +oc0. Since the breather-to-
soliton conversion that could appear in scalar NLS equations with the presence of high-order
effects [13—15], we could generate the vector solitons on the mixed backgrounds. Secondly,
rogue waves are also the active multidisciplinary problems of research in the past ten years
or more [14,19-34]. Some analytical evidences show that fundamental rogue waves with
ultra-high amplitude maybe appear in coupled systems [35-38]. The previous studies have
shown such rogue waves on the vector nonzero backgrounds [35-38]. However, in this paper,
the fundamental rogue waves of ultra-high peak amplitude on the mixed backgrounds are
obtained.

The outline of this paper is as follows. In Sect. 2, we will construct the Lax pair and
Darboux transformation (DT) of System (5). In Sect. 3, based on DT, we will study the
vector breathers and solitons on the mixed backgrounds of System (5). Besides, we will
study the fundamental rogue waves with ultra-high amplitude on the mixed backgrounds.
Section 4 will be our conclusion.

2 Lax pair and DT

Using the AKNS formulation, the Lax pair associated with System (5) can be written in the
4 x 4 matrix form as

¥, =U¥ = [AUp + U] Y, (6a)
W=V = [V + 22V + 4V + V| @, (6b)
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with
. (~Lx2 O [ 2ilhxy  4aQ . (Lx2 O
UO_I( 0 L) "7 —4aQ*  2ilyx2 )’ i=dia| g Lo/’
2i0QQ*

_( 0 Q _({ Q1 O _ 2iaQy +2Q
n=( 8) e=(%, §) 7= (aeor e )

—2iaQ*Q
. <iQQ* +a(QQ* —Q:Q%)  iQy — a(Qux +2QQ*Q) )
0= iQ: +a(Q%, +2Q*Q*Q) —iQ*Q — «(Q:Q - Q*Qy) )’

where ¥ is the vector eigenfunction and depends on the variables x and #, A is the complex

spectral parameter of Lax Pair (6), Io«7 is the 2 x 2 unit matrix, O is the 2 x 2 zero matrix.

It can be verified that the zero-curvature equation U; — V, 4 [U, V] = 0 yields System (5).
Introducing the gauge transformation

Y[l] = DY, @)
and substituting it into Lax Pair (6), we obtain
U[1]D =D, + DU, (8a)
V[1]ID =D, + DV, (8b)
where
U[1] = AUp[1] + U], (%a)
VI1] = 23 V3[1] + A2 Va[1] + AVi[1] + Vo[ 1], (9b)

which means they have the same forms as U and V, except that the potentials Q; and Q>

Y1 =Y
are replaced by Q[1] and Q2[1]. Motivated by [8], we note that if zz le is a vector
30—V
Ya Y3
vy -y
* *
eigenfunction of Lax pair (6) with A = Ay, then wl;* 51 is a vector eigenfunction
4 2
vy —Y7
of Lax pair (6) with A = A]. Therefore, the matrix D is constructed as follows:
Y1 =Y ¥y —yy\ (M 0 0 0
Yo Y1 Yy Y3 0 » 0 0
D=0Lu—S9),S=
Haxa =) v o~y -yt vl [lo o ar oo
Ya Y3 =Y ¢/ \0O 0 0 A}
—1
Y1 =y Yy =Yy
(V2 VR /5 R V4
X : 10
Vs o~V v ¥ (10
Vs Y3 =Y =Yy

It is noted that System (5) belongs to AKNS system. The Darboux matrix of scalar AKNS
system is given in Section 1.3 of [39], and the Darboux matrix of matrix AKNS system is
given in Theorem 3.1 of [40]. So we can know that the matrix (10) is the Darboux matrix of
System (5).

@ Springer



383 Page4of 9 Eur. Phys. J. Plus (2021) 136:383

Then, from (8) and (10), we have

Up[1] = Uy, V3[l] = V3, (11a)
—Up[11S + Uy[1] = Uy — SUy, (11b)
=U1[1]S = -8, — SUq, (11¢)
=V3[1]S + V2[1] = =SV3 + V>, (11d)
WIS+ Vi[1] = —-8SV, + V, (11e)
=VIIIS + W[l] = =8Vi + W, (11f)
—Wol[11S = =S, — SV (11g)
From (11b) to (11g), we can get the relation between (Q1[1], Q2[1]) and (Q1, Q>) as
O1[1] = Q1 —2iS13, Q2[1] = Q2 —2iS14, (12)

where S;3 means the element in first row and third column of § and S;4 means the element
in first row and fourth column of S.
3 Dynamics of fundamental solitons and rogue waves on the mixed backgrounds

In this section, in order to derive the vector breather solutions on the mixed backgrounds, we
start with the seed solutions of System (5) as

010 = alei(kx—t(alz(6ak—2)—ak3+k2))’ 050 = 0. (13)
Firstly, we set
1 0 0 0
0 1 0 0
Y = 0 0 efi(kxft(a%(6ak72)fak3+k2)) 0 o, (14
0 0 0 o—i (kx—1(af (6ak—2)—ak®+k?))

