
Eur. Phys. J. Plus         (2021) 136:277 
https://doi.org/10.1140/epjp/s13360-021-01240-2

Regular Art icle

The oscillating periodic solutions of a classical pendulum
system with smooth and discontinuous dynamics

Ning Han1,a , Zhixin Li2

1 Present address: Key Laboratory of Machine Learning and Computational Intelligence, College of
Mathematics and Information Science, Hebei University, Baoding 071002, China

2 College of Mathematical Science and Engineering, Hebei University of Engineering, Handan 056038, China

Received: 27 September 2020 / Accepted: 16 February 2021
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany,
part of Springer Nature 2021

Abstract The oscillating periodic solutions of a classical pendulum system with an irrational
and fractional nonlinear restoring force are studied both theoretically and numerically under
sufficiently small perturbations of a viscous damping and a harmonic excitation. The most
salient feature of this pendulum system is to exhibit both smooth and discontinuous dynamics
depending on the value of a geometrical parameter. In order to precisely describe the local
dynamics of small-angle oscillations, we introduce a simplified approximate system which
not only successfully retains the non-smooth characteristics but also completely reflects the
local feature of the complex restoring force, especially the equilibrium bifurcation. Compared
with the cubic and quintic polynomial systems derived by Taylor expansion, the application
range of the simplified approximate system is enlarged within same margin of absolute error.
With the help of the simplified approximate system, the periodic oscillatory solution around
a stable equilibrium is examined analytically by using the averaging method in both smooth
and discontinuous cases. Numerical simulations are carried out to verify the theoretical
analysis and demonstrate the predicted periodic motions. The contribution of this study is
to present an effective approximation to precisely describe the local dynamics of a classical
pendulum system with smooth and discontinuous dynamics in terms of the qualitative analysis
and quantitative calculation, which is also helpful for exploring the local dynamics of the
nonlinear dynamical system containing a coupling of the irrational term and trigonometric
function.

1 Introduction

With the development of numerical analysis technique [1–5] and the gradual maturation of
nonlinear dynamics theory [6–9], scientists have undeniably opened a new chapter in the
pendulum studies; especially, an explosion of pendulum studies has produced a flood of
information on nonlinear phenomenon in terms of the oscillations [10], rotations [11–13],
bifurcations [14–16], chaos [17–19], synchronization [20,21], experiment [22–24], energy
absorption [25], vibration reduction [26], etc. However, many scholars are regularly faced
with a big challenge which is how to precisely deal with the practical engineering systems
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with trigonometric, fractional, irrational and non-smooth terms by means of an approximately
analytic method instead of a truncated Taylor series. In particular, a class of geometrical non-
linear systems of which the nonlinear term must be considered in the analysis of dynamic
mechanism is mainly characterized by multiple coupling and strong nonlinearity. The emer-
gence of such systems with trigonometric, fractional and irrational terms brings a great impact
toward the traditional approximate method, especially the polynomial approximation.

