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Abstract The vegetation patterns are a characteristic particularity of semiarid zones, which
can be the future of modern ecology for its importance. This paper aims to study a diffusive
vegetation model for the subject of studying the complex patterns generated by the presence
of Turing-Hopf bifurcation. The main focus is on analyzing the effect of the locative internal
rivalry between plants and feedback regulation on the pattern formations. The cross-diffusion
produced by the positive feedback regulation generates surprising dynamics such as Hopf
bifurcation, Turing bifurcation, Turing-Hopf bifurcation, which confirms the imbalance of
the distribution of the vegetation in the semi-desert regions. For analyzing the spatiotemporal
behavior near the Turing-Hopf bifurcation point, the Amplitude equation restricted at this
point is used. Further, by using numerical simulations, the complex dynamics induced by the
positive feedback redistribution and inner competition are explored.

1 Introduction

In the environment, the vegetation is widespread. This wealth is in huge danger due to the
wide expansion of cities and the over carbon dioxide leak for a reason for our daily activities.
The importance of the green cover is to suck the carbon dioxide and release the oxygen
using what is known as photosynthesis, which is very important to our survival. For the
safety of our planet, it must be a balance between the released carbon dioxide by different
living beings and the sucked carbon by the plants by photosynthesis. Global warming and
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climate change are the direct consequence of the imbalance between releasing and suction
of this toxic gas. At the moment, for the subject of reducing the concentration of this gas
in the environmental air, the scientists tried to find a replacement of the lost green areas
by the overbuilding of new cities. There is some work in augmenting the vegetation cover
in different areas in the cities such as in the building (at the roof), gardens, shrubs, which
is not enough. The semi-arid regions are the best places to begin. The main issue in these
regions is the water, where the availability of this last is low. The quantity of water is crucial
in determining the growth and expansion of the vegetation cover. This availability can be
affected by many factors, and we mention rainfall, illumination, geographical conditions,
graving. Consequently, various vegetation structures appear for different conditions, where
this diversity is known by vegetation patterns [2,3,10–13]. In literature, there are numerous
models that describe the relationship between water and plants. One of the first models
is offered by Klausmerier [13], where the following spatiotemporal model is provided for
modeling the connection between plant biomass (denoted by n) and water-limited biomass
(denoted by w)

{
∂w
∂t = R − w − wn2 − υ ∂w

∂x ,
∂n
∂t = wn2 − δn + �n.

(1.1)

R stands for the precipitation (soil, water) or rainfall rate; δ stands for the rate of natural death
of plants; υ is the rate of the slope of terrain (or downhill runoff); the term wn2 represents the
amount of water absorbed by the plant or the long-range rivalry and short-range facilitation,
� is the bidimensional Laplacian operator. It has been confirmed that this model predicts
stripe patterns next to the wavelength which agrees with the real-life situation.

It is well known that the plants have the ability to redistribute the water in the soil. This
point of view is used for the first time in water-plant interaction by Hardenberg et al. [35],
where an expanded model is utilized for describing the feedback impact between vegetation
biomass and water. The main idea is to add a cross-diffusion γ�(w − βn) in the water
equation for modeling this feedback. The obtained system is:

{
∂w
∂t = R − w − wn2 − υ ∂w

∂x + γ�(w − βn),
∂n
∂t = wn2 − δn + �n,

(1.2)

where γ is the rate corresponding to diffusion of the water in lack of vegetation. Using Darcy’s
law [35], we can model the transit of water through the soil. More precisely, the flux f is
proportional to the water metric potential ϕ (which means that f a−∇.ϕ). The alternation of
water due to the transit is−∇. f a∇2.ϕ.By taking the following suction functionalϕ = w−βn
where w is the metric potential for the soil (see also [35]). In fact, the slope of terrain or the
downhill runoff flow velocity is particular for some places not others, which means that it is
not a necessary condition for having patterns. A numerical investigation is given for predicting
wavelength, wave speed. Some works appear for describing the spatial patterns in the presence
of cross-diffusion as [11,35]. Based on the best of our knowledge, the main mathematical
achievement of these types of models is the dynamics introduced by Turing patterns. Further,
for the subject of revealing the spatiotemporal patterns near Turing bifurcation point, where
the amplitude equation restricted at Turing bifurcation point is used. The vegetation patterns
was and still the subject of interest of many recent researches we mention as example the
researches [1,5,6,18–21,27,33,34].

Very recently, the intensity of the inner competition reaction is considered in [37]. An
extended model to Klausmeier’s model (1.2) is considered. The investigated model is studied
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in the following form:
{

∂w
∂t = R − w − wn2

1+τn2 − υ ∂w
∂x ,

∂n
∂t = wn2

1+τn2 − δn + �n,
(1.3)

where the numerator in the term wn2

1+τn2 is the water absorbed by a plant as it has been
highlighted in the above model (1.1), and the dominator as inner (or local) competition
between biomass. The main idea in considering this term is due to the gathering of water by
plants using preferential leaking in the vegetated zone and run-on/run-off from desert regions
toward grassed ones. The intensity of competition increases for the densely vegetated areas.
The issue of the previous competition functional is the unboundedness of this last for the
densely vegetated area which is not true mostly for the semi-deserts areas, where the available
water for each unit of the biomass of plants may reduce if the inner rivalry induced negative
feedback is more intense, then the leaking induces positive feedback. To mention that in
[37], it has been proved that the system (1.3) cannot undergo Turing patterns. Indeed, we
consider in this paper the presence of the cross-diffusion in the system (1.3) subjects to the
homogeneous no-flux boundary conditions, which means that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂w
∂t = R − w − wn2

1+τn2 − υ ∂w
∂X + γ�(w − βn), X ∈ 
, t > 0,

∂n
∂t = wn2

1+τn2 − δn + �n, X ∈ 
, t > 0,
∂w
∂v = ∂n

∂v = 0, X ∈ 
, t > 0,

w(X, 0) = w0(X) ≥ 0, n(X, 0) = n0(X) ≥ 0 X ∈ 
,

(1.4)

where 
 is assumed to be a bounded set of R2 with a smooth boundary. The importance
of considering such a model is for generalizing the previous models where the model (1.4)
considers various factors such as feedback regulation, water redistribution, the intensity of
inner rivalry where each one of the previous models lacks these components (partially or
entirely). More precisely, the system (1.2) can be considered as a special case of the system
(1.4), wherein the absence of cross-diffusion (means that γ = 0) the system becomes the
system (1.3). Moreover, in the absence of the inner competition of plants, the system returns
to the model (1.2). For the nonexistence on both the inner rivalry of plants and the feedback
regulation, the system (1.4) becomes system (1.1), which shows the richness of this system.
Further, in the absence of slope of downhill (means that υ = 0) the system can imply many
works. For further discussions we rewrite the system (1.3) in the absence of the slope of
terrain in the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂w
∂t = R − w − wn2

1+τn2 + γ�(w − βn), X = (x, y) ∈ 
, t > 0,

∂n
∂t = wn2

1+τn2 − δn + �n, X = (x, y) ∈ 
, t > 0,
∂w
∂v = ∂n

∂v = 0, X = (x, y) ∈ 
, t > 0,

w(x, y, 0) = w0(x, y) ≥ 0, n(x, y, 0) = n0(x, y) ≥ 0.

