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Abstract In this work, we have studied such thermal function of diatomic molecules like
hydrogen dimer, carbon monoxide, nitrogen dimer and lithium hydride using improved
deformed exponential-type potential (IDEP). To this end, the energy spectra of the IDEP
are obtained applying Greene-Aldrich approximation and appropriate coordinate transfor-
mation within the framework of non-relativistic quantum mechanics. With calculated energy
eigenstates, we have deduced the partition function and such thermodynamic functions like
specific heat in constant pressure, enthalpy and Gibbs free energy by employing the Poisson
summation formula. We have compared our results with experimental data, and there is a
good agreement between them.

1 Introduction

In the past few years, predict and interpret the thermodynamic properties of the various system
have been attendant by many scientists [1-6]. These properties like entropy, specific heat,
mean energy, etc., are based on information about interaction potential [7—11]. According
to industrial, we can see that accurate prediction of the properties has an important effect in
physics, chemistry, engineering and material science [12—16]. Also, the properties have an
important role in phase transition, adsorption and synthesis of materials [17-19].

In the last few decades, the analytical solution of wave equations for interaction potential
models in quantum mechanics has been interested by many researchers. Therefore, one of
the interesting ways of calculating the thermodynamic properties of systems is to know the
interaction potential of them. So far, some potential models have been applied in literature
such as Tietz-Wei, Deng-Fan, Hulthen, Morse, Manning-Rosen and Tietz [20-25]. By con-
sidering an interaction potential and solving Schrodinger equation (SE), one can obtain the
energy spectrum and thereby partition function of a corresponding system.

It is well known that the accurate solution of SE for a potential model has an important
effect on calculating thermodynamic properties. The exact solution of SE for the hydrogen
atom and harmonic oscillator are two typical examples in quantum mechanics [26]. Luise
et al. [27] obtained the approximation solutions of the SE with Manning-Rosen plus Hell-
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mann potential for any 1-state by using the proper quantization rule. Oliveira et al. [28] exactly
solve the SE written on a spherical surface and interacting with the Poschl-Teller double ring
shaped potential and calculated their energy eigenvalues. Udoh et al. [29] solved the SE for the
improved Rosen-Morse potential model in D spatial dimensions by using the Nikiforov—U-
varov method. Also, they obtained the rotational-vibrational energies and the wave function.
Badalov et al. [30] obtained the approximation analytical solutions of the hyper-radial SE
for the generalized Wood-Saxon potential by using the Pekeris approximation.

The system of our interest is exponential-type potential function that has been studied by
many authors [31-33]. Jia et al. [34] exactly solved the SE for a five-parameter exponential
type model in two cases from first principles. Xie et al. [35] reported an improved multi-
parameter exponential-type potential energy model for diatomic molecules. They showed
that this potential is identical to the Tietz potential in the realm of diatomic molecules. In
this work, we have solved the SE for IDEP by using the Greene-Aldrich approximation
and obtained energy eigenvalues. Then we have determined partition function and thereby
such thermodynamic properties of diatomic molecules such as Hy, CO, N, and LiH. We
have compared our results with experimental data extracted from the National Institute of
Standards and Technology (NIST) database [36].

2 Solution of SE with the IDEP

The time-independent radial SE is express as follow [37]

’sz V() M Ry (r) = EqR 1)
_211 a2 + (r) + 2/”‘2 il (r) = EniRni(r)

where p is the reduced mass, E,; is the energy spectrum of the IDEP to be determined,
h is the Planck constant, and n and [ are the vibrational and rotational quantum numbers,
respectively. Here, the potential model to be employed is defined as
B ) q— eZa(re—ro) 2 5
Vipep(r) = D, - m 2)
where D, is the dissociation energy, r, is the equilibrium bond length, and ¢, « and rq are
parameters that can be expressed corresponds to the diatomic molecular constants with the
following relations:
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where w, is the equilibrium harmonic vibrational frequency, «, is the vibrational rotation
coupling constant, and c is the speed of light. It is clear that the IDEP reduces to Tietz
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potential by replacing 2« to & and —ge?®’ to F [2]. Substituting Eq. (2) into Eq. (1) and by
considering Egs. (3)—(5), the following results has been obtained

h2 d2R Ry (r) q— e20(re—ro) 2 II+1)
2,u, T De<1 - 4 — 22T ) + 22 Rui(r) = Eni R (r) (©)