Traditionally, large numbers of researchers often use the polynomial system derived by
Taylor expansion to describe the local dynamic characteristics of the complex nonlinear
system; especially, an approximate approach allows reducing the problem to the Duffing
equation [27–30] with adequate initial conditions. For example, Tian et al. investigated the
codimension-two bifurcation of a smooth and discontinuous oscillator with irrational nonlin-
earity which can be simplified as the Duffing equation [31] with Vander Pol damping; Zhang
et al. studied the chaotic behaviors of a nanoplate postulating nonlinear Winkler foundation
based upon the Duffing equation with a pair of heteroclinic orbits [32]; Hou et al. reported
the mechanism of a complex bifurcation behavior caused by flight maneuvers in an aircraft
rub-impact rotor system with Duffing-type nonlinearity by means of the harmonic balance
method combined with an alternating frequency/time domain procedure (HB-AFT method
[33]; Han et al. demonstrated the chaotic thresholds [34] and codimension-three bifurcation
[35] of a coupled smooth and discontinuous oscillator which can be described by the quintic
polynomial system. Based upon the quartic and quintic polynomial systems [36], Lai et al.
investigated analytically the nonlinear free and forced vibration responses of a nonlinear
micro-electro-mechanical system by using the Newton harmonic balance (NHB) method.
Tang et al. studied the nonlinear free vibration of a dielectric elastomer balloon subjected to
both pressure and voltage qualitatively and quantitatively, and the deformation of the spherical
balloon is modeled as a general non-odd nonlinear differential system containing a polyno-
mial term [37]. Many quasi-zero stiffness (QZS) isolators are simplified into the polynomial
system to study their transmission performance analytically. Zhou et al. presented a torsion
QZS vibration isolator [38] whose the approximate torque–torsion angle relationship can be
written as seventh-degree polynomial system and then the transmission of torsional vibration
can be derived by using the harmonic balance method. Yan et al. designed a large stroke QZS
vibration isolator [39] using three-link mechanisms whose the dimensionless expression of
the dynamic equation can be written as a fourth-degree polynomial system. Unlike the above
studies, we introduce a simplified approximate system rather than the Duffing equation to
study the local accurate dynamics of a pendulum system with an irrational and fractional
nonlinear restoring force.

It is well known that the small oscillation of the simple pendulum is best modeled using the
small-angle approximation. As a basic example [40], the small oscillation of the simple pen-
dulum features prominently in mechanics where the small-angle approximation is absolutely
essential to making any useful analytic progress. Obviously, the small-angle approximation
is a useful simplification of the basic trigonometric functions which is approximately true in
the limit where the angle approaches zero [41]. Due to the limitation of non-smooth feature,
the traditional approximation is invalid to describe the local dynamics of the non-smooth
dynamical system in the qualitative and quantitative analysis. This study focuses on the
oscillatory motions of a classical pendulum system [42,43] subjected to the viscous damping
and periodic excitation and provides an effective approximation to analytically study the
oscillating periodic solution around the stable equilibrium x = 0 in the complex pendulum
system with the irrational and fractional nonlinear restoring force.

In fact, the headline finding of this study is to introduce an effectively simplified approxi-
mate system rather than the traditionally polynomial approximation to investigate the oscillat-

123



Eur. Phys. J. Plus         (2021) 136:277 Page 3 of 23   277 

ing periodic solutions of a typical pendulum system with smooth and discontinuous dynam-
ics. To this end, this paper is organized as follows. In Sect. 2, the equation of motion for
the pendulum system subjected to both the viscous damping and external harmonic forcing
is derived. It is found that this pendulum system exhibits both smooth and discontinuous
dynamics depending on a geometrical parameter λ. In Sect. 3, the unperturbed dynamics of
this pendulum system with an irrational and fractional nonlinear restoring force is directly
analyzed without using Taylor expansion. Compared with the Duffing system derived by
Taylor unfolds at x = 0, a simplified approximate system not only successfully retains
the non-smooth characteristics but also completely reflects the local feature of the complex
restoring force. In Sect. 4, the averaging method is carried out to derive the response curve
of the simplified approximate system with small oscillations within the margin of error. Fur-
thermore, the corresponding oscillating periodic solutions around the position x = 0 for this
pendulum system and the simplified approximate system can be investigated by means of
the response curve. Then, the numerical simulations are carried out to verify the efficiency
of the theoretical analysis. Finally, we summarize the conclusions and provide the further
challenges in Sect. 5.