(1.5)

As it has been previously mentioned that the system (1.5) implies many recent works, such
as the case of the absence of inner rivalry τ = 0 is discussed in [11], where the existence of
Turing patterns, and for discussing the spatiotemporal patterns near the Turing bifurcation
points the Amplitude equation is used. Ref. [36] discuses the pattern formations in detail.

Indeed, it is proved in [37] that the system (1.3) has no Turing bifurcation. Consequently,
the main focus was on studying the effect of the impact of the slop of terrain and the internal
competition between the plants on the vegetation patterns. Here, we will focus on studying the
impact of cross-diffusion in the water equation which is generated by taking into consideration
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the redistribution of the water in the soil next to the internal competition between the plants on
the vegetation spatial patterns. Recently, it has been confirmed by [11] that this cross-diffusion
generates Turing patterns for the model (1.2) (which is a particular case of our model τ = 0).
Turing patterns have the responsibility for determining the complex pattern that we can get in
the real world. On the other hand, The Hopf bifurcation is also very important for determining
the existence of the periodic solutions for the spatial systems where the presence of periodic
orbits can explain the seasonality of the vegetation grows, which agrees with the real-world
situation. To mention that the spatial Hopf bifurcation has never been proved for the vegetation
model, and no one can deny its importance in predicting the vegetation patterns. Further, the
present paper is not restricted to proving these kinds of patterns. Our main objective is to
determine the patterns generated by the intermingling of Turing and Hopf bifurcations, which
known as Turing-Hopf bifurcation. To highlight that Turing-Hopf bifurcation is recently
investigated which elaborated by the intermingling of both Hopf and Turing bifurcation
for different values of wavenumber, we refer as an example the papers [4,9,14,29–31].
Turing–Hopf bifurcation has never been studied for vegetation models. Indeed, it has been
ensured by many researchers that this kind of bifurcation generates very complex dynamics.
To the best of our knowledge the existence of Turing–Hopf bifurcation is confined in one-
dimensional space. Thus, our second perspective is to prove the existence of this kind of
co-dimensional bifurcation in the case of two-dimensional spatial variables. In literature, for
analyzing the spatiotemporal behavior near the Turing-Hopf bifurcation, the normal form on
the center of the manifold [31] is always considered. In this paper, by using the Amplitude
equations restricted at the Turing-Hopf bifurcation point, is used. Also to mention there are a
few works that deal with the effect of cross-diffusion (positive constants of cross-diffusion)
on the value of Turing-Hopf bifurcation. But in this paper, we consider another kind of
cross-diffusions (negative cross-diffusion γβ�n).The Turing-Hopf bifurcation can generate
important patterns that consist of a different distribution of the water and the vegetation
cover which agrees with the real-life situation. Periodic solutions can model the seasonality
of vegetation growth. Studying the vegetation model (1.5) can help the scientists to determine
the right condition for the evolution of the vegetation cover mostly in desert and semi-desert
areas. Besides, Determining global behavior as example [38–46] and local behavior [7,8,22–
26,28] is very important to anticipate the biological evolution of the species the the degree of
the spread of infectious diseases, where it provides some the time and appropriate (or optimal)
suggestion for having the best result (as avoiding the extinction of species, and guaranteeing
the stop of the spread of some infectious diseases for epidemiological perspectives). For the
ecological and the mathematical perspective, we organize the paper in the following manner:

• In the next section, the well-posedness of the problem is proved using the theory of
invariant regions.

• Section three is the main part of the paper, where some results are proved for the first time
for the vegetation models. In fact, the dynamics introduced in the absence of diffusion
where the existence of Hopf bifurcation is proved (actually, the authors in [37] do not
deal with a possible bifurcation that the system can undergo) this result is expanded
in the presence of diffusion where the rainfall rate is used as a bifurcation parameter.
The existence of Turing bifurcation is proved under some appropriate conditions on the
model’s parameters. Further, the existence of Turing-Hopf bifurcation is also investigated
next to its effect on the spatiotemporal patterns of the solution where the amplitude
equations are used to determine these complex patterns.

• A numerical simulation section is offered to emphasize the obtained theoretical results
and shows the complex dynamics generated by the presence of Turing-Hopf bifurcation.
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• A final discussion and remarks conclude the paper.

2 Existence, positivity of solution

In this section, we shall prove the existence of positive solution for the system (1.5), where
the result is resumed in the following theorem:

Theorem 2.1 Assume thatw0(x, y) ≥ 0 and n0(x, y) ≥ 0 then the system (1.5) has a unique
positive solution.

Proof By putting

f1(w, n) = R − w − wn2

1 + τn2 , and f2(w, n) = wn2

1 + τn2 − δn,

and the linear operator

� =
(

� 0
0 �

)
,

The system (1.5) can be rewritten in the following structure

dU

dt
= D�U + F(U ), (2.1)

where

D =
(

γ −γβ

0 1

)
, and F =

(
f1
f2

)
,

It remains to determine the space at which the linear operator � generates a C0 semi–

group, the appropriate space is
(
H1(R2)

)2
(which means that H1(R2) × H1(R2)). Under

the norm ‖U‖ = (∫
R2

(|w|2 + |∇w|2 + |n|2 + |∇n|2) dX) 1
2 , where X = (x, y)T ∈ R

2 the

completion of the space
(
C∞

0 (R2)
)2

is
(
H1(R2)

)2
where the linear operation is well defined

in this space.

Defining �U = (�w,�n) whereU = (w, n) ∈ D(�) := (
H1(R2)

)2
, which means that

� generates a C0 semigroup. Now let us focus on verifying that fi , i = 1, 2 are a Lipschitz
functionals. By putting

| f1(w1, n1) − f1(w2, n2)| =
∣∣∣∣∣−w1 − w1n2

1

1 + τn2
1

+ w2 + w2n2
2

1 + τn2
2

∣∣∣∣∣ ,
we get

≤ |w1 − w2| +
∣∣∣∣ w1n2

1
1+τn2

1
− w2n2

2
1+τn2

2

∣∣∣∣ ,
≤ |w1 − w2| + M2

1+τM2 (|w1 − w2| + |n1 − n2|),
≤ 1+(1+τ)M2

1+τM2 |w1 − w2| + M2

1+τM2 |n1 − n2|,
Hence, f1 is suitably Lipschitz, By the same manner we have

| f2(w1, n1) − f2(w2, n2)| =
∣∣∣∣∣

w1n2
1

1 + τn2
1

− δn1 − w2n2
2

1 + τn2
2

+ δn2

∣∣∣∣∣ ,
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which leads to

≤ δ|n1 − n2| +
∣∣∣∣ w1n2

1
1+τn2

1
− w2n2

2
1+τn2

2

∣∣∣∣ ,
≤ |w1 − w2| + M2

1+τM2 (|w1 − w2| + |n1 − n2|),
≤ 1+(1+τ)M2

1+τM2 |n1 − n2| + M2

1+τM2 |w1 − w2|,
which means that f2 is also suitably Lipschitz. It is not though to check that

|F(w1, n1) − F(w2, n2)| ≤
(

1 + (1 + τ)M2

1 + τM2 + M2

1 + τM2

)
|w1 − w2|

+
(

1 + (1 + τ)M2

1 + τM2 + M2

1 + τM2

)
|n1 − n2|

thus

|F(w1, n1) − F(w2, n2)| ≤ 1 + (2 + τ)M2

1 + τM2 (|w1 − w2| + |n1 − n2|) .