Due to the presence of the centrifugal term I(M) , we cannot solve Eq. (6) for the case

[ # 0 analytically. Therefore, we use the 1mproved Greene—AldriCh approximation to deal
with the centrifugal term to remove this problem. This approximation is written as [38]

s (dor— ) ap=t @
r2 (Q _ eZotr)2 ’ 2

Substituting Eq. (7) into Eq. (6) and Applying the coordinate transformation = ¢?*", the
following yields

d’R dR A B —
2L Rn(s) | (ARuls) [—e,,l + + ysz}R,,l(s) —0 ®)
ds? ds (Q—=5) (Q—yv)
where Q = qez"” 0 and y = [(I + 1). Here, we use the following abbreviations
e : (2E, — 4y h*aPdy — 2uDy) |;
nl = 4h2 P KLy — 4y 0 o) |5
uD, 2ar, .
= h2a? (Q —e);
uD 2
B=—15a(Q—e ) ©)

We suppose that the wave function has the form Ry;(s) = s(Q — s)‘s F,;(s). Therefore,
by some mathematical computation, the following equation has been obtained

s(0 —s) F”’()+[Q(1+2)—(1+2+23)s]dF”’(s)
dF? dF
— [(+8 = /&u1) (+8 — V/&u1) | Fur(s) =0 (10)
where
—+ [ —<5+£>- s= (14 1—4(£—l> (11)
TEE T et 2) 0T 0’ 0

Equation (10) is a hypergeometric equation, and its solution is the hypergeometric function
given in the form [6]

Tl A T@+nri+ns'
Fu(s) = 2F1(an, biieiis) = poStos ;Wﬁ (12)
where
a; = +6 — m;
b1 = +8 + /eu;
c1 = 0(1+2). (13)
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We can see that when either a; or b is equal to a negative integer (—n), then the hyper-
geometric function F; (s) will become a polynomial of a certain degree. This scheme leads
the hypergeometric function to a finite one under the following quantum condition

ar=-n n=0,1,2,3,..., imax (14)

where

Nmax =

ha?Q 20

MDe(Q _ ezar,,) (1 ~ (Q _ e2(xr€)>

2

2 _ L2ar,
1 le\/(Q+2z) 2uD,(Q — e2ore) 15)

5 oz 12a2Q?

Substituting Egs. (10) and (11) into Eq. (13) and by some complex mathematical calcu-
lation, the following expression obtain

[ £ T
Enl = [T T 2m +5)] (16)
where
5= (é + 5) (17)
~\Qo 02

Substituting Egs. (9), (11) and (16) into Eq. (17), the energy spectra for the IDEP has been
deduce as

202211 +1) h2a?

E, =D, +
" ¢ 12 21
2
2 2uD,(Q—e2re)? uD,(Q—e?¥¢) (Q—c%re)
2n+1:|:\/(Q5221) L) e (1- %55
+

4 2 __p2are 2

m+1+ \/ e+ 2*‘”‘;5232;2 )

(18)

In Eq. (18), plus and negative sign corresponds to Q < 0 and Q > 0, respectively. By
considering I = 0, Eq. (18) reduces to the energy spectra for the IDEP which is identical to
the pure energy levels represented by the improved Tietz potential function [6].

