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Abstract In this work, the modified Sardar sub-equation method is used to construct optical
soliton solutions to the coupled nonlinear Schrödinger equation (CNLSE) having third-order
and fourth-order dispersions describing short-pulse propagation in two-core fibers. Several
solutions are determined including W-shaped bright, dark soliton solutions, singular soliton
solutions, periodic function solutions and the combined complex soliton solutions. It should
be noted that this integration scheme is very powerful mathematical tools for obtaining
exact optical soliton solutions of nonlinear evolution equations. Under suitable values for
the physical parameters, some representative wave structures are graphically displayed. In
addition, the linear stability technic is used to analyze the modulation gain spectra in the
birefringence associated with an ellipticity angle. In our knowledge, these obtained results
are new in the context of nonlinear birefringent optical fibers.

1 Introduction

The greatest concern nowadays is localized waves known for their wide application in var-
ious fields of science and engineering. The best known are bright and dark solitons used in
optical fibers communication systems. To this aim, numerous works have known exhilarating
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successes followed by their direct application [1–38]. It should be emphasized that the results
obtained are subject to the parameters which constitute the nonlinear equations, as well as
the constraint conditions necessary for their validity. To achieve this, many works were high-
lighted concerning temporal, spatiotemporal and gray solitons associated with high-order
dispersions terms and several nonlinearities terms like Kerr, power law, parabolic law type
and so on [1–12].

Obtaining these solitons has been facilitated by the advent of mathematical methods in the
last decade. Diverse works have been done successfully using these methods, see Refs. [21–
34]. However, getting these solutions does not guarantee the stability of the latter, because the
presence of the dispersion and nonlinearity terms can generate the phenomenon of modulation
instability (MI). To show out the effects of the dispersions and nonlinearities on the MI gain
spectra, many authors have used the manner of birefringent associate to an ellipticity angle.
The most studied and used MI gain spectra have been pointed out in linear and circular
birefringence and zero-birefringence in nonlinear optical fibers [6,8,10,11].

MI is one of the phenomena which is essential in study of nonlinear systems. Concerning
the MI analysis, several works have been carried out in such models to describe this aspect
inside optical fiber and MI phenomenon in Refs. [1–13]. MI having effects in birefringent
two-core fiber (TCF) in normal and anomalous dispersive regime has motivated extensive
inducement in nonlinear propagation of wave in optical fibers [9–11]. Solitons in birefrin-
gent optical fibers possess are polarized into two pulses owing to fibers non-consistencies and
other mechanism elements that take place from fibers devices. These have resulted in many
issues including rise to many matter between other, the differential group delay, the polar-
ization mode dispersion and so on [39–42]. To carry out analytical investigation of specific
shapes of the solitons “called” W-shaped bright and dark solitons in nonlinear TCFs associ-
ated with third- and fourth-order dispersion terms in birefringent fibers, we considered the
dimensionless CNLSE describing short-pulse propagation in birefringent fibers given by [43]

iut + β2uxx + iβ3uxxx + β4uxxxx + λ
(|u|2 + δ|v|2) u = 0,

ivt + β2vxx + iβ3vxxx + β4vxxxx + λ
(|v|2 + δ|u|2) v = 0. (1)

where draws β2, β3, β4, are, respectively, the group velocity dispersion (GVD), the third-
order 3OD and fourth-order dispersion 4OD. However, δ and λ denote the nonlinearity
coefficient and cross-phase modulation term (XPM) in birefringent fibers, respectively. Fur-

thermore, ellipticity angle is expressed in the form of δ = 2+2 sin2(θ)

2+cos2(θ)
. We notice that three

forms of birefringence are known in the literature. The first named zero-birefringence cor-
responds to (δ = 0) (i.e., total absence of XMP). The second and third are called linear and
circular birefringence (i.e., θ = 0◦ and θ = 90◦), respectively [43]. It is important to notice
that XPM, higher-order dispersions terms and birefringent could help to provoke the MI.

We organized the work as follows: Sect. 2 gives the survey of the mathematical algorithm
named the modified Sardar sub-equation method. In Sect. 3, we apply the method to take out
W-shaped bright, W-shaped dark optical solitons and other solutions of the CNLSE. However,
in Sect. 4 the linear stability technic is applied to study numerically the MI gain spectra under
the effects of 3OD and 4OD including the effects of ellipticity angle in birefringent fibers.
In the last section, we conclude and give some perspectives.

2 Survey of the modified Sardar sub-equation method

The first step is constituted by the following nonlinear equations (NLEs)
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F(u, ux , ut , uxx , utt , . . .) = 0, (2)

and H is the polynomial function in terms of an unknown u(x, t).
The solutions of Eq. (2) consist to adopt the transformation assumption as

u(x, t) = U (ξ), ξ = x − μt. (3)

Here, μ is different to zero. To obtain the nonlinear ordinary differential equation (NODE)
of Eq. (2), we use Eq. (3) into Eq. (2), which gives the following NODE

G(U,U ′, μU ′,U ′′, μ2U ′′, . . .) = 0, (4)

where (′) denotes dU
dξ

and so on. Estimate the solution of Eq. (4) in the form of [8]

U (ξ) = H0 +
n∑

i=1

Hi [φ(ξ)]i , (5)

where φ(ξ) satisfies the following nonlinear ordinary equation [8]

(φ′(ξ))2 = ρ + aφ(ξ)2 + bφ(ξ)4. (6)

The parameters ρ, Hi �= 0(i = 1, 2, . . . , N ) are constants to be determined later. Otherwise,
Eq. (6) is an ordinary differential equation which is not totally dependent of integrability of
nonlinear equation and can be used to large numbers of nonlinear partial differential equations
without complication compared to [22,27,28,31,44–50].

The nonlinear ordinary equation Eq. (6) in terms of the parameters ρ, a, b has the fol-
lowing solutions

• Case 1. For ρ = 0.

When a > 0 and b �= 0, it is unearthed bright and singular soliton

φ±
1 (ξ) = ±

√
− pqa

b
sechpq

(√
aξ

)
, (7)

and

φ±
2 (ξ) = ±

√
pqa

b
cschpq

(√
aξ

)
. (8)

When a < 0 and b �= 0, we get periodic and singular function solutions

φ±
3 (ξ) = ±

√
− pqa

b
secpq

(√−aξ
)
, (9)

and

φ±
4 (ξ) = ±

√
− pqa

b
cscpq

(√−aξ
)
. (10)

• Case 2. For ρ = 1
4
a2

b .

When a < 0 and b > 0, the following dark, singular and the combined soliton solutions are
obtained

φ±
5 (ξ) = ±1

2

√

−2a

b
tanhpq

(
1

2

√−2aξ

)
, (11)
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φ±
6 (ξ) = ±1

2

√

−2a

b
cothpq

(
1

2

√−2aξ

)
, (12)

φ±
7 (ξ) = ±1

2

√

−2a

b

(
tanhpq

(√−2aξ
)

± i
√
pqsechpq

(√−2aξ
))

, (13)

φ±
8 (ξ) = ±1

2

√

−2a

b

(
cothpq

(√−2aξ
)

± √
pqcschpq

(√−2aξ
))

, (14)

φ±
9 (ξ) = ±1

4

√

−2a

b

(

tanhpq

(√−a

8
ξ

)

± √
pq cothpq

(√−a

8
ξ

))

. (15)

• Case 3. For ρ = 1
4
a2

b .