from which, Lax Pair (6) reads
&, =AN)DP, @D, =BAN)P, AMLN)B() — B(ALMAML) =0, (15)

where @ is a 4 x 4 square matrix that depends on the variables x and ¢,

—iA 0 aj 0 Al 0 A3 0
. 0 —iA 0 ap . 0 JAGY) 0 Aoy
AG) = —ay 0 ik+iA 0 » B = A3y 0 A33 o\
0 —aj 0 ik+ik 0 Ay 0 YAV
(16)
with

Arr = —i (222 Qar + 1) + af(=2ar + 20k — 1)),

A1z = ay (—2aaf + 202 + 1) + ak® —kQar + 1)),
Axp = —i (222 Qar + 1) + af(=2an + 2ak — 1)),

Dog = ay (—2aai + 21 Q2ar + 1) + ak® —kQar + 1)),
A31 = ay (20a] — 20Qah + 1) — ak® + 2ahk + k) ,
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A3z =i (2% Qak + 1) + af (—2ax — dak + 1) + ak® — k),
Mg = ay (2oa] — 20Qah + 1) — ak® + 2ak + k) ,
Ags =i (222 Qoek + 1) + af (—2ax — dak + 1) + ak® — k7).

Then, ¥y and (Y1, V2, V3, w4)T can be written as

10 0 0
0 1 0 0
Yo = 0 0 e—ilkx—t(a}6ak—2)—ak’+k?)) 0 eAWXHBDT
0 0 0 o—i (kx—1(a} (6ak—2)—ak’+k7))
a7
W12, 3, Ya) "
1 0 0 0
0 1 0 0
=lo o eilkr—t(af6ak-2)—ak’+k%)) 0
0 0 0 o—i (kx—1(a} (6ak—2)—ak’+£))
X eAWIF+BON p
(18)

with Fy = (Z11, Za1, Z31, Za))T, where Z;; (i = 1,2,3,4) are the arbitrary complex
constants.
Using DT (12), we obtain the vector breather solutions on the mixed backgrounds as

0 = aye! kxtlatGak=2—ak*+k%)) _ 5; g, 0> = —2iS14, (19)

where S13 and S14 can be obtained in (10), (¥, ¥, ¥3, ¢4)T is given in (18), a; and k are
the arbitrary real constants, A is the arbitrary complex constant. In general, Solutions (19)
represent the vector breathers except that some special constraints are satisfied (see the
solitons or rogue waves in below).
Concretely, for the fixed parameters, we only need to derive (1, V2, ¥3, ¥4)T . For exam-
ple, when o« = %,al =1L,k=0,1= % + %i, Z11=0,Zy = Z31 = Z41 = 1, we have
2! 2
Y = . —, Yo = . —
V(720 + 94i)t — 243ix)2 V(720 + 94i)t — 243ix)2
3 T4
Y3 = . —, Yy = . -
V(720 + 94i)t — 243ix)2 V(720 + 94i)t — 243ix)2

2592 1341i . 4
1=( ! )«/149—#2881’ (—1+eo)((720+94i)t—243ix)e” 7,

105145 * 105145
144 149i
2 =

44 1490 - aogain (1 4 0@
105145-1—210290)«/149—1—2881 ((25326 32841)t( I+e )

— (2187 + 8262i)x (—1 + e@) — i/149 1 288 (1 + e‘”)) \/((720 + 940yt — 243ix)2)

<el!—%
144 149 o
_ (L /149 1 2887 ((—12366 + 49760y (—1
3 <105145+21029o> 9+ 2581 ( +497601 (=14

(2187 + 3888i)x (—1 + e@) — iJ/149 + 288 (1 + e@) \/((720 + %) — 243ix)2)
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Fig. 1 Vector breather envelope distributions |Q| and | Q3] of Solutions (19) withe = 3,a; = 1,k =0,
A=+ 8izn=020 =231 =24 =1

xe_”_T,
144 149 o
— (2 ) /149 1 288 ((~25326 4 3284i)1 (1 + &
4 <105145+210290> 2 ( 323401 (~14°)

(2187 + 8262i)x (—1 T e@) — i/149 1 288 (1 n e@) \/((720 + 94 — 243ix)2)

_it—@
xe =7

with

/149 +288i,/((720 + 94i)t — 243ix)>
- 2187 '

Such vector breather on the mixed backgrounds is shown in Fig. 1. In the Q| component,
the breather is located on the nonzero background, while in the Q> component, the breather
is located on the zero background. Such breathers with mixed backgrounds provide the
possibility to generate the vector solitons on mixed backgrounds. We have known that the
breather-to-soliton conversion could occur in Hirota equation [15]. For System (5), if taking
the initial value Q1 as a plane-wave solution and Q» as a zero solution, we will have the
same eigenfunctions from the Lax pair as the Hirota equation, which means that we could
use the same condition of breather-to-soliton conversion here as in Hirota equation. The
conversion occurs when the lines of extrema of the hyperbolic and the trigonometric functions
in breather solutions on the (x, ¢)-plane coincide (in other words, the group velocity is equal
to the phase velocity) [15]. Via the breather-to-soliton conversion in Hirota equation [15],
TR the vector breather on the mixed background is converted to the vector
soliton on the mixed background, as shown in Fig. 2.