2 Equation of motion

Figure 1a shows a classical mechanical model which is composed of a simple pendulum, a
linear spring, an electrifying circuit that generates an electric current I and a magnetic field
that provides the periodic magnetic intensity B cos �t . More specifically, a simple pendulum
(with the mass m and the rod length L) linked by an oblique spring with a fixed end (with the
free length l and the stiffness k) moves in a vertical plane and cuts vertically the horizontal
magnetic field line. In other words, we also consider this mechanical model subjected a
viscous damping (with coefficient C) and an external harmonic excitation (with amplitude
F0 and frequency �) in the direction of motion; the details can be seen in Fig. 1b. With the
help of Lagrange equation, the differential equation can be derived as

mLx ′′ + CLx ′ + mg sin x + kh sin x
(

1 − l√
L2+h2−2hL cos x

)
= F0 cos �t, (1)

where the prime denotes derivative with respect to t , x represents the angular displacement and
the variable parameter h is the distance between the point A and point B, always assumed
h ≥ L , respectively. Assuming L = l, this pendulum system (1) can be rewritten in the
following form

ẍ + ξ ẋ + sin x + qλ sin x
(

1 − 1√
1+λ2−2λ cos x

)
= f0 cos ωt, (2)

where

t =
√

g

L
t, ξ = C

m

√
L

g
, ω =

√
L

g
�,ωp =

√
g

L
, ωs =

√
k

m
, q = ω2

s

ω2
p
, λ = h

L
, f0 = F0

mg
.

Note that one dimensionless parameter q in system (2) mainly reflects the natural frequency
ratio of the spring–mass system ωs and simple pendulum ωp , the other dimensionless param-
eter λ represents the geometric structure of the pendulum model.
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(a) (b)

Fig. 1 (a) The mechanical model: a pendulum which is tied a live wire moves in a periodic magnetic field,
(b) the corresponding simplified plane model with F0 = BI L/2

3 A simplified approximate system

Due to the discontinuous feature of this pendulum system, it is found that the traditional
approximate method cannot completely and accurately describe the local dynamics in the
qualitative and quantitative analysis. A simplified approximate system with an irrational and
fractional nonlinear restoring force is introduced by means of the unperturbed dynamics of
the original system (2), which bears significant similarities to an archetypal oscillator with
smooth and discontinuous dynamics [44] rather than the softening Duffing oscillator.

3.1 Unperturbed dynamics of this pendulum system

When f0 = 0 and ξ = 0, the corresponding unperturbed dynamical system of the pendulum
(2) is described by

ẍ + sin x + qλ sin x
(

1 − 1√
1+λ2−2λ cos x

)
= 0. (3)

It is worth reiterating here that the discontinuous dynamics is obtained by changing the
parameter λ to 1 smoothly, which is the limit case from the mathematical point of view.
Thus, the unperturbed discontinuous system can be written as

ẍ + (1 + q) sin x − q cos x
2 sgn

(
sin x

2

) = 0, (4)

where the piecewise defined function is

sgn
(

sin
x

2

)
=
⎧⎨
⎩

1, x ∈ (0, π] ,

0, x = 0,

−1, x ∈ [−π, 0) .

(5)

Due to its periodicity, we will consider dynamical behaviors of the pendulum system over
a period x ∈ [−π, π] in the following analysis. Letting ẍ = F(x), the restoring forces for
smooth and discontinuous cases can be easily obtained as
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F(x) =
{

− sin x − qλ sin x
(

1 − 1√
1+λ2−2λ cos x

)
, λ > 1,

− (1 + q) sin x + q cos x
2 sgn

(
sin x

2

)
, λ = 1.

(6)

Even the stiffness of the spring is linear and the resistance force supplied to the pendulum
system is strongly irrational nonlinearity due to geometry configuration. Furthermore, a
pitchfork bifurcation set B can be computed through F ′(0) = 0 where the prime denotes
derivative of restoring force F(x) with respect to x. Thus, the corresponding expression of
the pitchfork bifurcation set is

B =
{
(λ, q)

∣∣∣∣ q = λ−1
λ(2−λ)

, λ ∈ (1, 2), q ∈ (0,+∞)

}
. (7)

3.2 A simplified approximate system with smooth and discontinuous dynamics

It is well known that the small-angle approximation is considered to be a useful simplification
of the basic trigonometric functions in simple pendulum. The small-angle approximation is
approximately true in the limit where the angle approaches zero. In the following analysis,
we assume that the pendulum system vibrates in the neighborhood of the static equilibrium
position x = 0.