If a > 0 and b > 0, we obtain trigonometric function solutions as

φ±
10(ξ) = ±1

2

√
2a

b
tanpq

(
1

2

√
2aξ

)
, (16)

φ±
11(ξ) = ±1

2

√
2a

b
cot pq

(
1

2

√
2aξ

)
, (17)

φ±
12(ξ) = ±1

2

√
2a

b

(
tanpq

(√
2aξ

)
± √

pq secpq
(√

2aξ
))

, (18)

φ±
13(ξ) = ±1

2

√
2a

b

(
cot pq

(√
2aξ

)
± √

pq cscpq
(√

2aξ
))

, (19)

φ±
14(ξ) = ±1

4

√
2a

b

(
tanpq

(√
a

8
ξ

)
± √

pq cot pq

(√
a

8
ξ

))
. (20)

We noted that, sechpq(ξ) = 2
peξ +qe−ξ , cschpq(ξ) = 2

peξ −qe−ξ , secpq(ξ) = 2
peiξ +qe−iξ ,

cscpq(ξ) = 2i
peiξ −qe−iξ , tanhpq(ξ) = peξ −qe−ξ

peξ +qe−ξ , cothpq(ξ) = peξ +qe−ξ

peξ −qe−ξ , tanpq(ξ) =
−i pe

iξ −qe−iξ

peiξ +qe−iξ and cot pq(ξ) = i pe
iξ +qe−iξ

peiξ −qe−iξ .
Where p and q are constants greater than zero and called deformation parameters.

3 Application of the modified Sardar sub-equation method to the CNLSE in
birefringence

In order to emphasize the attitude of exact solutions of the higher dispersive CNSE in bire-
fringent fibers including the effects of the ellipticity angle, the initial condition is to adopt
the transformation hypothesis in the form of

u(x, t) = φ1(ξ)ei(x−ϑ t), (21)

v(x, t) = φ2(ξ)ei(x−ϑ t), (22)

and ξ = x − ϑ t .
Next, using Eqs. (21) and (22) in the set of CNLSE, the imaginary parts give

ϑ = 2 (β2 − β3) , β3 = −4β4. (23)

Therefore, from the real parts it is obtained

m1φ1 + m2φ
′′
1 + β4φ

′′′′
1 + λφ3

1 + λδφ2
2φ1 = 0, (24)
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and

m1φ2 + m2φ
′′
2 + β4φ

′′′′
2 + λφ3

2 + λδφ2
1φ2 = 0, (25)

where

m1 = β2 + 5β4, m2 = 6β4 + β2. (26)

We assume the solution of Eqs. (24) and (25) as follows

φ1(ξ) = H0 +
n∑

i=1

Hi [φ(ξ)]i , (27)

φ2(ξ) = E0 +
n∑

i=1

Ei [φ(ξ)]i . (28)

Applying the homogeneous balance principle, it is revealed n = 2. Therewith,

φ1(ξ) = H0 + H1φ(ξ) + H2φ(ξ)2, (29)

φ2(ξ) = E0 + E1φ(ξ) + E2φ(ξ)2. (30)

To construct the soliton solutions to the set of coupled of equations, we insert Eqs. (29, 30)
and (6) into Eq. (24) or Eq. (25). With the aid of MAPLE 18, the system of algebraic equations
is obtained. From there, solving the obtained system, gives

• Case 1. For ρ = 0.

H0 = 0, H1 = 0, H2 = √
3

√
560a2β2

4 − 40β4m2a + 3m2
2 − 40β4m1

λ
(
16 β4a2 + m1 + 4m2a

) b,

E0 =
√

−16 β4a2 + m1 + 4m2a

λδ
,

E1 = 0, E2 = − 3b(20aβ4 + m2)√
− 16 β4a2+m1+4m2a

λ δ
δ λ

. (31)

and

H0 = 0, H1 =

√

−20 λ aβ4b − 2λm2b + 4
√

6b2λ2β4
(
β4a2 + m2a + m1

)

λ
, H2 = 0,

E0 =
√

6b2λ2β4
(
β4a2 + m2a + m1

)

λ2δ

√
− 6β4b

λ δ

,

E1 = 0, E2 = 2

√

−6β4b

λδ
. (32)

The above results have been obtained based on the constraint relation below:

−20λaβ4b − 2λm2b + 4
√

6b2λ2β4
(
β4a2 + m2a + m1

)
> 0,

6b2λ2β4
(
β4a

2 + m2a + m1
)

> 0,

(−6β4b) × (λδ) > 0.

123



  357 Page 6 of 27 Eur. Phys. J. Plus         (2021) 136:357 

We can thus formulate the general solutions as follows.
From Eq. (31), we write

u±
m(x, t) = ei(x−vt)

(
H2

(
φ±
m

)2
)

, m = 1 . . . 4, (33)

and

v±
m (x, t) = ei(x−vt)

(
E0 + E2

(
φ±
m

)2
)

, m = 1 . . . 4. (34)

At the same time, by referring to Eq. (32), we get to

u±
m(x, t) = ei(x−vt) (

H1φ
±
m

)
, m = 1 . . . 4, (35)

and

v±
m (x, t) = ei(x−vt)

(
E0 + E2

(
φ±
m

)2
)

, m = 1 . . . 4. (36)

Therewith, using Eq. (31) fourth types of soliton solutions are obtained

• When a > 0 and b �= 0, bright optical soliton is unearthed

u±
1 (x, t) = ei(x−ϑ t)

(

H2

(√
− pqa

b
sechpq

(√
a (x − 2(β2 − β3)t)

))2
)

, (37)

and

v±
1 (x, t) = ei(x−ϑ t)

(

E0 ± E2

[√
− pqa

b
sechpq

(√
a (x − 2(β2 − β3)t)

)]2
)

. (38)

Figures 1 and 2 illustrate the effects of the 4OD along with the parameter of the modified
Sardar sub-equation method and p = q = 1. The influence of these parameters pointed out
W-chirped bright optical soliton solutions in TCFs. Furthermore, when the absolute value of
the 4OD increases the maximum amplitude of the W-shaped bright is obtained (see Fig. 2
(C4)).

Singular soliton solutions are unearthed

u±
2 (x, t) = ei(x−ϑ t)

(

H2

(√
pqa

b
cschpq

(√
a (x − 2(β2 − β3)t)

))2
)

, (39)

and

v±
2 (x, t) = ei(x−ϑ t)

(

E0 ± E2

(√
pqa

b
cschpq

(√
a (x − 2(β2 − β3)t)

))2
)

. (40)

For a < 0 and b �= 0, we get periodic and singular function solutions

u±
3 (x, t) = ei(x−ϑ t)

(

H2

(√
− pqa

b
secpq

(√−a (x − 2(β2 − β3)t)
))2

)

, (41)

v±
3 (x, t) = ei(x−ϑ t)

(

E0 ± E2

[√
− pqa

b
secpq

(√−a (x − 2(β2 − β3)t)
)]2

)

. (42)
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Fig. 1 Spatiotemporal plot evolution of the W-chirped bright optical solitons in two-core fiber TCF |v+
1 (x, t)|

at h1 [β4 = −1.002 ps4/km, E0 = 0.015, E1 = 0, E2 = 1.015, ϑ = 0.015 m/s, a = 0.4729, θ =
30◦ b = 20.027], h2 [β4 = −1.002 ps4/km, E0 = 0.015, E1 = 0, E2 = 1.015, ϑ = 0.015 m/s, a =
0.4254, θ = 30◦ b = 20.027, λ = 0.475]