Using the standard theory of C0 semi group (see [17]) we deduce the existence and the
uniqueness of a positive solution. Here we considered the positivity and the boundedness of
solution where a common bound denoted by M is used for simplifying the computations.
The proof is completed. 	


3 Complex spatiotemporal patterns generated by taking into consideration of the
plant’s effect on the redistribution of the water in the soil

3.1 Linear analysis: Hopf, Turing, Turing-Hopf bifurcations

This section demonstrates the existence of the Turing-Hopf bifurcation. First of all, the system
(1.5) has the following homogeneous steady states

• E0 = (R, 0) which models the desert state.
• E± = (w±, n±) which models the coexistence of both water and vegetation biomass,

where

w± = δ(1 + τn2±)

n±
and n± = 1

2δ(1 + τ)

(
R ±

√
R2 − 4(1 + τ)δ2

)
,

which has its biological significant if and only if R > Rmin := 2δ
√

1 + τ

For determining the local stability of the vegetation steady states E± we use the translation
to the origin in the form

V (t) =
(

w̃

ñ

)
=
(

w − w±
n − n±

)
,

Neglecting the tilde for simplicity, the system (1.5) can be expressed in the following manner:

Vt = J±
(

w

n

)
+
(

f1(w, n)

f2(w, n)

)
+ D�V, (3.1)

where V t is the partial derivative of V with respect to t and J± is the Jacobian matrix of the
system (1.5) in the absence of diffusion at the vegetation equilibrium state E± which is given
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as follows:

J± =
⎛
⎜⎝− n2±

1+τn2±
− 1 −2δ

1+τn2±
n2±

1+τn2±
2δ

1+τn2±
− δ

⎞
⎟⎠ , (3.2)

we put

α11 = − 1+(1+τ)n2+
1+τn2+

α12 = −2δ

1+τn2+
α21 = n2+

1+τn2+
α22 = δ−δτn2+

1+τn2+

and

f1(w, n) = α1w
2 + α2wn + α3n

2 + α4w
3 + · · · ,

f2(w, n) = β1w
2 + β2wn + β3n

2 + β4n
3 + · · · ,

α1 = 0 β1 = 0
α2 = −2n+

(1+τn2+)2 β2 = 2n+
(1+τn2+)2 ,

α3 = −4n+(1−τn2+)

(1+τn2+)2 β3 = 2w(1−2τn2+)

(1+τn2+)3 ,

α4 = 0 β4 = 0.

The linearized system of (3.1) at an arbitrary homogeneous steady state is expressed as
follows:

Vt = J±
(

w

n

)
+ D

(�w

�n

)
. (3.3)

The linear stability of the vegetation homogeneous steady states E± implies that the system
(3.3) admits the following solution(

w

n

)
=
(
c1

c2

)
exp(λt + iυ · x).

The characteristic equation associated with the above equation (3.3) is given as:

�υ � λ2 − Tυλ + Dυ = 0, υ ∈ N0, (3.4)

where

Tυ = δ−1−(1+τ+δτ)n2±
1+τn2±

− (γ + 1)υ2,

Dυ = γ υ4 + υ2
(

−(1+(1+τ)n2±)+γ (δ+(β−τ)n2±)

1+τn2±

)
+ δ(1+τ)

(
n2±− 1

1+τ

)
1+τn2±

.

(3.5)

The roots of the characteristic Eq. (3.4) can be found as:

λυ = 1

2

(
Tυ ±

√
T 2

υ − 4Dυ

)
,

In order to set the stability conditions generated by the absence of cross-diffusion we consider
the following theorem

Theorem 3.1 (Dynamics introduced by the absence of diffusion) Assume that R > Rmin

holds, the system (1.5) in the case of absence of diffusion (means that υ = 0) verifies the
following aspects
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(i) The equilibrium state E− is unconditionally unstable.
(ii) For δ < 1 then E+ is unconditionally stable.

(iii) The equilibrium state E+ is stable for (δ > 1 and R > RH,0+ := δ(1 + τ)

√
δ−1

1+τ+δτ
)

and unstable for (δ > 1 and R < RH,0+)
(iv) For υ = 0 (or in the absence of diffusion) next to the condition δ > 1 the system (1.5)

undergoes Hopf bifurcation at R = RH,0+.

Proof Putting n = 0 in Dn defined in (3.5), we obtain:

D0 =
δ(1 + τ)

(
n2± − 1

1+τ

)
1 + τn2±

, (3.6)

and by doing some formal calculations, we have:

n− − 1√
1 + τ

= −2(R − 2δ
√

1 + τ)
√

1 + τ
(
R − 2δ

√
1 + τ +√

R2 − 4δ2(1 + τ)
) < 0.

The last result leads to deduce that D0 < 0 for R > Rmin, which means that the homogenous
steady-state (w−, n−) is saddle. Hence, it is unstable. Thus (i) holds. Besides,

n+ − 1√
1 + τ

= (R − 2δ
√

1 + τ)(R + 2δ
√

1 + τ) +√
R2 − 4δ2(1 + τ)(

R +√
R2 − 4δ2(1 + τ) + √

1 + τ
)

δ(1 + τ)
> 0.

Thus, D0 > 0 under the condition R > Rmin, this, takes us to deduce that T0 determines the
stability of the equilibrium E+ in the absence of cross-diffusion. For n = 0 the sign of T0

determines the local behavior of the equilibrium state E+. In other words, T0 < 0 holds if
and only if

δ > 1 + (1 + τ + δτ)n2+. (3.7)

It is easy to verify that for δ < 1 one has T0 < 0; which means that E+ is locally stable under
this condition (then (ii) is checked). Now focusing on studying the local behavior offered by
the condition δ > 1 and R > Rmin. Under these conditions the inequality (3.7) becomes:

R > R+
H,0 :=

√
δ2(δ − 1)(1 + τ)2

1 + τ + δτ
+
√

δ2(1 + τ + δτ)

δ − 1
. (3.8)

It is easy to see that under the condition δ > 1, E+ is stable for R > R+
H,0 and unstable

for R < R+
H,0. Further, for R = R+

H,0 the characteristic equation has two purely imaginary

roots ±
√

δ(1+τ)
(
n2+− 1

1+δ

)
1+τn2+

which means that for showing the existence of Hopf bifurcation it

remains to verify the transversality condition which is given as follows:

d�(λ)

dR

∣∣∣∣
R=R+

H,0

= n+(2 − δ + (1 + τ)(1 + δ)n2+)
dn+
dR

∣∣∣∣
R=R+

H,0

.
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By using the fact that n+ > 1√
1+τ

leads to deduce that 2 − δ + (1 + τ)(1 + δ)n2+ > 3 > 0.
Further

dn+
dR

∣∣∣∣
R=R+

H,0

= 1

2δ(1 + τ)

⎛
⎜⎜⎝1 + 2R+

H,0

2

√(
R+
H,0

)2 + 4δ2(1 + τ)

⎞
⎟⎟⎠ > 0.