In order to detect the small-angle oscillations around a stable equilibrium x = 0, we
introduce an approximation sin x ≈ x and cos x ≈ 1 − x2/2 into the proposed pendulum
system (3), for which the oscillatory approximation of this pendulum system (3) can be
written as

ẍ + x + qλx

(
1 − 1√

(λ−1)2+λx2

)
= 0. (8)

Letting ẍ = FA(x), the nonlinear restoring forces of the simplified approximate system (8)
can be written as

FA(x) =
⎧⎨
⎩

−x − qλx

(
1 − 1√

(λ−1)2+λx2

)
, λ > 1,

−(1 + q)x + q sgnx, λ = 1.

(9)

Traditionally, this pendulum system (3) can be simplified as a polynomial system (Duffing
system) with the help of a Taylor expansion for the nonlinear restoring force F(x) centered
at x = 0, and can be expressed as

ẍ + a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + o[x6] = 0, λ > 1, (10)

of which the nonlinear restoring force F3(x) and F5(x) can be expressed as

F3(x) = a0 + a1x + a2x2 + a3x3,

F5(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5,
(11)

where

a0 = 0, a1 = −
(

1 + qλ − qλ

λ − 1

)
, a2 = 0, a3 = −1

6

(
1 + qλ − qλ

λ − 1
− 3qλ2

(λ − 1)3

)
,

a4 = 0, a5 = 1

120

(
1 + qλ − qλ

(λ − 1)
− 15qλ2

(λ − 1)3 − 45qλ3

(λ − 1)5

)
.

In fact, compared with the polynomial approximate system (10), the simplified approximate
system (8) not only successfully retains the non-smooth characteristics but also accurately
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reflects the local dynamics of original system (3) in the neighborhood of x = 0. Interestingly,
the simplified approximate system (8) with strongly irrational nonlinearity exhibits both
smooth and discontinuous dynamics depending on same geometrical parameter λ, which
bears significant similarities to the pendulum system (3). In order to further understand the
benefits of the simplified approximate system (8), we construct a detailed comparison among
the simplified approximate system denoted by a blue dashed line, cubic polynomial system
or Duffing system marked by a red dashed line, quintic polynomial system marked by a
green dashed line and the pendulum system with a black solid line, as shown in Fig. 2. When
q = 0.1, Fig. 2a shows a equilibrium bifurcation diagram of the geometrical parameter λ

versus the angular displacement x , which indicates that the polynomial system (10) derived
by Taylor expansion can not accurately reflect the local feature of the original system (3),
especially in the case of discontinuity for λ = 1. Note that these four dynamical systems
undergo a pitchfork bifurcation for same parameters q and λ satisfying Eq. (7). Clearly,
the equilibrium bifurcation of the quintic polynomial system marked by a green dashed
line in Fig. 2a cannot qualitatively describe the local characteristics of the original system,
especially the number of equilibrium. The corresponding nonlinear restoring forces of the
original system F(x), the simplified approximate system FA(x) and the Duffing system
F3(x) are plotted in Fig. 2b, where the black solid lines correspond to the original system,
the blue dashed lines represent the simplified approximate system and the red dashed lines
are the Duffing system, respectively. Similarly, for q = 1.0, the other equilibrium bifurcation
diagram of the geometrical parameter λ and the corresponding nonlinear restoring forces can
be plotted in Fig. 2c and d, respectively. Furthermore, the absolute error is regularly employed
to evaluate the degree of approximation in both smooth and discontinuous cases; the detailed
description can be seen in Fig. 3. For the smooth case with q = 0.1, Fig. 3a shows the absolute
error δ(x) = |F(x) − FA(x)| and δ(x) = |F(x) − F3(x)| for different values of parameter
λ. Note that the solid curves colored in blue, red and green correspond to the absolute error
of the polynomial system (PS), and the dashed, dotted and dash-dotted curves correspond
to the absolute error (δ(x) < 4 × 10−3 for x ∈ [−0.3, 0.3]) of the simplified approximate
system (AS). For the discontinuous case with λ = 1, Fig. 3b displays the absolute error
(δ(x) = |F(x) − FA(x)| < 9 × 10−3 for x ∈ [−0.4, 0.4]) of the simplified approximate
system (AS) for different values of parameter q . From the comparisons depicted in Figs. 2
and 3, it is concluded that the simplified approximate system (8) is obviously more accurate
than the polynomial system (10), especially for small values of two parameters q and λ. Then,
we will use the simplified approximate system to analyze the oscillatory motion around the
position x = 0 in the following section.