And

u±
4 (x, t) = ei(x−ϑ t)

(

H2

(√
− pqa

b
cscpq

(√−a (x − 2(β2 − β3)t)
))2

)

, (43)

v±
4 (x, t) = ei(x−ϑ t)

(

E0 ± E2

[√
− pqa

b
cscpq

(√−a (x − 2(β2 − β3)t)
)]2

)

. (44)

Employing result of Eq. (32), we have to write

• While a > 0 and b �= 0, bright optical soliton is unearthed

u±
1 (x, t) = ei(x−ϑ t)

(
±H1

√
− pqa

b
sechpq

(√
a (x − 2(β2 − β3)t)

))
, (45)

and

v±
1 (x, t) = ei(x−ϑ t)

(

E0 ± E2

(√
− pqa

b
sechpq

(√
a (x − 2(β2 − β3)t)

))2
)

. (46)

Figures 1 and 2 illustrate the effects of the 4OD along with the parameter of the modified
Sardar sub-equation method. The influence of these parameters points out W-chirped bright
optical soliton solutions in TCFs. Furthermore, when the absolute value of the 4OD increases
the maximum amplitude of the W-shaped bright is obtained (see Fig. 2 (C4)). Singular soliton
solutions are unearthed

u±
2 (x, t) = ei(x−ϑ t)

(
±H1

√
pqa

b
cschpq

(√
a (x − 2(β2 − β3)t)

))
, (47)

and

v±
2 (x, t) = ei(x−ϑ t)

(

E0 ± E2

(√
pqa

b
cschpq

(√
a (x − 2(β2 − β3)t)

))2
)

. (48)
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Fig. 2 Spatiotemporal plot evolution of the W-chirped bright optical solitons in two-core fiber TCF |v+
1 (x, t)|

with the effects of the 4OD at C1 [β4 = −0.5002 ps4/km, a = 0.9603], C2 [β4 = −0.6002 ps4/km, a =
0.8077], C3 [β4 = −0.7802 ps4/km, a = 0.6929] and C4 [β4 = −0.8002 ps4/km, a = 0.6036] for
[E0 = 0.015, E1 = 0, E2 = 1.015, ϑ = 0.015 m/s, θ = 45◦ b = 20.027, λ = 0.012]

• For a < 0 and b �= 0, we get periodic and singular function solutions

u±
3 (x, t) = ei(x−ϑ t)

(
±H1

√
− pqa

b
secpq

(√−a (x − 2(β2 − β3)t)
))

, (49)

v±
3 (x, t) = ei(x−ϑ t)

(

E0 ± E2

(√
− pqa

b
secpq

(√−a (x − 2(β2 − β3)t)
))2

)

. (50)

u±
4 (x, t) = ei(x−ϑ t)

(
±H1

√
− pqa

b
cscpq

(√−a (x − 2(β2 − β3)t)
))

, (51)

and

v±
4 (x, t) = ei(x−ϑ t)

(

E0 ± E2

(√
− pqa

b
cscpq

(√−a (x − 2(β2 − β3)t)
))2

)

. (52)

• Case 2. For ρ = 1
4
a2

b .

The following results are obtained

H0 = H0, H1 = 2

√

−2bH2
0

a
, H2 = −2H0b

a
,

E0 = −5 λ2H4
0 + 36a4β2

4 − 384H0
2β4λ a2

λ δ
(
24 β4a2 + 5 λ H0

2
) √

− 30 β4a2+λ H2
0

λδ

, E1 =
2

(−λH2
0 + 12β4a2

) √
− 2b

a

λδ

√
− 30β4a2+λH2

0
λδ

,

E2 = 2
√

− 30β4a2+λH2
0

λδ
b

a
,
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Fig. 3 Spatiotemporal plot evolution (S1)3D and (S2) 2D of the bright optical solitons in two-core fiber TCF
|v−

1 (x, t)| with the parameters of Eq. (32) for [E0 = −0.1789, E1 = 0, E2 = 1.2526, ϑ = 0.12 m/s, λ =
−1.01 b = −1.107, a = 0.5, β2 = 0.0202 ps2/km, β4 = −0.05102 ps4/km, θ = π

6 , ϑ = 0.1420 m/s]

β2 = 36a2
(
324a6β4

3 − 4764H2
0 β2

4λa4 + 3225λ2H4
0 β4a2 + 100λ3H6

0

)
β4

(
30β4a2 + λH2

0

) (
24β4a2 + 5λH2

0

)2 − 5β4,

β3 = 4

3

a
(
1224a4β4

2 + 3030 H2
0 β4λ a2 − 65 λ2H4

0

)
β4(

30β4a2 + λ H2
0

) (
24β4a2 + 5λH2

0

) + 2

3
β2. (53)

Considering Eq. (53), we establish the following combined soliton solutions under the
following conditions

• For a < 0 and b > 0, we can formulate dark optical solitons and other combined solitons
solutions depending on the parameters a and b

With regard to dark optical solitons, we arrive at the following formulation

u±
5 (x, t) = ei(x−ϑ t)

{

H0 ± H1

2

√

−2a

b
tanhpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)

±H2

[
1

2

√

−2a

b
tanhpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
, (54)

v±
5 (x, t) = ei(x−ϑ t)

{

E0 ± 1

2
E1

√

−2a

b
tanhpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)

±E2

[
1

2

√

−2a

b
tanhpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
. (55)

Meantime, Fig. 3 shows the spatiotemporal evolution of bright optical soliton in TCFs with
the effects of the 3OD, 4OD and the normal group velocity dispersion for p = q = 1.
Besides, Fig. 4 depicts dark optical soliton. Figure 5 shows the plot evolution of the analytical
solution Eq. (54) at p = q = 1 under the influence of the higher-order dispersions terms
in normal group velocity dispersive regime. The obtained dark soliton is well known in
optical fibers communication because of its robustness and the stability. It can travel over
long distance without any distortion and can help to secure information in case of digital
signals. Considering the effects of the ellipticity angle, the behavior of the W-shaped dark
optical soliton in different gaps of the ellipticity angle is highlighted (see Figs. 6, 7). It is
important to notice that, in this case, higher-order dispersion is also present. In optical fibers,
the 4OD is very important when the pulse becomes shorter than 10 fento-second [6].
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Fig. 4 Spatiotemporal plot evolution (S3)3D and (S4) 2D the dark optical solitons in two-core fiber TCF
|v+

1 (x, t)| with the parameters of Eq. (32) for [E0 = −0.1839, E1 = 0, E2 = 1.2526, ϑ = 0.1420 m/s, λ =
−1.01 b = −1.107, a = 0.025, β2 = 0.0202 ps2/km, β4 = −0.05102 ps4/km, θ = π

6 , ϑ = 0.1420 m/s]