Table 1 Spectroscopic Molecules D, (cm™ 1 re (A) « (amu)

parameters for the selected

diatomic molecules [39, 40] H2 38,297.00 0.7416 0.5039
co 90,529.00 1.1283 6.8562
Ny 79,885.00 1.0970 7.0034
LiH 20,287.70 1.5955 0.8801
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Table 2 Calculated values of the

; Molecules o x 107 (cm_l) rg X 10-8 (cm) 4
IDEP parameters for different

diatomic molecules Hp 25.73680374 0741600148 — 0.3236073943
CcO 30.69381001 1.128300118 — 0.6544806294
Np 36.42844874 1.097000113 — 0.3543700921
LiH 15.02728120 1.595500403 — 0.3326882575
40 40
(a) (b)
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Fig. 1 Specific heat in constant pressure versus temperature for diatomic molecules: a Ny with o =
36.42844874,rg = 1.097000113 and g = —0.3543700921, b CO with « = 30.69381001,r¢9 = 1.128300118
and ¢ = —0.6544806294, ¢ Hy with o = 25.73680374, ro = 0.7416001485 and g = —0.3236073943, d LiH
with @ = 15.02728120, ry = 1.595500403 and ¢ = —0.3326882575

3 Thermodynamic function of the IDEP
The first point to determine thermodynamic function of a system is calculating partition

function. The bound state contributions to the partition function of any system at a given
temperature T is define as

A
ZB.n =Y e P p=(kgT)™" (19)

n=0
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Fig. 2 Gibbs free energy versus temperature for diatomic molecules: a Ny with « = 36.42844874,
ro = 1.097000113 and ¢ = —0.3543700921, b CO with & = 30.69381001, ro = 1.128300118 and
q = —0.6544806294, ¢ Hy with @ = 25.73680374, rop = 0.7416001485 and ¢ = —0.3236073943, d LiH
with @ = 15.02728120, ry = 1.595500403 and ¢ = —0.3326882575

where kg is the Boltzmann constant, X is the upper bound quantum number, and E,; is the
energy eigenvalues of IDEP. The pure energy levels can be written as

2
1202 (n+ %(1 4 |1 2De(Q—e2e)? ) nDe(0-e) (1 - (Qezm)>
o

h2a2Q? h2aZQ 20
Ep = De — D) 2 + 2
M —e2ar,
2<n+;(1i 1+M2(2%2;2m")))
(20)

Substituting Eq. (20) into Eq. (19), the partition function deduce as follow

A 2.2 2
_ hra“ [ (n+§&) e
Z(ﬂ,A)—n;exp A GO [ 5 +2(n+5)] 1)
where
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@ Springer



Eur. Phys. J. Plus (2021) 136:400 Page 70f 12 400

200 (@) 200F (b)
Z 150 < 180F
g £
5 5
S <
100 F v, 100
% %
(= N
N = 50
! : [ - -- Experimental data
= 501 —— Experimental data = o Ozze:;:‘llel:;a aa
—— Our results
0 F
O [ 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Temperature (kelvin) Temperature (kelvin)
240
220} (d)
(Y
200 - ( )
200
~ %\ 180
g 1s0r £ eof
S =
=2 — 140}
v bt
% 100r % 120f
&
S o [
T o 100 —— Experimental data
T s0f Experimentgal data 80t —— Our results
—— Our results
601
0 L L L L L L 40 L L L L L
0 1000 2000 3000 4000 5000 6000 2000 3000 4000 5000 6000
Temperature (kelvin) Temperature (kelvin)

Fig. 3 Enthalpy versus temperature for diatomic molecules: a Ny with @ = 36.42844874, ro = 1.097000113
and ¢ = —0.3543700921, b CO with o = 30.69381001, rp = 1.128300118 and ¢ = —0.6544806294,
¢ Hy with o = 25.73680374, ry = 0.7416001485 and g = —0.3236073943, d LiH with o = 15.02728120,
ro = 1.595500403 and g = —0.3326882575

To calculating Eq. (21), we use the Poisson summation formula for lower order approxi-
mation as