Combining the two results, we deduce that d�(λ)
dR

∣∣∣
R=R+

H,0

> 0 which means that the system

(1.5) undertakes Hopf bifurcation for n = 0 at R = R+
H,0. This puts an end to the proof. 	


It has been confirmed by Turing [32] that diffusion can lead to instability where for some
values of the diffusion parameters, we can have instability, such as instability is called by
diffusion-driven instability or by Turing instability. In fact, this kind of instability appears
when the following conditions hold true:

λυ �= 0,�λυ = 0, k = kT �= 0.

where � and  stand for the real part and the imaginary part functionals, respectively. It is
not tough to prove that the following equation is a sufficient condition for having Turing
bifurcation:

δ − 1 − (1 + τ + δτ)n2+ +
√

|δ − 1 − (1 + τ + δτ)n2+|
γ (1 + δn2+)

[
(1 + τ)n2+ + 1 + 2γβδ + 2γ δτn2+

]

+δ(1 + τ)

(
n2+ − 1

1 + τ

)
= 0.

For the existence of Hopf bifurcation for the spatiotemporal vegetation model (1.5) we set
the following theorem.

Theorem 3.2 (The existence of Hopf bifurcation for the spatial system) Assume that R >

Rmin, then the following results arises.

(i) The system (1.5) cannot undergo Hopf bifurcation at E−.
(ii) For δ < 1: The system (1.5) cannot undergo Hopf bifurcation at the constant steady

state E+.
(iii) For δ > 1: There exists a wave number denoted by ϑH ≥ 0 such that system (1.5)

undertakes Hopf bifurcation for the constant steady state E+ at R = Rϑ,H , where this
homogeneous steady state is locally stable for R > max{R0,H , Rmin} and unstable for
Rmin < R < R0,H . Further, a spatially homogeneous periodic solution appears for
ϑ = 0 and nonhomogeneous ones appear for ϑ = 1, 2, . . . , ϑH .

Proof It has been proved in Theorem 2.1 that D0 < 0 for the equilibrium E− which leads
to deduce that there exists a positive integer (wavenumber) verifying Dϑ < 0 (ϑ = 0)
which leads to claim that this homogeneous steady state stays unstable in the presence of the
diffusion which confirms the obtained result in (i).

Passing to the second part of the proof. It is easy to see that the condition Tϑ = 0 is an
indispensable but not enough condition for getting Hopf bifurcation. Obviously, by taking a
look at (3.5) we can deduce that under δ < 1 we get Tϑ < 0, which leads us to deduce that
the system (1.5) cannot possess Hof bifurcation at the equilibrium E+, which emphasizes
(ii).
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Now, it remains the main part of the proof, where we will proceed to show the existence
of Hopf bifurcation. In addition to the main assumption R > Rmin, we suppose that δ > 1.
In what follows, we choose the rainfall constant as a bifurcation parameter. It is well known
that Hopf bifurcation occurs if the characteristic equation (3.4) has purely imaginary roots
in addition to the transversality condition, which equivalent to

Tϑ = 0, Dϑ �= 0,
d�(λ)

dR

∣∣∣∣
R=Rϑ,H

�= 0.

Tϑ = 0 is equivalent to

n2+ = δ − 1 − (γ + 1)ϑ2

1 + τ + δτ + (γ + 1)τϑ2 , (3.9)

using the fact that δ > 1 we can make sure that the critical wave numbers such that the system
(1.5) could possess Hopf bifurcation are ϑ = 0, 1, ..., ϑc where

ϑc := max {ϑ ∈ N, δ − 1 − (γ + 1)ϑ2 > 0} :=
[√

δ − 1

γ + 1

]
,

where [.] represents the integer part function. Now, considering the wave number be part
of the set {0, 1, ..., ϑc} and making use of the explicit formula of n+, (3.9) becomes

R +
√
R2 − 4δ2(τ + 1) = 2δ(1 + τ)

√
δ − 1 − (γ + 1)ϑ2

1 + τ + τδ + τϑ2(γ + 1)
,

This equivalent to

R = Rϑ,H := δ
(δ − 1 − (γ + 1)ϑ2) + 1 + 2δτ√

(δ − 1 − (γ + 1)ϑ2)(1 + τ + δτ + (γ + 1)ϑ2)
> 0,

for ϑ = 0, 1, ..., ϑc, δ < 1.

For having purely imaginary roots, we must have Dϑ > 0, it is easy to see that
D0 > 0 which means that there exist a wave numbers ϑc2 > 0 such that Dϑ > 0 for
ϑ ∈ {0, 1, ..., ϑc2}. In fact, by considering ϑH = min{ϑc, ϑc2} we can claim that the charac-
teristic equation (3.4) has a purely imaginary roots ±√

Dϑ where ϑ = {0, 1, ..., ϑH }. Now
it remains to confirm the transversality condition which is given in the following form

d�
dR

∣∣∣∣
R=RH,ϑ

= n+,H (2 − δ + (1 + τ)(1 + δ)n2+,H )

2δ(1 + τ)

⎛
⎜⎜⎝1 + 2R+

H,ϑ

2

√(
R+
H,ϑ

)2 + 4δ2(1 + τ)

⎞
⎟⎟⎠ > 0,

where n+,H = RH,ϑ+
√
R2
H,ϑ−4δ2(τ+1)

2δ(1+τ)
, ϑ = 0, 1, ..., ϑH . The proof is successfully estab-

lished. 	