Fig. 5 Spatiotemporal plot evolution of optical solitons in two-core fiber TCF |u+
5 (x, t)| including higher-

order dispersions and zero-birefringence. We employ the parameters of Eq. (53). The following parameters
are used (i)[H0 = 0.24, H1 = 1.2978, H2 = 12.1348, β2 = 0.6 ps2/km, β3 = 0.58 ps3/km, v =
0.04, p = q = 1 ], (i i)[H0 = 0.5, H1 = 1.8732, H2 = 0.8772, β2 = 0.6 ps2/km, β3 =
0.58 ps3/km, v = 0.04, p = q = 1 ], (i i i)[H0 = 1.5, H1 = 3.2444, H2 = 2.6316, β2 =
0.6 ps2/km, β3 = 0.58ps3/km, v = 0.04, p = q = 1 ], (4i)[H0 = 2.5, H1 = 4.1885 H2 =
4.3860, β2 = 0.6 ps2/km, β3 = 0.58 ps3/km, a = −10.0712, b = 0.8, v = 0.04, p = q = 1],
(5i)[H0 = 0.8, H1 = 2.3694, H2 = 1.4035, β2 = 0.6 ps2/km, β3 = 0.58 ps3/km, a = −0.312, b =
0.8, v = 0.04, p = q = 1 ], (6i)[H0 = 4.5, H1 = 5.6195, H2 = 7.8947, β2 = 0.6 ps2/km, β3 =
0.58 ps3/km, a = −0.912, b = 0.8, v = 0.04, p = q = 1 ]

For trigonometric solutions type, the results are as follows

u±
6 (x, t) = ei(x−ϑ t)

{
H0 ± H1

1

2

√

−2a

b
cothpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)

±H2

[
1

2

√

−2a

b
cothpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)]2 }
, (56)
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Fig. 6 Spatiotemporal plot evolution the W-shaped dark optical solitons in two-core fiber TCF |v−
5 (x, t)|

with the effect of the ellipticity angle in birefringent fiber. We use the parameters of Eq. (45) when the
FOD is present at (Z1) [θ = π

30 , E0 = 0.0866 E1 = 0.278, E2 = 0.2166, β2 = 210.006ps2/km, β3 =
−100.014 ps3/km], (Z2) [θ = π

3 , E0 = 0.0418, E1 = 0.8701, E2 = 0.1045, β2 = 154.016 β3 =
−98.075], (Z3) [θ = π

4 , E0 = 0.0528, E1 = 0.1789, E2 = 0.1320, β2 = 108.035, β3 = −74.58],
(Z4) [θ = π

6 , E0 = 0.0670, E1 = 0106.124 β3 = −67.245, β2 = 102.65 E2 = 0.1677], respectively.
The parameters used are [H0 = 0.1005, E1 = 0, ϑ = 0.12m/s, b = 0.0107, a = −0.2140, β4 =
0.1002 ps4/km, p = q = 1]

Fig. 7 Spatiotemporal plot evolution the W-shaped dark optical solitons in two-core fiber TCF |v−
5 (x, t)|

in zero-birefringence. We use the parameters of Eq. (45) when the FOD is present. The suitable parameters
are [θ = 0◦ a = −0.2140, E1 = 0.245, H0 = 0.1005, E2 = 0.2194, E0 = 0.0877 ϑ = 0.12m/s, b =
0.0107, a = −0.2140, β4 = 0.1002 ps4/km, β2 = 230.45 ps2/km, β3 = −90.45 ps3/km, δ = 2, λ =
0.001]

v±
6 (x, t) = ei(x−ϑ t)

{

E0 ± 1

2
E1

√

−2a

b
cothpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)

±E2

[
1

2

√

−2a

b
cothpq

(
1

2

√−2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
. (57)

Those which are combined are expressed as indicated by the following solutions

u±
7 (x, t) = ei(x−ϑ t)

{
H0 ± H1

[
1

2

√

−2a

b

(
tanhpq

(√−2a (x − 2(β2 − β3)t)
)
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±i
√
pqsechpq

(√−2a (x − 2(β2 − β3)t)
))]

±H2

[
1

2

√

−2a

b

(
tanhpq

(√−2a (x − 2(β2 − β3)t)
)

±i
√
pqsechpq

(√−2a (x − 2(β2 − β3)t)
))]2

}
, (58)

v±
7 (x, t) = ei(x−ϑ t)

{
E0 ± E1

[
1

2

√

−2a

b

(
tanhpq

(√−2a (x − 2(β2 − β3)t)
)

±i
√
pqsechpq

(√−2a (x − 2(β2 − β3)t)
))]

±E2

[
1

2

√

−2a

b

(
tanhpq

(√−2a (x − 2(β2 − β3)t)
)

±i
√
pqsechpq

(√−2a (x − 2(β2 − β3)t)
))]2

}
. (59)

The combined trigonometric and singular functions solutions are obtained

u±
8 (x, t) = ei(x−ϑ t)

{
H0 ± H1

[
1

2

√

−2a

b

(
cothpq

(√−2a (x − 2(β2 − β3)t)
)

±√
pqcschpq

(√−2a (x − 2(β2 − β3)t)
))]

±H2

[
1

2

√

−2a

b

(
cothpq

(√−2a (x − 2(β2 − β3)t)
)

±√
pqcschpq

(√−2a (x − 2(β2 − β3)t)
))]2

}
, (60)

v±
8 (x, t) = ei(x−ϑ t)

{
E0 ± E1

[
1

2

√

−2a

b

(
cothpq

(√−2a (x − 2(β2 − β3)t)
)

±√
pqcschpq

(√−2a (x − 2(β2 − β3)t)
))]

±E2

[
1

2

√

−2a

b

(
cothpq

(√−2a (x − 2(β2 − β3)t)
)

±√
pqcschpq

(√−2a (x − 2(β2 − β3)t)
))]2

}
. (61)

The combined dark and trigonometric function solutions give

u±
9 (x, t) = ei(x−ϑ t)

{
H0 ± H1

[
1

4

√

−2a

b

(

tanhpq

(√−a

8
(x − 2(β2 − β3)t)

)

±√
pq cothpq

(√−a

8
(x − 2(β2 − β3)t)

))]

±H2

[
1

4

√

−2a

b

(

tanhpq

(√−a

8
(x − 2(β2 − β3)t)

)
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±√
pq cothpq

(√−a

8
(x − 2(β2 − β3)t)

))]2 }
, (62)

v±
9 (x, t) = ei(x−ϑ t)

{
E0 ±

[
1

4
E1

√

−2a

b

(

tanhpq

(√−a

8
(x − 2(β2 − β3)t)

)

±√
pq cothpq

(√−a

8
(x − 2(β2 − β3)t)

))]

±E2

[
1

4

√

−2a

b

(

tanhpq

(√−a

8
(x − 2(β2 − β3)t)

)

±√
pq cothpq

(√−a

8
(x − 2(β2 − β3)t)

))]2 }
. (63)

• Adopting a > 0 and b > 0, we formulate the following trigonometric relations as

u±
10(x, t) = ei(x−ϑ t)

{

H0 ± 1

2
H1

√
2a

b
H1 tanpq

(
1

2

√
2a (x − 2(β2 − β3)t)

)

±H2

[
1

2

√
2a

b
H1 tanpq

(
1

2

√
2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
, (64)

and

v±
10(x, t) = ei(x−ϑ t)

{

E0 ± 1

2

√
2a

b
E1 tanpq

(
1

2

√
2a (x − 2(β2 − β3)t)

)

±E2

[
1

2

√
2a

b
tanpq

(
1

2

√
2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
. (65)

u±
11(x, t) = ei(x−ϑ t)