4 Oscillating periodic solutions

In this section, the oscillating periodic solutions of the pendulum system with an irrational
and fractional nonlinear restoring force are studied both theoretically and numerically under
the sufficiently small perturbations of a viscous damping as well as a harmonic excitation by
means of the primary response curve of the simplified approximate system.

4.1 Theoretical analysis of the oscillatory motion around the position x = 0

With the help of the averaging method [45,46], the oscillatory motion around the position x =
0 of the perturbed pendulum system can be studied by means of the simplified approximate
system. Under the sufficiently small perturbations of a viscous damping as well as a harmonic
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(a) (b)

(c) (d)

Fig. 2 Dynamical behaviors in the neighborhood of the position x = 0, (a) the comparison of the equilibrium
bifurcations for q = 0.1 and (b) the comparison of the nonlinear restoring forces for λ = 1.0, 1.05, 1.1 and
1.2, (c) the comparison of the equilibrium bifurcations for q = 1.0 and (d) the comparison of the nonlinear
restoring forces for λ = 1.0, 1.2, 1.6 and 2.0, respectively (the black solid line represents the pendulum
system F(x), blue dashed line denotes the simplified approximate system FA(x), and red dashed line is the
polynomial system F3(x))

(a) (b)

Fig. 3 The diagram of the absolute error δ(x) for the nonlinear restoring force: (a) the smooth case with
q = 0.1 for different values of parameter λ, (b) the discontinuous case with λ = 1 for different values of
parameter q
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excitation, the corresponding perturbed approximate system is given by

ẍ + ξ ẋ + x + qλx

(
1 − 1√

(λ−1)2+λx2

)
= f0 cos ωt. (12)

We introduce a periodic solution in the form of slowly varying amplitude a(t) and phase
θ(t), and the defined solution can be written as

x(t) = a cos ϕ, ẋ(t) = −aω sin ϕ, ϕ = ωt + θ. (13)

Based upon Eqs. (12) and (13), we have
{

ȧ cos ϕ − aθ̇ sin ϕ = 0,

−ȧω sin ϕ − aωθ̇ cos ϕ = f (t, a cos ϕ,−aω sin ϕ),
(14)

where

f (t, a cos ϕ,−aω sin ϕ) = f0 cos ωt

+ aω2 cos ϕ + ξaω sin ϕ − a cos ϕ − qλa cos ϕ

(
1 − 1√

(λ−1)2+λ(a cos ϕ)2

)
.

(15)

By solving linear equation set (14) about ȧ and θ̇ , we have
{
ȧ = − 1

ω
f (t, a cos ϕ,−aω sin ϕ) sin ϕ,

θ̇ = − 1
ωa f (t, a cos ϕ,−aω sin ϕ) cos ϕ.