Nmax+1
Nmax max

1
Z fx)= i[f(o) — f(imax + D]+ / f(y)dy (24
n=0 0

By substituting Eq. (21) into Eq. (24), one can obtain the following functions

2.2 2
£(0) = expl —B De—(“‘ )(5 ;) :

P 7+7

2u J\2 2
D) — b Ro?\ [((A+1+§&) ¢ 2 ’s
SO +1) =expy—8 e—(ZM )( > +2(k+1+5)) . (25)

Also

A+ A+l

B R [ (+1+8) ¢ :
/f(x)dx—/exp —,8<De— o [ 5 +2(“1+§)} dr  (26)
0 0
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By evaluating the integral part of the right-hand side of Eq. (26), we have
A+l G

0
fx)dx = /exp{ B(D. — Hp?)} (1 + )d,o (27)
/ J Vet =¢
In the above integral, G1 5+ 2§ and G, (’H;'E) + ﬂ)»fw Here, we have define the

par: ameter

_(A+1+$)+ ¢
N 2 200+ 1+8)

By calculating Eq. (27) and combining with Eq. (25), the partition function of IDEP is
obtained by employing Maple software as

Z(B,)) = ﬁDe{eﬂHG% _ eﬂHGz + |/ ;I-[ﬂl: erﬁ(Gl\/Hi,B) — erﬁ((h@)
+elléh (—erﬁ(\/fTﬁ,/G% - g) + erﬁ<\/fTﬂ,/G§ - ;))“ (29)

where the imaginary error function is defined as

(28)

erf(lu)

erfi(u) = f / dr (30)

with the help of the vibrational partition function of Eq. (29), other thermodynamic functions
of IDEP can be obtained using the following expressions:

o Internal energy

UB,» = —al%;’“) 31)
e Entropy
S(B. %) =kpInZ(B. %) — ﬂalL;’“) (32)
e Enthalpy
H(B, ) =U(B, 1) +PV 33)
e Gibbs free energy
G(B,2) =H(B, 1) — TS(B, %) (34)
e Specific Heat in constant pressure
cp(B,h) = ﬂzﬂﬁk) (35)

4 Results and discussion
In this paper, we have considered the electronic states of diatomic molecules such as hydrogen

dimer, carbon monoxide, nitrogen dimer and lithium hydride using energy spectra of Eq. (18).
The experimental values of the selected diatomic molecules are given in Table 1 [39,40]. Also,
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Table 3 Specific heat in constant  Temperature N, coO H, LiH

pressure deviations of Ny, CO,

Hj; and LiH using the potential 100 1.45

model 200 1.41
300 1.45 1.45 1.43
400 1.46 1.46 1.44 1.92
500 1.47 1.49 1.45 1.93
600 1.50 1.52 1.45 1.94
700 1.53 1.55 1.46 1.94
800 1.57 1.59 1.47 1.95
900 1.6 1.62 1.48 1.95
1000 1.63 1.65 1.49 1.96
1500 1.74 1.76 1.59 1.97
2000 1.79 1.81 1.69 1.97
2500 1.83 1.84 1.77 1.98
3000 1.85 1.86 1.83 1.98
3500 1.86 1.87 1.89 2.01
4000 1.87 1.88 1.94 2.04
4500 1.87 1.89 2 2.07
5000 1.89 1.9 2.04 2.1
5500 1.9 1.91 2.07 2.13
6000 1.91 1.91 2.09 2.17

Table 4 Gibbs free energy Temperature N, CcO H, LiH

deviations of N, CO, Hy and

LiH using the potential model 100 1.875
200 1.715
300 1.58 1.885 1.5
400 1.64 1.94 1.55 1.26
500 1.745 1.05 1.675 1.342
600 1.87 1.17 1.78 1.41
700 1.99 1.295 1.914 1.71
800 1.11 1.415 1.02 1.54
900 1.225 1.53 1.129 1.60
1000 1.335 1.64 1.28 1.68
1500 1.815 1.125 1.70 1.72
2000 1.2 1.515 1.06 1.78
2500 1.525 1.845 1.36 1.84
3000 1.8 1.12 1.62 1.904
3500 1.04 1.365 1.86 1.17
4000 1.255 1.58 1.06 1.39
4500 1.45 1.775 1.26 1.6
5000 1.625 1.955 1.43 1.79
5500 1.785 1.115 1.59 1.97
6000 1.935 1.265 1.745 1.13
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Table 5 Enthalpy deviations of Temperature Ny co H, LiH