{

H0 ± 1

2
H1

√
2a

b
H1 cot pq

(
1

2

√
2a (x − 2(β2 − β3)t)

)

±H2

[
1

2

√
2a

b
H1 cot pq

(
1

2

√
2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
, (66)

and

v±
11(x, t) = ei(x−ϑ t)

{

E0 ± 1

2

√
2a

b
E1 cot pq

(
1

2

√
2a (x − 2(β2 − β3)t)

)

±E2

[
1

2

√
2a

b
cot pq

(
1

2

√
2a (x − 2(β2 − β3)t)

)]2
⎫
⎬

⎭
. (67)

u±
12(x, t) = ei(x−ϑ t)

{
H0 ± H1

[
1

2

√
2a

b

(
tanpq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq secpq

(√
2a (x − 2(β2 − β3)t)

))]
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±H2

[
1

2

√
2a

b

(
tanpq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq secpq

(√
2a (x − 2(β2 − β3)t)

))]2
}
, (68)

and

v±
12(x, t) = ei(x−ϑ t)

{
E0 ± E1

[
1

2

√
2a

b

(
tanpq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq secpq

(√
2a (x − 2(β2 − β3)t)

))]

±E2

[
1

2

√
2a

b

(
tanpq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq secpq

(√
2a (x − 2(β2 − β3)t)

))]2
}
. (69)

u±
13(x, t) = ei(x−ϑ t)

{
H0 ± H1

[
1

2

√
2a

b

(
cot pq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq cscpq

(√
2a (x − 2(β2 − β3)t)

))]

±H2

[
1

2

√
2a

b

(
cot pq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq cscpq

(√
2a (x − 2(β2 − β3)t)

))]2
}
, (70)

and

v±
13(x, t) = ei(x−ϑ t)

{
E0 ± E1

[
1

2

√
2a

b

(
cot pq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq cscpq

(√
2a (x − 2(β2 − β3)t)

))]

±E2

[
1

2

√
2a

b

(
cot pq

(√
2a (x − 2(β2 − β3)t)

)

±√
pq cscpq

(√
2a (x − 2(β2 − β3)t)

))]2
}
. (71)

u±
14(x, t) = ei(x−ϑ t)

{
H0 ± H1

[
1

4

√
2a

b

(
tanpq

(√
a

8
(x − 2(β2 − β3)t)

)

±√
pq cot pq

(√
a

8
(x − 2(β2 − β3)t)

))]

±H2

[
1

4

√
2a

b

(
tanpq

(√
a

8
(x − 2(β2 − β3)t)

)

±√
pq cot pq

(√
a

8
(x − 2(β2 − β3)t)

))]2 }
, (72)
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and

v±
14(x, t) = ei(x−ϑ t)

{
E0 ± E1

[
1

4

√
2a

b

(
tanpq

(√
a

8
(x − 2(β2 − β3)t)

)

±√
pq cot pq

(√
a

8
(x − 2(β2 − β3)t)

))]

±E2

[
1

4

√
2a

b

(
tanpq

(√
a

8
(x − 2(β2 − β3)t)

)

±√
pq cot pq

(√
a

8
(x − 2(β2 − β3)t)

))]2 }
. (73)

The above analytical investigation helped to get optical solitons solutions in two-core fibers
associated with the ellipticity angle and the effects of higher dispersions, we have got some
new results such as Eqs. (59), (60), (61), (62) and (63) compared to Refs. [24–30]. These
results are the combined soliton solutions which are usually obtained by employing some
mathematical tools namely tanh method, hyperbolic function structure, extended hyperbolic
functions method, bifurcation method and sine–cosine method [14–19]. While taking ρ = 0,
a > 0 and b �= 0, we realized numerical simulations of the W-shaped bright solitons solutions

for suitable parameters of the model. In addition, for ρ = 1
4
a2

b , a < 0 and b > 0, chose
parameters to produce W-shaped dark optical solitons. These results will certainly have an
application in telecommunication system and could improve the previous works in the context
of two-core fibers.

In addition, we have found W-shaped optical solutions including ordinary bright and dark
optical solitons in the presence of high-order dispersions and ellipticity angle in birefringent.
More precisely, the new forms of bright and dark optical solitons were obtained under an
impeccable influence of the dispersions terms of the model studied. As a reminder, the
physical effects of higher-order dispersions are capital for short waves, and the obtained
results in this work may help to build more on the propagation of waves in picosecond
conditions. They will probably be used for fento-second laser application and raise the bit
rate during communication through the two-core fibers.

4 Modulation instability

4.1 Linear stability analysis

Recently, some authors have exhibited in Refs. [6,8,11,12] the effect of the ellipticity angle
on MI gain spectra in normal and anomalous dispersion regime. It is important equally to
highlight the fact that the model was used recently in previous works [43], however the system
of coupled equations does not include 3OD and 4OD dispersions. In this work, the main goal
is to emphasize the effect of the third-order and fourth-order dispersion associated with the
ellipticity angle to the MI gain spectra in birefringent fibers. In this section, we emphasize the
effect of the 3OD, 4OD and the ellipticity angle on the MI gain spectra in normal dispersive
regime (β2 > 0) /anomalous dispersive regime (β2 < 0).

We suppose the continuous-wave CW solutions for the coupled of NLSE Eq. (1) as

u(x, t) = P1e
iqt , (74)

v(x, t) = P2e
iqt , (75)
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P1 and P2 are, respectively, power incident and q the propagation constant of the polarization
component in t-direction.

The linear stability analysis consists of perturbing a continuous-wave solutions and then
analyzing whether the perturbation grows or decays. So, the linear stability of the steady state
can be investigated by adding small disturbance to the above CW solutions, which reads

u(x, t) = (P1 + A(x, t))eiqt , (76)

v(x, t) = (P2 + B(x, t))eiqt . (77)

Here, A(z, t) and B(z, t) are the perturbed terms and the ratio of the power incident f = P1
P2

,

and β = 1 + f 2, while the total power incident P = P2
1 + P2

2 . Using Eqs. (76) and (77) into
the set of coupled Eq. (1), the linearizing technic gives

i At + β2Axx + iβ3Axxx + β4Axxxx + λP2
1 (2A + A∗) + λδP1P2(2B + B∗) = 0,(78)

i Bt + β2Bxx + iβ3Bxxx + β4Bxxxx + λP2
2 (2B + B∗) + λδP1P2(2A + A∗) = 0. (79)

A∗ and B∗ are the complex conjugated of A and B, respectively.
Adopting the following plane-wave equations

A(x, t) = r1e
i(Kx−�t) + h1e

−i(Kx−�t), (80)

B(x, t) = r2e
i(Kx−�t) + h2e

−i(Kx−�t), (81)

as solutions of the set of linear equations Eqs. (78) and (79), while r1, h1, r2 and h2 are reals.
Whereas K and � are the wave number and the frequency of MI, respectively. Inserting
Eqs. (80) and (84) into Eqs. (78) and (79), it is revealed the below 4 × 4 matrix which has
non-trivial solution when the determinant vanishes.