(16)

Averaging Eq. (16) over a period [0, 2π ], Eq. (16) becomes
⎧⎪⎪⎨
⎪⎪⎩

ȧ = − 1
2πω

∫ 2π

0
f (t, a cos ϕ,−aω sin ϕ) sin ϕ dϕ,

θ̇ = − 1
2πωa

∫ 2π

0
f (t, a cos ϕ,−aω sin ϕ) cos ϕ dϕ.

(17)

Substituting Eq. (15) into Eq. (17) and introducing two functions 
(a, ω) and �(a, ω), we
have
⎧⎨
⎩
ȧ = − 1

2ω
(ξaω + f0 sin θ) = − 1

2ω
[
(a, ω) + f0 sin θ ] ,

θ̇ = − 1
2ωa

(
aω2 − a − qλa + aG(a) + f0 cos θ

) = − 1
2ωa [�(a, ω) + f0 cos θ ] ,

(18)

which leads to the amplitude equation by neglecting the phase variable

(ξω)2 + [ω2 − (1 + qλ) + G(a)
]2 =

(
f0
a

)2
. (19)

The function G(a) in Eq. (19) can be expressed as

G(a) = 4q
a2π

(√
(λ − 1)2 + λa2 EllipticE [k] − (λ−1)2√

(λ−1)2+λa2
EllipticK [k]

)
, (20)

where

k =
√

a2λ
(λ−1)2+a2λ

. (21)
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It is worth reiterating here that EllipticK [k] and EllipticE [k] are the complete Jacobian
elliptic integrals of the first and second kind with 0 < k < 1. Particularly, the amplitude
equation of discontinuous case can be derived by letting λ = 1 and defining

lim
λ→1+ EllipticE

⎡
⎣
√

a2λ

(λ − 1)2 + a2λ

⎤
⎦ = lim

k→1− EllipticE [k]

= lim
k→1−

∫ π
2

0

√
1 − k2 sin2 φ dφ = 1, (22)

lim
λ→1+ EllipticK

⎡
⎣
√

a2λ

(λ − 1)2 + a2λ

⎤
⎦ = lim

k→1− EllipticK [k]

= lim
k→1−

∫ π
2

0

1√
1 − k2 sin2 φ

dφ = +∞.

(23)

When the parameter λ approaches 1 from the right, Eq. (20) becomes

lim
λ→1+ G(a) = 4q

aπ
. (24)

Thus, the corresponding amplitude equation of discontinuous case is given by

(ξω)2 +
[
ω2 − (1 + q) + 4q

aπ

]2 =
(

f0
a

)2
. (25)

Then, we define that the amplitude as and phase θs of the steady states which are satisfying
Eqs. (19) and (25). Notice that as and phase θs are the equilibria of Eq. (18) and satisfy

{

(as, ω) + f0 sin θs = 0,

�(as, ω) + f0 cos θs = 0,
(26)

which leads to

W (as, ω) = 
2(as, ω) + �2(as, ω) − ( f0)
2 = 0,

θs = arctan

(

(as, ω)

�(as, ω)

)
. (27)

For a better understanding of the stability of the solution of Eqs. (19) and (25), the perturbation
variables ζ = a+as and η = θ + θs are introduced. Such that the system (18) can be written
as a linearized averaged equation related to ζ and η as follows

⎧⎨
⎩

ζ̇ = − 1
2ω

[(
∂ 
(a,ω)

∂ a

)
s

ζ + f0 cos θs η
]
,

η̇ = − 1
2ω

{
1
as

[(
∂ �(a,ω)

∂ a

)
s
− 1

a2
s

(�(as, ω) + f0 cos θs)
]

ζ − f0 sin θs η
}

.
(28)

If the zero solutions of ζ and η in the above system (28) are asymptotic stable, the steady state
(as, θs) is stable, otherwise unstable. It is clear that the above linearized averaged equation
can be reduced to ⎧⎨

⎩
2ωζ̇ +

(
∂ 
(a,ω)

∂ a

)
s

ζ − �(as, ω) η = 0,

2ωη̇ + 1
as

(
∂ �(a,ω)