Now let us focus on studying the existence of Turing-Hopf bifurcation. From many papers

such as [4,9,14,29–31] we can confirm that Turing-Hopf bifurcation appears at a reaction-
diffusion system if there exist two different wavenumbers denoted by ϑH and ϑT �= 0 where
the vegetation system (1.5) undergoes Hopf bifurcation at ϑ = ϑH and undergoes Turing
bifurcation at ϑ = ϑT , and the transversality condition holds. It has been proved widely that
this kind of bifurcation affects the spatiotemporal behavior of the solution which is going to
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anticipate this kind of complex dynamics. Indeed, by taking into consideration the results
presented in Theorem 3.1, we can conclude that the system (1.5) undertakes Hopf bifurcation
at R = R0,H for the equilibrium state E+, we denote by LH for Hopf bifurcation curve on
R − γ plan. In other words, the system (1.5) has Hopf bifurcation for ϑ = ϑH = 0 for the
vegetation homogeneous steady state E+. Now it remains to show the existence of a strictly
positive wave number denoted by ϑT such that the system undergoes Turing bifurcation at
different bifurcation parameters than the rainfall rate. In fact, we will choose the diffusion
rate of the water biomass γ as a bifurcation parameter. Also, we consider the R − γ plan.
Solving Dϑ = 0 in γ we get:

γT (ϑ) =
δ(1 + τ)

(
n2+ − 1

1+τ

)
+ ((1 + τ)n2+ + 1)ϑ2

ϑ2
(−(1 + τn2+)ϑ2 + δ + n2+(β − δτ)

) , (3.10)

where n+ restricted at RH,0 which means that

n+|R=RH,0
:= 1

2δ(1 + τ)

(
RH,0 +

√
R2
H,0 − 4(1 + τ)δ2

)
,

and ϑ ∈ {1, 2, ..., ϑ∗} where

ϑ∗ :=
[√

δ + n2+(β − δτ)

1 + τn2+

]

and β > βmin := max

{
0,

δ(1−τn2+)

n2+

}
. Setting the positive real x where 1 � x � ϑ∗. The

differentiation of the functional γT (x) with respect to x is given as

γ ′
T (x) =

(1 + (1 + τ)n2+)x2 + 2δ((1 + τ)n2+ − 1)x − δ((1+τ)n2+−1)(δ+n2+(β−δτ))

1+τn2+

x2

(
−(1 + τn2+)x + δ+n2+(β−δτ)

1+τn2+

)2 .

In fact, the sign of γ ′(x) is given as follows

γ ′
T (x) =

{
> 0 for x > x∗,
< 0 for x < x∗,

where

x∗ = 1

1 + (1 + τ)n2+

{
δ((1 + τ)n2+ − 1) +

√
δ((1 + τ)n2+ − 1)n2+

1 + τn2+
(2δ + 1 + (1 + τ)n2+)

}
.

This result means that the functional γ reaches its maximum either at 1 or ϑ∗2
which allows

us to set the following integer:

ϑT =
{

1 if γT (1) > γT (ϑ∗2
),

ϑ∗ if γT (1) < γT (ϑ∗2
).
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We proved that there exists a positive intersection point between the Hopf bifurcation curve
defined by R = R0,H in R − γ plan (curve LH in Fig. 4) and the Turing bifurcation curve
defined by γ = γT (ϑ2) (LT in in Fig. 4). Then we have

d�λ(R)

dR

∣∣∣∣
R=RH,0

= n+,H (2 − δ + (1 + τ)(1 + δ)n2+,H )

2δ(1 + τ)

⎛
⎝1 + 2RH,0

2
√(

RH,0
)2 + 4δ2(1 + τ)

⎞
⎠ > 0.

where n+,H = RH,0+
√
R2
H,0−4δ2(τ+1)

2δ(1+τ)
, and also we have

d�λ(R)

dR

∣∣∣∣
LT

= 2n+
(1 + τn+)2Tϑ

[
ϑ2(−1 + γ (β + τ − δτ)) + δ(1 + 2τ)

] dn+
dR

∣∣∣∣
LT

�= 0.

The obtained results are summarized in the following theorem:

Theorem 3.3 Assume that R > Rmin an δ > 1 then we have:
The Hopf bifurcation curve LH (corresponding the wavenumber 0) intersects the Turing

bifurcation curve LT and a codimension-2 Turing–Hopf bifurcation occurs at the intersect
point (R0,H , γT (ϑT )), where

γT (ϑT ) =
δ(1 + τ)

(
n2+ − 1

1+τ

)
+ ((1 + τ)n2+ + 1)ϑ2

T

ϑ2
T

(−(1 + τn2+)ϑ2
T + δ + n2+(β − δτ)

) ,

and

ϑT =
{

1 if γT (1) > γT (ϑ∗2
),

ϑ∗ if γT (1) < γT (ϑ∗2
).

and

R > RH,0+ := δ(1 + τ)

√
δ − 1

1 + τ + δτ

Further, for (R, γ ) = (R0,H , γT (ϑT )) the characteristic equation �0 has a pair of purely
imaginary roots ±iωc and �ϑT has a simple zero root, and for (3.4), there are no other roots
with zero real part.

3.2 Nonlinear analysis: The spatiotemporal patterns generated by the presence of
Turing-Hopf bifurcation

In this subsection, we will derive the amplitude equations restricted at the Turing-Hopf bifur-
cation point with the help of the weakly nonlinear analysis. The main interest in considering
it is to analyze the complex dynamics next to the Turing-Hopf bifurcation. In fact, the Turing
mode T (ϑT , 0) where ϑT is the wavenumber will interact with the Hopf bifurcation mode
(homogeneous) denoted by H(0, ωH ) where ωH is the frequency. The solution of the system
(1.5) can be expressed in the following manner:

U = εU (1) + ε2U (2) + ε3U (3) + · · · , (3.11)

where

U (1) = �ν[Aν exp(iϑ j .x) +B exp(iωH t)] + c.c.,
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where c.c. stands for the conjugate term. By letting κ = υ2t be the slow time and expands
w and n. The bifurcation parameters are R and γ , then

(
w
n

) = ε
(
w1
n1

)+ ε2
(
w2
n2

)+ ε3
(
w3
n3

)+ · · ·
R = RH,0 + R(2)υ2.

γ = γ ∗
T + γ (2)υ2.

(3.12)

Suppose that the amplitude � j and the Hopf mode � are lingeringly changing variable, this
means:

d� j
dt = ε2 d� j

dκ
+ O(ε2),

d�
dt = ε2 d�

dκ
+ O(ε2).

Using (3.12) into the system (3.3), and gathering the first and the second the third power of
ε, the sequence of equations can be expressed in the following manner

O(ε) : Mϑ

(
w1
n1

) = 0,

O(ε2) : Mϑ

(
w2
n2

) = −( f (1)
1

f (1)
2

)

O(ε3) : Mϑ

(
w3
n3

) = ∂
∂κ

(
w1
n1

)− M
(
w1
n1

)− ( f (2)
1

f (2)
2

)
,

where the linear system (3.3) can be expressed as follows

Ut = [
Mϑ + υ2M

]
U,

M =
(

α
(2)
11 + γ (2)� α

(2)
12 − γ (2)β�

α
(2)
21 α

(2)
22

)

Mϑ =
(

αT H
11 − γ T Hϑ2 αT H

12 + γ T Hβϑ2

αT H
21 αT H

22 − ϑ2

)

( f (1)
1

f (1)
2

) = (α1w
2+α2wn+α3n2

β1w2+β2wn+β3n2

)
,
( f (2)

1

f (2)
2

) = (2α1w1w2+α2(w1n2+w2n1)+2α3n1n2+α4w
3
1

2β1w1w2+β2(w1n2+w2n1)+2β3n1n2+β4w
3
1

)
,

and αT H
i j = αi j

∣∣
R=R0,H ,γ ∗

T
i, j = 1, 2 and γ T H = γ ∗

T . Note that

Mϑ∗q = 0, M0q = iωH p,

which takes us to deduce that

q =
(
q1

q2

)
=
(αT H

12 +βϑ2

ϑ2−αT H
11

1

)
, p =

(
p1

p2

)
=
( αT H

12 +βϑ2

iωH−αT H
11

1

)
.