⎛

⎜⎜
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

r1

r2

h1

h2

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ ,

while the parameters (ai j ) (i = 1, 2, 3, 4. j = 1, 2, 3, 4) are given in “Appendix.” The
associated dispersion relation of the obtained matrix reads

α16K
16 + α14K

14 + α12K
12 + α11K

11 + α10K
10 + α9K

9 + α8K
8 + α7K

7

+α6K
6 + α5K

5 + α4K
4 + α3K

3 + α2K
2 + α0 = 0, (82)

where

α16 =
(
f 8 + 4 f 6 + 6 f 4 + 4 f 2 + 1

)
β4

4

(
f 2 + 1

)4 ,

α14 =
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
β2β4

3

(
f 2 + 1

)4

+
(−2 f 8 − 8 f 6 − 12 f 4 − 8 f 2 − 2

)
β3

2β4
2

(
f 2 + 1

)4 ,

α12 =
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
Pλβ4

3

(
f 2 + 1

)4

+
(
6 f 8 + 24 f 6 + 36 f 4 + 24 f 2 + 6

)
β2

2β4
2

(
f 2 + 1

)4
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+
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
β2β3

2β4
(
f 2 + 1

)4

+
(
f 8 + 4 f 6 + 6 f 4 + 4 f 2 + 1

)
β3

4

(
f 2 + 1

)4 ,

α11 =
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
�β3β4

2

(
f 2 + 1

)4 ,

α10 =
(−12 f 8 − 48 f 6 − 72 f 4 − 48 f 2 − 12

)
Pλβ2β4

2

(
f 2 + 1

)4

+
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
Pλβ3

2β4
(
f 2 + 1

)4

+
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
β2

3β4
(
f 2 + 1

)4

+
(−2 f 8 − 8 f 6 − 12 f 4 − 8 f 2 − 2

)
β2

2β3
2

(
f 2 + 1

)4 ,

α9 =
(
8 f 8 + 32 f 6 + 48 f 4 + 32 f 2 + 8

)
�β2β3β4

(
f 2 + 1

)4

+
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
�β3

3

(
f 2 + 1

)4 ,

α8 =
(−2 f 8 − 8 f 6 − 12 f 4 − 8 f 2 − 2

)
�2β4

2

(
f 2 + 1

)4

+
(−4 f 6 − 8 f 4 − 4 f 2

)
P2δ2λ2β4

2

(
f 2 + 1

)4

+
(
3 f 8 + 22 f 6 + 38 f 4 + 22 f 2 + 3

)
P2λ2β4

2

(
f 2 + 1

)4

+
(
12 f 8 + 48 f 6 + 72 f 4 + 48 f 2 + 12

)
Pλβ2

2β4
(
f 2 + 1

)4

+
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
Pλβ2β3

2

(
f 2 + 1

)4

+
(
f 8 + 4 f 6 + 6 f 4 + 4 f 2 + 1

)
β2

4

(
f 2 + 1

)4 ,

α7 =
(−8 f 8 − 32 f 6 − 48 f 4 − 32 f 2 − 8

)
� Pλβ3β4

(
f 2 + 1

)4

+
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
�β2

2β3
(
f 2 + 1

)4 ,
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α6 =
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
�2β2β4

(
f 2 + 1

)4

+
(
6 f 8 + 24 f 6 + 36 f 4 + 24 f 2 + 6

)
�2β3

2

(
f 2 + 1

)4

+
(
8 f 6 + 16 f 4 + 8 f 2

)
P2δ2λ2β2β4

(
f 2 + 1

)4

+
(−6 f 8 − 44 f 6 − 76 f 4 − 44 f 2 − 6

)
P2λ2β2β4

(
f 2 + 1

)4

+
(−3 f 8 − 6 f 6 − 6 f 4 − 6 f 2 − 3

)
P2λ2β3

2

(
f 2 + 1

)4

+
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
Pλβ2

3

(
f 2 + 1

)4 ,

α5 =
(
8 f 8 + 32 f 6 + 48 f 4 + 32 f 2 + 8

)
� Pλβ2β3

(
f 2 + 1

)4 ,

α4 =
(−4 f 8 − 16 f 6 − 24 f 4 − 16 f 2 − 4

)
�2Pλβ4

(
f 2 + 1

)4

+
(−2 f 8 − 8 f 6 − 12 f 4 − 8 f 2 − 2

)
�2β2

2

(
f 2 + 1

)4

+
(−4 f 6 − 8 f 4 − 4 f 2

)
P3δ2λ3β4

(
f 2 + 1

)4 +
(
12 f 6 + 24 f 4 + 12 f 2

)
P3λ3β4

(
f 2 + 1

)4

+
(−4 f 6 − 8 f 4 − 4 f 2

)
P2δ2λ2β2

2

(
f 2 + 1

)4

+
(
3 f 8 + 22 f 6 + 38 f 4 + 22 f 2 + 3

)
P2λ2β2

2

(
f 2 + 1

)4 ,

α3 =
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
�3β3

(
f 2 + 1

)4

+
(−6 f 8 − 12 f 6 − 12 f 4 − 12 f 2 − 6

)
� P2λ2β3

(
f 2 + 1

)4 ,

α2 =
(
4 f 8 + 16 f 6 + 24 f 4 + 16 f 2 + 4

)
�2Pλβ2

(
f 2 + 1

)4

+
(
4 f 6 + 8 f 4 + 4 f 2

)
P3δ2λ3β2

(
f 2 + 1

)4

+
(−12 f 6 − 24 f 4 − 12 f 2

)
P3λ3β2

(
f 2 + 1

)4 ,
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α0 =
(
f 8 + 4 f 6 + 6 f 4 + 4 f 2 + 1

)
�4

(
f 2 + 1

)4

+
(−3 f 8 − 6 f 6 − 6 f 4 − 6 f 2 − 3

)
�2P2λ2

(
f 2 + 1

)4 − 4
f 4λ4P4δ2

(
f 2 + 1

)4

+9
f 4λ4P4

(
f 2 + 1

)4 . (83)

The MI is deliberated by a gain given by

Gain = max(Im(Kmax )), (84)

while Kmax = eig(A)where A is a matrix having elements (ai j ) (i = 1, 2, 3, 4. j = 1, 2, 3, 4)
given in “Appendix,” max and eig are two functions of the MATLAB software. The func-
tion eig(A) returns a column vector containing the eigenvalues of square matrix A and
max(Im(Kmax)) returns the largest element of Im(Kmax).

4.2 MI gain spectra

Without doubt, high-order dispersions play an important role in MI dynamics. In this work, the
presence of 4OD particularly will certainly set out the new behavior of high-order dispersion
in birefringent mode, despite the assumption that 4OD over the 3OD is usually immaterially
because of their tiny magnitude. So, it is for this reason that it will be supposed either β3 = 0
or β4 = 0 to emphasize the effect of each of them separately in which will follow. This study
will be done in the context of normal and anomalous dispersion regime on the one hand and
the zero-birefringence, circular and linear-birefringence, respectively, on the other hand.