∂ a

)
s

ζ + 1
as


(as, ω) η = 0.
(29)
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Hence, the stability can be derived by the characteristic equation of the system (29). The
corresponding characteristic equation is given by

det

⎛
⎝ 2ω� +

(
∂ 
(a,ω)

∂ a

)
s

−�(as, ω)

1
as

(
∂ �(a,ω)

∂ a

)
s

2ω� + 1
as


(as, ω)

⎞
⎠ = 4ω2

(
�2 + α � + β

) = 0, (30)

where � is the eigenvalues of the differential equations and
⎧⎨
⎩

α = 1
2ω

[(
∂ 
(a,ω)

∂ a

)
s
+ 1

as

(as, ω)

]
,

β = 1
4ω2as

[

(as, ω)

(
∂ 
(a,ω)

∂ a

)
s
+ �(as, ω)

(
∂ �(a,ω)

∂ a

)
s

]
.

(31)

Based upon the Routh–Hurwitz criterion [7,45,46], when all the real part of eigenvalues is
negative, the zero solution is stable. Therefore, if it satisfies the conditions α > 0 and β > 0,
the steady state (as, θs) is stable.

4.2 Numerical simulations of the oscillatory motion around the position x = 0

In order to verify the theoretical results derived by the averaging method, the numerical
simulations including the phase portrait, attractive basin and time history are conducted to
demonstrate the corresponding periodic solution around the position x = 0 in this subsection.

For example, the response curves in the f0 − a plane can be plotted with the help of Eq.
(19) for different values of parameter ω, ξ , q and λ in Fig. 4a, b, c and d, respectively. As an
external parameter ω increases from 0.5 to 0.8, the effects of the external frequency ω on the
related response curve are investigated in Fig. 4a, which indicates that a plurality of steady
states can be observed beyond ω ≈ 0.645. Similarly, increasing the external parameter ξ , the
influences of the external damping ξ on the related response curve is presented in Fig. 4b,
which means that the plurality of steady states disappears at ξ ≈ 0.15, and then becomes
only one steady state for ξ > 0.15. In order to detect the effects of internal parameter q on the
relative response curves, the amplitude–amplitude curves for different values of parameter q
can be plotted in Fig. 4c. To continue investigating the effects of the geometrical parameter
λ, we construct the relative response curves for different values of parameter λ; the detailed
description can be seen in Fig. 4d. Note that the response curves with the plurality of steady
states can be denoted by red and blue curves in Fig. 4. Moreover, the stable and unstable
branches are drawn with solid and dashed lines in Fig. 4, respectively, which can be proven
by considering of the eigenvalues of the linearized averaged equation, see Ref. [45,46].

Then, the response curves in the ω − a plane are presented with the help of Eq. (19)
for different values of parameter f0, ξ , q and λ in Fig. 5a, b, c and d, respectively. Fixing
parameters ξ , q and λ and plotting the response amplitude a of Eq. (19) against ω, we obtain
the frequency response curves for different values of parameter f0, seen in Fig. 5a. It is found
from Fig. 5a that the peak value and multi-stable interval of the amplitude–frequency curves
increase obviously with the increase of parameter f0. As the external parameter ξ increases
from 0.06 to 0.10, the influences of the external damping ξ on the relative the response curve
are studied in Fig. 5b, which indicates that a plurality of steady states and the peak value of the
amplitude–frequency curve decrease obviously with the increase of parameter ξ . Similarly,
the effects of the internal parameters q and λ on the related response curves are plotted by
means of Eq. (19) in Fig. 5c and d, respectively. Note that a plurality of steady states is
disappeared beyond λ ≈ 1.3 and the peak value of the amplitude–frequency curve decreases
with the increase of parameter λ, seen in Fig. 5c. Moreover, a plurality of steady states can be
observed beyond q ≈ 0.05 and the peak value of the amplitude–frequency curve increases
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(a) (b)