Now we set

(
w1

n1

)
=

3∑
j=1

(
X j

X̃ j

)
expiϑ j x +

(
�1

�2

)
expiωH t +c.c., (3.13)

where |ϑ j |2 = ϑT , j = 1, 2, 3, This means that
(
X j

X̃ j

)
= q� j ,

(
�1

�2

)
= p�.
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Based on the above results, we suppose that the type of solutions U (2) can be expressed in
the following manner

(
w2

n2

)
=
(
W0

N0

)
+

m∑
j=1

[(
Wj

N j

)
expiϑ j .x +

(
Wj j

N j j

)
expi2ϑ j .x

]

+
(
WH

NH

)
expi2ωH .t +

∑
n �= j>0

(
Wnj

Nnj

)
expi(ϑn−ϑ j ).x +

(
WTH

NT H

)
+ c.c.

(3.14)

By injecting the Eq. (3.14) into O(ε2) we get

(αT H
11 + γ�)w2 + (αT H

12 − β�)n2 = −(α1w
2
1 + α2w1n1 + α3n2

3),

αT H
21 w2 + (αT H

22 + �)n2 = −(β1w
2
1 + β2w1n1 + β3n2

1).

Then we can put

W0 = WT
0 + WH

0 , WT
0 = �1T NT

0 , NT
0 = �2T |Pj |2, WH

0 = �1H N H
0 ,

NH
0 = �2H |�|2, Wj = q1N j , W12 = �5N12,

N j j = �4P2
j , N12 = �6P1P2, WH = �7NH , NH = �8�

2,

WTH = �9NT H , NT H = �10Pj�, Wj j = �3N j j ,

such that

�1T = βT αT H
12 αT αT H

22
αT αT H

21 −βT αT H
11

,

�1H = βHαT H
12 αHαT H

22
αHαT H

21 −βHαT H
11

, �2T = −αT
αT H

11 �1T +αT H
12

,

�2H = −αH
αT H

11 �1H+αT H
12

, �3 = α2T
(
αT H

22 −4ϑ2
)−β2T αT H

12 +βγ T Hϑ2

β2T
(
αT H

11 −4γ T Hϑ2
)−α2T αT H

21
,

�4 = − −α2T
(αT H

11 −4ϑ2)�3+αT H
12 +βγ T Hϑ2 ,

�5 = α3T
(
αT H

22 −3ϑ2
)−β3T αT H

12 +βγ T Hϑ2

β3T
(
αT H

11 −3γ T Hϑ2
)−α3T αT H

21
,

�6 = − −α3T
(αT H

11 −3ϑ2)�5+αT H
12 +βγ T Hϑ2 ,

�7 = β4HαT H
12 α4HαT H

22
α4HαT H

21 −β4HαT H
11

,

�8 = −α4H
αT H

11 �1H+αT H
12

, �9 = α5T
(
αT H

22 −ϑ2)−β5T αT H
12 +βγ T Hϑ2

β5T
(
αT H

11 −γ T Hϑ2
)−α5T αT H

21
,

�10 = − −α5T
(αT H

11 −4ϑ2)�9+αT H
12 +βγ T Hϑ2 ,

αT = 2α1|q1|2 + α2(q1q2 + q2q1) + 2α3|q2|2, βT = 2β1|q1|2 + β2(q1q2 + q2q1) + 2β3|q2|2,
αH = 2α1|p1|2 + α2(p1 p2 + p2 p1) + 2α3|p2|2, βH = 2β1|p1|2 + β2(p1 p2 p2 p1) + 2β3|p2|2,
α2T = α1q2

1 + α2q1q2 + β3q2
2 ,

β2T = β1q2
1 + β2q1q2 + β3q2

2 , α3T = αT , β3T = βT , α4H = α2T , β4H = β2T ,

α5T = 2α1q1 p1 + α2(q1 p2 + q2 p1) + 2α3q2 p2,

β5T = 2β1q1 p1 + β2(q1 p2 + q2 p1) + 2β3q2 p2.

Now, we solve the system of O(ε3) term. Based on the condition of Fredholm Solubility
[16]. The right-hand side of the mentioned equation has to be perpendicular to the zero
eigenvectors of the adjoint operator M+

ϑ . At first, the zero eigenvectors of M+
ϑ to the Turing

bifurcation is q∗ exp−ϑ j .x where q∗ = (
q∗

1 , q∗
2

) =
(

1,
αT H

11 −γϑ2

αT H
21

)T

. Note that M+
ϑ is the

conjugate of Mϑ . Thus, the zero eigenvector of the operator M+
ϑ to the Hopf bifurcation is
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p∗ exp−ωH .t where p∗ = (
p∗

1, p∗
2

)T =
(

1,
αT H

11
αT H

21

)T

. The orthogonality condition offered by

M+
ϑ with the third order term can e expressed as

(q∗
1 , q∗

2 ) exp−ϑ j r Mϑ

(
w3
n3

) = 0, (p∗
1, p∗

2) exp−iωH t Mϑ

(
w3
n3

) = 0.

Then we get (by using the Fredholm solubility condition)

τ0
∂P1

∂κ
= μP1 + C(n2P3 + n3P2) + (

g′
1|P1|2 + g′

2(|P2|2 + |P3|2)
)
P1 + g′

3|�|2P1,

such that τ0, μ,C, g′
1, g

′
2, g

′
3 are defined in “Appendix” section.

The equations of P2 and P3 could be obtained using the subscript change of P . Using the
above expressions and

A j = (Aw
j

An
j

) = (q1
q2

) (
εPj + ε2Pj + O(ε3)

)
,

Bj = (Bw
j

Bn
j

) = (p1
p2

)
εB,

∂Aw
j

∂t = ε3q1
∂Pj
∂κ

+ O(ε4), j = 1, 2, 3,

∂Bw
j

∂t = ε3 p1
∂B
∂κ

+ O(ε4),

then the amplitude equations at Turing mode (three equations) and Hopf bifurcation modes
(one equation) with the orthogonal wave vector are expressed as follows (see also [15]):