4.2.1 Anomalous dispersion regime ( f < 0)

• The effects of third order and fourth order in anomalous dispersion regime associated
with an ellipticity angle in birefringent fiber

In this section, we study the behavior of the MI gain spectra in anomalous dispersion regime.
Figure 8 shows the variation of the MI gain spectrum versus anomalous group velocity dis-
persion regime with the effect of the third-order 3OD dispersion for [β3 = 1.1 ps3/km, β3 =
0.51 ps3/km, β3 = 0.25 ps3/km], respectively. In addition, the MI gain spectra decrease
when the value of the 3OD dispersion decreases, while the stability zones increase. How-
ever, when the anomalous group velocity dispersion values tend to zero, there are over-
laps between the MI gain bands (see Fig. 8D1). Figure 9 shows the variation of the MI
gain spectra versus the ellipticity angle θε[0◦, 15◦] in anomalous dispersion regime along
with the effect of third-order dispersion in birefringent fiber. Scrutinizing Fig. 9 (G1), for
[β3 = −100 ps3/km, β3 = −50 ps3/km], the MI grows exponentially and the width of
the instability gap increases. Besides, for [β3 = −200 ps3/km], the instability band propor-
tionally decreases showing out the stability band. Moreover, the scenario changes when the
third-order dispersion values become more important. In the event that, the instability band
increases the stability zones vanish (see Fig. 10). The effect of the third-order dispersion 3OD
in anomalous dispersion regime on the MI gain spectra is shown in Fig. 11 for θε[30◦, 45◦].
The width of the MI band increases with the 3OD values and for large values of 3OD addi-
tional sides lobes are obtained (see Fig. 11 (H4)). Therewith, the situation becomes different
with the effects of 4OD in anomalous dispersive regime for θε[45◦, 60◦]. The MI bands
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Fig. 8 Variation of the MI gain spectrum versus the anomalous group velocity with the effect of third-
order dispersion in birefringent fiber at (D1) [β3 = 1.1 ps3/km, β3 = 0.51 ps3/km, β3 = 0.25 ps3/km],
respectively, and θ = 30◦, P = 1500 kW, f = −0.001, β4 = 0 ps4/km

Fig. 9 Variation of the MI gain spectrum versus the ellipticity angle with the effect of third-order dis-
persion in birefringent fiber at (G1) [β3 = 0.4 ps3/km, β3 = 10.4 ps3/km, β3 = 20.4 ps3/km] and
(G2) [β3 = −200 ps3/km, β3 = −100 ps3/km, β3 = −50 ps3/km], respectively, and θε[0◦, 15◦],
P = 1000 kW, f = −0.5, β4 = 0 ps4/km

shrink and the amplitude grows for large values of the 4OD (see Fig. 12b). In Fig. 13, the
variation of the MI gain spectra versus the ellipticity angle in birefringent two-core optical
fibers under the effect of third-order and fourth-order dispersion in anomalous dispersion
regime for θε[60◦, 75◦], P = 1500 kW, f = −0.5, λ = 100 (/kW m) is depicted. The
maximum magnitude of the MI bands is obtained for slight values of the 3OD and 4OD (see
Fig. 13 (green color)). It is observed from Fig. 14, that the MI gain spectrum in anomalous
dispersive regime with the effects of 3OD and 4OD leads to important sides lobes. Alongside
of this variation, extra small sides lobes are obtained for small values of the 3OD and 4OD
(see Fig. 14c).

4.2.2 Normal dispersion regime ( f > 0)

• The effects of third order and fourth order in normal dispersion regime associated with
ellipticity angle in birefringent fiber

In this part of the work, we emphasized the behavior of the MI gain spectra in normal
dispersion regime under the effects of the third-order and fourth-order dispersion. We set
β2 = 150 ps2/m, P = 2500 kW, λ = 100.5 (/kW m), f = 10.5. Figure 15 shows the
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Fig. 10 Variation of the MI gain spectrum versus the ellipticity angle with the effect of third-order disper-
sion in birefringent fiber at (R1) [β3 = 1] and (R2) [β3 = 50 ps3/km], (R3) [β3 = 100ps3/km], (R4)

[β3 = 150 ps3/km], respectively, and θε[15◦, 35◦], P = 1500 kW, f = −0.5, β4 = 0 ps4/km, β2 =
−0.001 ps2/km, λ = 100 (/kW m)

Fig. 11 Variation of the MI gain spectrum versus the ellipticity angle with the effect of third-order dispersion
in birefringent fiber at (H1) [β3 = 0.75], (H2) [β3 = 140.4 ps3/km], (H3) [β3 = −140.4 ps3/km], (H4)

[β3 = −200.4 ps3/km], respectively, and θε[30◦, 45◦], P = 1500 kW, f = −0.5, β4 = 0 ps4/km, β2 =
−0.001 ps2/km, λ = 100 (/kW m)

behavior of the MI gain spectra in normal dispersion regime with the effects of 3OD and
4OD. The ellipticity angle in birefringent is taking on θε[0◦, 15◦]. The magnitude of the
MI gain spectra increases when the value of the 3OD increases, and the MI bands also
increase. However, when the value of the 3OD tends to be small, while the 4OD increases
in value, it is formed sides lobes with small amplitudes and the MI spectra bands shrink.
Figure 16 gives the MI gain spectra with the effects of 4OD in normal dispersion regime
for θε[15◦, 30◦]. An examination of Fig. 16k yields to the generation of the stability zones
for 15◦ < θ ≤ 20◦, θ = 25◦, respectively. Besides, a new MI band is produced when the
4OD takes small values and the stability zones vanish, see Fig. 16n. The situation is now
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Fig. 12 Variation of the MI gain spectrum versus the ellipticity angle with the effect of fourth-order
dispersion in anomalous dispersion regime. The parameters of the obtained results are given by a
[β4 = −10.5 ps4/km, β4 = −.5 ps4/km, β4 = 5.01 ps4/km, β2 = −0.0001 ps2/km], b [β4 =
50.1 ps3/km, β4 = 100.1ps4/km, β4 = 125.1 ps4/km, β2 = −1 ps2/km] for θε[45◦, 60◦], β3 =
−1.75 ps2/km, P = 1500 kW, f = −0.5, λ = 100 (/kW m)

Fig. 13 Variation of the MI gain spectra versus the ellipticity angle with the effect of the third-order and fourth-
order dispersion in anomalous dispersion regime for θε[60◦, 75◦], β2 = −1 ps2/km, P = 1500 kW, f =
−0.5, λ = 100 (/kW m)

Fig. 14 Variation of the MI gain spectra versus the ellipticity angle with the effect of the third-order and
fourth-order dispersion in anomalous dispersion regime for θε[75◦, 90◦], c [(β4 = 1.5 ps4/km, β3 =
2.75 ps3/km), (β4 = −1.5 ps4/km, β3 = −2.75 ps3/km)], d [β4 = −50.1 ps4/km, β3 =
−100.001 ps3/km] and β2 = −1 ps2/km, P = 1500 kW, f = −0.5, λ = 100 (/kW m)
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Fig. 15 Variation of the MI gain spectra versus the ellipticity angle with the effect of the third-order
and fourth-order dispersion in normal dispersion regime for θε[0◦, 15◦], i [(β4 = 20.5 ps4/km, β3 =
200.25 ps3/km), (β4 = 50.5 ps4/km, β3 = 250.25 ps3/km), (β4 = 100.5 ps4/km, β3 =
300.25 ps3/km)], j [(β4 = 200.5 ps4/km, β3 = 50.25 ps3/km), (β4 = 250.5 ps4/km, β3 =
25.25 ps3/km), (β4 = 300.5 ps4/km, β3 = 15.25 ps3/km)] and P = 1500 kW, f = 10.5, λ =
100 (/kW m)

Fig. 16 Variation of the MI gain spectra versus the ellipticity angle with the effect of the fourth-order dispersion
in normal dispersion regime for θε[15◦, 30◦], k [β4 = 150 ps4/km, β4 = 100 ps4/km, β4 = 50 ps4/km],
n [β4 = 25 ps4/km, β4 = 10 ps3/km, β4 = 5 ps4/km] for β2 = 0.1 ps2/km, β3 = 50 ps3/km, P =
2500 kW, f = 0.1, λ = 250 (/kW m)