To obtain the rogue-wave solutions, the two matrices A(X) and B(X) are not diago-
nalizable but are similar to a Jordan form, (Y1, ¥, ¥3, ¥4) is a linear combination of
the polynomial functions, which means that we could generate rational solutions. Since
A(A)B(A) = B(A)A()), we just need check A(X). We obtain the four roots of the character-
istic polynomial of A(R) as

e

ie, o =

1
Ar=dr=3 (—\/—4a12 — k2 — 422 —4Ak+ik>,

1
Ay = Ay = 5 (—\/—45112 — k2 —4)2 —4rk + ik) ) (20)
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1Ol

2

Fig. 2 Vector breather to soliton conversions with the same parameters as Fig. 1 except A = —% + %i

If Ay = Ay # Az = A4, A(X) is diagonalizable as

A0 0 0
0 A 0 0
0 0 A3 0
0 0 0 As

If Ay = Ay = A3 = A4, which means —4a? —k? —4)% —4rk = 0 or A = § (—k £ 2iay).
Then A(A) is similar to the following Jordan form

1 0 0
0 % 0 o0
0 0 % 1
o 0 o0 X

Therefore, using Expression (17) and DT (12), with A = %(—k + 2iay), we obtain the
rogue-wave solutions as follows:

01 = aeli (el Cak =2k ) _ ;5,5 0, = —2iSyy, @1

with
Yy = eri@lt @6k tk(@k k1)) [ 7, (a) (3akt — 2kt + x) — 2iat Bak — 1) — 6aadt + 1)
+a1Z31 (=2iart Bak — 1) — 6aait + 3okt — 2kt + x)],
Yy = o316kt —kitx)) [ 7, (a) (3ak®t — 2kt + x) — 2ia}t Bak — 1) — 6aait + 1)
+a1Zay (=2iart Bak — 1) — 6aait + 3okt — 2kt + x)],
vy = e—%i(alzt(2—6ozk)+k(ozk21—kt+x))[_al (Z11 + Z31) (3ak2t — 2kt + x)
+2iatt (Z1y + Za1) Bak — 1) + 6aait (Z1y + Z31) + Za1],
Vs = e—%i(alzt(2—6czk)+k(ozk21—kt+x))[_al (Zo1 + Za1) (3ak21 — 2kt + x)
+2ialt (Za1 + Za1) Bak — 1) + 6aait (Za1 + Za) + Zai].
where a; and k are the arbitrary real constants, Z;1 (i = 1, 2, 3, 4) are the arbitrary complex

constants.
In Fig. 3, we show the fundamental rogue wave of ultra-high peak amplitude on the mixed
background. It is noted that the value of the peak amplitude of | Q1| is about 224 and the
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300 2001
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Fig. 3 Vector rogue wave envelope distributions |Q1| and |Q>| of Solutions (21) with ¢ = % ap =1,
k=0,Z11 =3+1i,221=0.1,231 =0,Z4 =4

peak amplitude of |Q»| is about 112. In the Q| component, the rogue wave is located on the
nonzero background and in the Q> component, the rogue wave has double-peak profile and
is located on the zero one.

The analytical forms corresponding to Fig. 3 can be expressed as

A A
2it A1 . it 12

= —, = 80000 —, 22
O)r=e G 0> e (22)

where

A1 = —10898961034411* + 2454073 (13030722x + (—14742319 + 43435740i))
—100¢? (5564118294x% — (1857780426 — 1563686640i)x
+(—2125952711 — 2573990280i))
+20007 (39092166x° — (53960871 — 130307220i)x? + (1439763 — 383503807 )x
+(19295880 + 11896810i))
—2500 (26061444x* — 12978552x° + (3199684 — 7872000 ) x>
+(255680 — 192000i)x + (—748961 — 96000i)) ,
G = 10898961034417* — 2454013 (13030722x — 14742319)
+200¢ (27820591472 — 928890213x + 269414969)
—30007 (26061444x> — 35973914x? + 13990564x — 1878399)
+2500 (26061444x* — 12978552 +29261128x? — 6233596x + 364801) ,
Ay = 698889r% + 1(—3258060x + (437370 — 105090i)) + 68100x>
—(259900 — 804300i)x + (30050 — 89850i).

4 Conclusion

In this paper, on the mixed backgrounds, the vector solutions of the coupled higher-order NLS
system with sign-alternating nonlinearity have been studied. We have constructed the Lax
pair (6) and DT (12). Using the DT (12), we have obtained the vector breather solutions (19)
and rogue-wave solutions (21). Based on such solutions, we have observed the vector solitons
and fundamental rogue waves with ultra-high peak amplitude on the mixed backgrounds.
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