∂Aw
1

∂t = μAw
1 + hAw

2 Aw
3 + (

g1|Aw
1 |2 + g2

(|Aw
2 |2 + |Aw

3 |2)) Aw
1 + g3|Bw|2Aw

1 ,

∂Aw
2

∂t = μAw
2 + hAw

3 Aw
1 + (

g1|Aw
2 |2 + g2

(|Aw
1 |2 + |Aw

3 |2)) Aw
2 + g3|Bw|2Aw

2 ,

∂Aw
3

∂t = μAw
3 + hAw

1 Aw
2 + (

g1|Aw
3 |2 + g2

(|Aw
1 |2 + |Aw

2 |2)) Aw
3 + g3|Bw|2Aw

3 ,

∂Bw
1

∂t = ξ Bw + g01|Bw|2Hw + g02(|Aw
1 |2 + |Aw

2 |2 + |Aw
3 |2)Bw,

(3.15)

where h, μ, ξ, g01, g02, g1, g2, g3 are defined at the “Appendix” section. For the subject of
determining the patterns selections, we need to analyze the existence and the stability of
equilibrium points to the amplitude Eq. (3.15). In fact, each amplitude could be decomposed
into its module as ψ j = |Aw

j |, � = |B|. By a straightforward calculation, we get

∂ψ1
∂t = μψ1 + hψ2ψ3 cos ν + (

g1|ψ2
1 | + g2|ψ2

2 | + g3|ψ2
3 |)ψ1 + g3|B|2ψ1,

∂ψ2
∂t = μψ2 + hψ1ψ3 cos ν + (

g1|ψ2
2 | + g2|ψ2

1 | + g3|ψ2
3 |)ψ2 + g3|B|2ψ2,

∂ψ3
∂t = μψ1 + hψ1ψ2 cos ν + (

g1|ψ2
3 | + g2|ψ2

2 | + g3|ψ2
1 |)ψ3 + g3|B|2ψ3,

∂�
∂t = −h

ψ2
1 ψ2

2 +ψ2
1 ψ2

3 +ψ2
2 ψ2

3
ψ1ψ2ψ3

sin ν,
∂B
∂t = ξ B + �(g01)|B|2B + �(g02)(|ψ1|2 + |ψ2|2 + |ψ3|2)B,

�ω = (g01)|B|2 + (g02)(|ψ1|2 + |ψ2|2 + |ψ3|2),
(3.16)

where ν = ∑3
j=1 arg(Aw

j ) and Hw = B expi�ωt . For h > 0 the solution � = 0 of the fourth
equation of (3.16) is stable, and the solution � = π is stable under the condition h < 0.
The patterns exist only when the solution of the fourth equation of (3.16) is stable. Thus, the
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mode equations have the following structure:

∂ψ1
∂t = μψ1 + |h|ψ2ψ3 + (

g1|ψ2
1 | + g2|ψ2

2 | + g3|ψ2
3 |)ψ1 + g3|B|2ψ1,

∂ψ2
∂t = μψ2 + |h|ψ1ψ3 + (

g1|ψ2
2 | + g2|ψ2

1 | + g3|ψ2
3 |)ψ2 + g3|B|2ψ2,

∂ψ3
∂t = μψ1 + |h|ψ1ψ2 + (

g1|ψ2
3 | + g2|ψ2

2 | + g3|ψ2
1 |)ψ3 + g3|B|2ψ3,

∂B
∂t = ξ B + �(g01)|B|2B + �(g02)(|ψ1|2 + |ψ2|2 + |ψ3|2)B,

(3.17)

Case 1. The solution of spatiotemporal periodic patterns is investigated, this means that

ψ1 =
√

ξg3 − μ�(g01)

g1�(g01) − g3�(g02)
, ψ2 = ψ3 = 0, B =

√
−ξg1 + μ�(g02)

g1�(g01) − g3�(g02)
.

For having the stability with respect to the mode ψ1 and B the condition
g1�(g01) > g3�(g02) is required. The condition at which the solution exists
reduces to μ�(g02) ≥ ξg1, ξg3 ≥ μ�(g01).

Case 2. Considers ψ1 = ψ2 = ψ3 = ψ, and

ψ =
|h| +

√
|h|2 − 4

(
g1 + 2g2 − 3 g3�(g02)

�(g01)

) (
μ − ξg3

�(g01)

)

2
(
g1 + 2g2 − 3 g3�(g02)

�(g01)

) , |B|2 = ξ + 3�(g02)|ψ |2
�(g01)

.

In this case the hexagonal patterns arise. For ensuring there existence and stability,
the following conditions must be hold

|h|2 − 4

(
g1 + 2g2 − 3

g3�(g02)

�(g01)

)(
μ − ξg3

�(g01)

)
> 0, g1 + 2g2 > 3

g3�(g02)

�(g01)
,

ξ + 3�(g02)|ψ |2
�(g01)

> 0, 2�(g01)|B|2 + 3|h|ψ + 6(g1 + 2g2)ψ
2 < 0.

For returning back to the Turing bifurcation only it is sufficient to consider B = 0 where
this case is investigated in many papers as it has been highlighted in the introduction sec-
tion. For the Turing-Hopf bifurcation, the cases 1 and 2 show this spatiotemporal behavior
(nonhomogeneous) generated by the presence of this type of co-dimensional bifurcation.

4 Numerical simulations

In this section, we will investigate the complex dynamics introduced by varying the rainfall
and internal competition and the diffusion coefficient. Firstly, we discuss the method for
choosing parameters based on real-world remarks. For the vegetation model (1.5), there
exists a considerable interval of selecting the value of the model parameters. For instance,
in the case of the rainfall constant, in our planet, there is a vast diversity in the quantity of
the rainfall, which depends on the studied region, where the most significant value will be
obtained in the tropic regions. In these areas, the quantity of the rainfall is very high, contrary
to the desert regions, where the rain is very scarce, this gives us a very open choice of the
rainfall rate for satisfying our theoretical applications. There is a quiet type of plants that can
survive in a certain type of conditions of the scarcity of rain, we mention as example Opuntia
ficus-indica, zebra cactus plant, golden barrel plant, and others. Besides, for the choice of the
rate δ which represents the death rate of the plant which is affected by the type of plant, as
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Fig. 2 The influence of the internal competition between plants τ on some critical parameters of the system
(1.5)

for example, the death rate for a plant is very small for the trees, and some desert plants are
very small compared to the grass (see [13]). For the plant’s internal competition rate, there is
also a wide interval that we can choose our parameters. In fact, this rate depends on the type
of plants that can live in such as environment (where the type of environment is controlled
by the rainfall constant) the reason for considering the kind of plant is due to the average of
the consumed water by a plant, the length of the roots, the quantity of the consumed water
by a plant (a type of the plant) and other factors which affect on determining the value of the
internal competition rate. To mention that this last new parameter has been estimated in the
numerical simulation. Also, the influence of this rate on the spatiotemporal dynamics is also
established where it will be discussed later. In [13] it has been considered some value on the
model (1.1) parameters that can be used here.

Fig. 1: Shows the impact of the rainfall rate on the positive homogenous steady state for
the vegetation biomass n+ and on the critical value of the Turing-Hopf bifurcation defined
in (3.10). The following values are considered β = 0.7; δ = 1.2; τ = 0.1; Rmin =
2.5171; R0,H = 3.5272.