Fig. 17 Variation of the MI gain spectra versus the ellipticity angle with the effect of the third-order dis-
persion in normal dispersion regime for θε[30◦, 45◦], f [β4 = −450 ps3/km, β3 = −250 ps3/km, β3 =
−50 ps3/km], g [β3 = 50 ps3/km, β3 = 25 ps3/km, β3 = 0.5 ps3/km] for β2 = 0.1 ps2/km, β4 =
5 ps4/km, P = 2500 kW, f = 0.1, λ = 250 (/kW m)

different under the effects of the 3OD in normal dispersion regime in birefringent fiber for
θε[30◦, 45◦] at ( f ) [β4 = −450 ps3/km, β3 = −250 ps3/km, β3 = −50 ps3/km], (g)
[β3 = 50ps3/km, β3 = 25 ps3/km, β3 = 0.5 ps3/km] (see Fig. 17). The MI gain spectra
band is seriously different from the situation for θε[15◦, 30◦]. Meanwhile, for positive values
of the 3OD, new sides lobes are generated (see Fig. 17g). Observing the results obtained, the
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Fig. 18 Variation of the MI gain spectra versus the ellipticity angle with the effect of the ratio power in normal
dispersion regime for β2 = 0.1 ps2/km, β4 = 5 ps4/km, P = 2500 kW, λ = 250 (/kW m)

Fig. 19 Variation of the MI gain spectra versus the ellipticity angle with the effect of the ratio power in
normal dispersion regime w [ f = 0.005], v [ f = 0.001] for β2 = 0.01 ps2/km, β4 = 0 ps4/km, β3 =
0 ps3/km, P = 2500 kW, λ = −0.51 (/kW m)

maximum initial expansion rate of the disturbances is estimated to be in the closeness of the
prevalent MI frequency, which corresponds to the higher gain (see Fig. 18g).

• The effects of the ratio power incident in normal dispersion regime associated with an
ellipticity angle in birefringent fiber

Figure 18 shows the impacts of the ratio power to the MI gain spectra in normal dispersion
regime for θε[45◦, 60◦] and β2 = 0.1 ps2/km, β4 = 4.5 ps4/km, β3 = 2.5 ps3/km, P =
2500 kW, λ = 250 (/kW m). We observed two and three slides lobes. In case of total absence
of the 3OD and 4OD dispersion in normal group velocity dispersion, two slides lobes with the
effects of the ratio power (see Figs. 19, 20) for θε[60◦, 75◦] and θε[75◦, 90◦] are generated,
respectively. It is also pointed out two and three stabilities zones, respectively.

From the various results obtained, the behavior of the MI Gain spectra in different ranges
of ellipticity angle in birefringent fiber is emphasized. The effects of third-order dispersion
and those of fourth-order dispersion have been highlighted in the normal and anomalous
dispersion regime in birefringence. Likewise, in the absence of dispersions 3OD and 4OD,
the effects of the ratio power (f) are exhibited on the MI Gain spectra. In presence of the third-
order dispersion 3OD, in normal and anomalous dispersion regime, the effects of the fourth-
order dispersion 4OD are less important on the MI gain spectra (see Fig. 14). To overcome
this restriction, it is necessary to mix the third-order dispersion 3OD and the fourth-order
dispersion to which the group velocity dispersion GVD is added to obtain an improved MI
gain spectra (see Fig. 13). More precisely, in anomalous or normal dispersion regime, the
effects of the third-order dispersion 3OD in the absence of the fourth-order dispersion 4OD
are evident and we achieve a maximum amplitude of the MI gain spectra. In addition, we
observe the appearance of new MI gain spectra as well as stability zone (see Figs. 9, 10,
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Fig. 20 Variation of the MI gain spectra versus the ellipticity angle with the effect of the ratio power in normal
dispersion regime a1 [ f = 2.5], a2 [ f = 1.5], a3 [ f = 1.25] and a4 [ f = 0.5] for β2 = 0.5 ps2/km, β4 =
0 ps4/km, β3 = 0 ps3/km, P = 2500 kW, λ = −0.01 (/kW m)

11). However, excluding the third-order dispersion 3OD coefficient, new sides lobes of MI
gain spectra are generated, reflecting the formation of new regions of instability. When the
values of the 4OD become more important in the absence of the 3OD, the peak and some
new stability regions are set out (see Fig. 12b).

5 Conclusion

In this paper, the analytical solutions survey of the CNLSE having 3OD and 4OD in birefrin-
gent TCFs have been studied by using the modified Sardar sub-equation method. From there,
a new shape of solitons solutions known as W-shaped bright and dark solitons solutions,
singular solitons solutions, periodic solutions are unearthed. These results have been secured
under certain constraint conditions. Whatever, the medium is favorable to the formation of
solitons due to the competition between dispersion and nonlinearity terms. These parameters
are also good arguments to study MI. Furthermore, the study of MI gain spectra with the
effects of the high-order dispersion and power ratio (f) in anomalous and normal dispersion
regime is done.

We expanded the work on different ranges of ellipticity angle in birefringent, which
consisted to use six ranges of ellipticity angle θε[0◦, 15◦], θε[15◦, 30◦], θε[30◦, 45◦],
θε[45◦, 60◦], θε[60◦, 75◦] and θε[75◦, 90◦]. For each case, the behavior of the MI gain
spectra under the effects of 3OD and 4OD together with the influence of the ratio of power
incident has been emphasized. These results generated additional MI gain spectra and new
instability bands to the well-known classic ones which are related to linear and circular bire-
fringent in two-core fibers. Comparing these results with Refs. [2–6,8,11,43], Figs. 9, 10, 11,
12, 13, 14 and 15 show out a new behavior of the MI gain spectra with the effect of the 3OD
and 4OD associated with an ellipticity angle in birefringent two-core fiber. Certainly, these
results could improve the MI analysis in birefringent fibers with the effects of high-order
dispersions including ellipticity angle effects in normal and anomalous dispersion regime. In
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the future, we aim at adding the numerical simulations of the obtained W-shaped bright and
dark soliton solutions to more appreciate the behavior of the latter in TCFs.

Appendix

a11 = K 3β3 + � − K 2β2 + K 4β4 + 2P f 2λ

f 2 + 1
, a12 = δ λ P f

1 + f 2 , a13 = λ P f 2

1 + f 2 ,

a14 = δ λ P f

1 + f 2 ; a21 = λ P f 2

1 + f 2 , a22 = δ λ P f

1 + f 2 ,

a23 = −K 3β3 − � − K 2β2 + K 4β4 + 2P f 2λ

f 2 + 1
,

a24 = δ λ P f

1 + f 2 , a31 = δ λ P f

1 + f 2 , a32 = K 3β3 + � − K 2β2 + K 4β4 + 2λ P

f 2 + 1
,

a33 = δ λ P f

1 + f 2 , a34 = λ P

1 + f 2 , a41 = δ λ P f

1 + f 2 , a42 = λ P

1 + f 2 ,

a43 = δ λ P f

1 + f 2 , a44 = −K 3β3 − � − K 2β2 + K 4β4 + 2λ P

f 2 + 1
.
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