Nj, CO, Hj and LiH using the

potential model 100 0.28
200 0.14
300 0.00 0.001 0.002
400 0.14 0.14 0.14 3.04
500 0.29 0.29 0.29 3.23
600 0.44 0.44 0.44 3.43
700 0.59 0.59 0.58 3.62
800 0.75 0.75 0.73 3.81
900 091 091 0.88 4.01
1000 1 1.08 1.03 4.21
1500 1.92 1.94 1.81 44
2000 2.8 2.83 2.64 4.6
2500 2.71 2.74 2.52 4.81
3000 2.63 2.67 243 5
3500 2.56 2.64 3.38 5.005
4000 2.5 3.54 3.34 5.02
4500 2.44 3.49 3.33 5.04
5000 3.39 3.44 3.34 5.09
5500 3.34 4.39 3.37 5.15
6000 3.39 4.35 441 5.22

the values of the molecular parameters ¢, o and rg for the selected diatomic molecules are
obtained using Egs. (3)—(5), respectively. These values are tabulated in Table 2. Figure 1a—d
show the specific heat in constant pressure for the diatomic molecules versus temperature at
the range 100-6000 °K for nitrogen dimer, 300-6000 °K for carbon monoxide and hydrogen
dimer and 2000-6000 °K for lithium hydride. As can be seen from the figures, the curves
increase with enhances temperature for the diatomic molecules. Furthermore, we can see a
good agreement between our results and experimental data. In Fig. 2a—d, we have presented
Gibbs free energy for the diatomic molecules as a function of temperature at the same range
in Fig. 1. We can see from the figures that the Gibbs free energy in Fig. 2b—d increases as the
temperature increases for the selected diatomic molecules but in Fig. 2a, it decreases until 300
°K then it increases with enhancing temperature. Also, it is seen from the curves that there is
fairly good agreement between our results and experimental values. Figure 3a—d displays the
variation of enthalpy of IDEP with temperature for the selected diatomic molecules. Here, we
have use the same range of temperature for the molecules. Like two previous comparisons,
we can see a good agreement between our results and experimental data.

It is clear that the temperature variations of the specific heat at constant pressure for the
diatomic molecules are slow. Accordingly, the range of variations of Gibbs free energy and
enthalpy is higher than the specific heat. For example, the range of variations of the specific
heat of N> is between 28 and 39 J/mol °K but its variations of enthalpy is between — 6 and
205.4 J/mol. These results promise to very relevant to the study of thermochemical functions
of different diatomic molecular systems [1, 7, 41—44]. Also this potential model has been used
by other works [45, 46]. Furthermore, in Tables 3, 4 and 5, we have presented the deviations
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of our results and experimental data. These deviations maybe because of approximations that
we have considered here.

5 Conclusion

In this work, we have solved the Schrodinger equation with the improved deformed
exponential-type potential (IDEP) and have obtained the energy spectra of the model using
the Greene-Aldrich approximation and a coordinate transformation. Applying the obtained
energy spectra, we carry out a calculation of the vibrational partition function of the poten-
tial model for diatomic molecules under the lowest-order approximation. From the classical
partition function obtained, we have derived explicit expressions for the thermodynamic
functions, such as specific heat in constant pressure, Gibbs free energy and enthalpy. We
have plotted the behaviors of the thermodynamic functions as functions of temperature T for
N», CO, H; and LiH. The dependence of the thermodynamic functions on the temperature
is discussed.
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