Fig. 2: Indicates the effect of the variable τ on positive homogenous steady state for the
vegetation biomass n+ and the impact on the critical value of the Turing-Hopf bifurcation
defined in (3.10). The following values are taken: β = 0.7; δ = 2.2; R = 0.1.
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Fig. 3: These figure shows that Dϑ can be affected by the rainfall and the internal com-
petition between plants, which means that it can affect the existence of Turing instability.
The following values are chosen: γ = 0.1; β = 0.7; δ = 1.2. In fact, for the left hand
multi figure values of the rainfall next to τ = 0.15 are considered, and the opposite is
used for the right hand figure where the rainfall rate is fixed to the value R = 3, and
multi values of the internal competition rate are used.
Fig. 4: This figure represents the existence of Turing-Hopf bifurcation point which is the
intersection point between the Hopf bifurcation curve defined by R = R0,H (the figure
in red) and Turing bifurcation curve γ = γT (1) defined in (3.10). The following values
are chosen: γ = 0.1; β = 0.7; δ = 1.2; τ = 0.15.

Fig. 5, 6: These figures show the influence of γ on the spatiotemporal behavior of the
solution of the vegetation model (1.5) where β = 0.7; δ = 1.2; τ = 0.6; R = 4.8 >

R0,H .

Fig. 7, 8: These figures show the influence of γ on the spatiotemporal behavior of the
solution of the vegetation model (1.5) where β = 0.7; δ = 1.2; τ = 0.6; R = 4.7 <

R0,H .
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Fig. 5 the effect of γ on the spatiotemporal behavior under the initial conditions (w0(x, y), n0(x, y)) =
(0.1 + 0.01(cos x + cos y), 0.15 + 0.017(cos x + cos y))
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Fig. 6 The projection of the surfaces obtained in Fig. 5 on x − y plan

Fig. 7 the effect of γ on the spatiotemporal behavior under the initial conditions (w0(x, y), n0(x, y)) =
(0.1 + 0.01(cos x + cos y), 0.15 + 0.017(cos x + cos y))
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Fig. 8 The projection of the surfaces obtained in Fig. 7 on x − y plan

5 Discussion and remarks

In this paper, we considered a predicting vegetation model by taking into account the water
restriction by the plant’s roots and the inner rivalry between the plants. Before we begin with
our analysis, we recall that the inner competition between plants is just recently considered
due to the paper [37], where it has been noticed that the model (1.3) cannot undergo Turing
instability. Further, the main interest in the mentioned paper is to determine the patterns
generated by the presence of the slope of the terrain next to the influence of internal rivalry
between plants. Furthermore, there is no discussion on the types of bifurcation that the
model can undergo. Based on existing works in the literature (vegetation patterns) such as
the works [11,36] we can highlight that the patterns generated by the presence of Turing
bifurcation is the most common for many papers. In this context, we achieved some new
results for the vegetation results for determining vegetation patterns which are elaborated
by the presence of Hopf bifurcation for the non-spatial model (Theorem 3.1) wherein the
paper [37] the local stability is discussed only. Further, the spatial Hopf bifurcation has
never been studied for the vegetation model wherein Theorem 3.2 discuses this result in
detail. To highlight that proving the existence of Hopf bifurcation for a spatial model is very
important for predicting the seasonality effect on vegetation growth. Turing bifurcation is
recently investigated due to the paper [11] where it has been proved that the system (1.2)
(in the absence of slop of terrain) undergoes Turing bifurcation and did an excellent job in
discussing the patterns in the neighborhood of the Turing bifurcation point. The presence
of this result means in the actual world the possibility of existence of the vegetation cover
with non equal distribution in the space,and this result is the most common in the real-
world. To mention that the model studied by [11] is a particular case of our system (1.5).
Turing bifurcation it self generates an important and complex patterns, which highlight the
non homogeneous distribution of species, where it is applied in different disciplines, where
for more information we refer to the readers to check the papers [47–49] The study is not
confined to prove the existence of these two types of bifurcations (Hopf bifurcation and
Turing bifurcation), but it is expanded to show the possibility of the intermingling of both
Turing and Hopf bifurcations for different wavenumbers (0 and ϑT ). It is proved that Turing-
Hopf bifurcation generates very complex dynamics in the case of predator-prey models
[4,9,14,29], mussel-algae model [30], but has never been applied to vegetation model, and
no one can deny its importance. Further, the existence of Turing-Hopf bifurcation in the case
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of two-dimensional space is a very new step where some new arguments are provided for
determining this kind of bifurcation.

Indeed, we investigated the influence of the type of climate measured by the rainfall
constant R on the spatial patterns wherein Fig. 1 shows this result. More precisely, for the
left-hand figure, it shows that γT defined in (3.10) is decreasing in R for different values
of the wavenumber ϑ �= 1, 0 and increasing for ϑ = 1 (the figure in the middle) which
shows the significant influence of these rates on the critical value of the Turing-Hopf bifur-
cation. Further, it has been noticed that the rainfall has a positive impact on the vegetation
equilibrium state n+ as it has been shown in the left-hand of Fig. 1 which agrees with the
real-life situations. In Fig. 2, the influence of the internal competition between plants on the
critical values that we obtained in our analysis, as γT for different wave numbers ϑ �= 0
in the left-hand figure where a varying impact has been remarked on the critical value of
Turing instability γT and positive impact on Hopf bifurcation (the figure in the middle), and
negative impact on the vegetation equilibrium state n+ which agrees with the real-world sit-
uation (by increasing the competition between the plants the vegetation density decreases).
Furthermore, this influence (R and τ ) has been expanded to Turing instability in Fig. 3,
which allow us to claim that these two parameters influenced Turing patterns, and this shows
the importance of considering the internal competition between plants on the vegetation
model. Based on the obtained figures in Figs. 5, 6, 7, and 8, we can claim the complex
dynamics generated by the presence of the water redistribution by the plant’s roots next to
the internal competition between plants, which is very important in predicting vegetation
patterns.

As one of the results obtained in this study, we can mention that the spatial Hopf bifur-
cation achieved in the Theorem 3.2 is very essential for portending the vegetation patterns
which can explain the seasonality of the vegetation in the case of the stable periodic solu-
tions generated by the presence of Hopf bifurcation. The Turing bifurcation is also inves-
tigated where the influence of the water distribution in the soil by the roots next to the
internal competition between plants is investigated in detail which is the main objective
of our study. The presence of Hopf bifurcation can represent the impact of seasonality of
the vegetation growth, wherein the actual world, we can remark that there are some sea-
sons with a low density of the vegetation cover (for instance summer season), where the
water is scarce, and there are other seasons with a high density of vegetation (for instance
example the spring) where we can get a high density of vegetation cover. Furthermore,
The intermingling between the Hopf and Turing bifurcation is also established for different
wave numbers which are known by Turing-Hopf bifurcation, where an important agree-
ment between the mathematical and the observation is noticed. In the actual world, it can
present the possibility of having the seasonality effect generated by the presence of Hopf
bifurcation and the nonhomogeneous distribution generated by the presence of Turing bifur-
cation. These results show the agreement between the mathematical findings and ecological
observations.
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