(c) (d)

Fig. 4 Response curves in the f0−a plane, (a) the effect of the parameter ω with q = 0.1, λ = 1.15, ξ = 0.05,
(b) the effect of the parameter ξ with q = 0.1, λ = 1.15, ω = 0.8, (c) the effect of the parameter q with
λ = 1.15, ξ = 0.05, ω = 0.8, (d) the effect of the parameter λ with q = 0.1, ξ = 0.05, ω = 0.8, respectively

with the increase of parameter q , seen in Fig. 5d. The details of the parameters taken in Fig. 5
can be found in the corresponding captions.

For clarity, a typical response curve in the f0 − a plane can be displayed with the help of
Eq. (19) for q = 0.1, λ = 1.15, ξ = 0.05 and ω = 0.8 in Fig. 6a, where nine particular points
are listed in Table 1. Two forces that bound the interval on the existence of a plurality of
steady states are termed as f1 and f2. In other words, for the forces extracted from [ f1, f2],
a plurality of steady states can be observed. When the parameter f0 increases from 0 to
0.03, the response curve undergoes a jump phenomenon at f0 = f2 traveling one branch
A → B → C → D → H → I. On the contrary, decreasing the parameter f0 from 0.03
to 0, there exists a jump phenomenon at f0 = f1 with the other branch I → H → G →
F → B → A, the detailed description can be shown in Fig. 6a. Then, we will consider
phase portraits of the corresponding periodic solutions around the equilibrium (0, 0) in the
simplified approximate system. The relative phase portraits are plotted in Fig. 6b–f by using
Runge–Kutta method. Note that Fig. 6b shows a small stable periodic solution for f0 = 0.005.
As parameter f0 increases approximately to 0.00832, there exists a small stable periodic
solution and a large semi-stable periodic solution denoted by the red dotted line in Fig. 6c.
By continuing increasing the parameter f0, the large semi-stable periodic solution bifurcates
into two periodic solutions where the large one is stable and the other is unstable, coexisting
of a small stable periodic solution as shown in Fig. 6d. When f0 ≈ 0.01832, the unstable
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(a) (b)

(c) (d)

Fig. 5 Response curves in the ω−a plane, (a) the effect of the parameter f0 with ξ = 0.05, q = 0.1, λ = 1.15,
(b) the effect of the parameter ξ with f0 = 0.015, q = 0.1, λ = 1.15, (c) the effect of the parameter q with
f0 = 0.015, ξ = 0.05, q = 0.1, (d) the effect of the parameter λ with f0 = 0.015, ξ = 0.05, λ = 1.15,
respectively

periodic solution and the small stable periodic solution shrink to a small semi-stable periodic
solution which coexists of a large stable periodic solution in Fig. 6e. When f0 > 0.01832,
the small semi-stable periodic solution disappears and only one large periodic solution can
be found in Fig. 6f. In order to detect the jump phenomenon in both the original system
(OS) and the simplified approximate system (AS), the bifurcation diagrams for parameter f0
versus x are given in Fig. 7. It is clear that Fig. 7a and b describes the bifurcation diagram
for the parameter f0 versus x starting from 0 to 0.03. Fig. 7a corresponds to the original
system with a jump phenomenon at f0 ≈ 0.018401, and Fig. 7b represents the simplified
approximate system with a jump phenomenon at f0 ≈ 0.01832. Similarly, the bifurcation
diagram for parameter f0 versus x from 0.03 to 0 can be plotted in Fig. 7c and d. It is found
that the bifurcation diagram depicted in Fig. 7 shows a good agreement with the theoretical
predictions depicted in Fig. 6a and an excellent efficiency of the analysis for this pendulum
system; especially, the parameter values of the jump phenomenon occurring in two systems
are well consistent with the theoretical analysis.

In order to further understand the stable periodic solutions around the equilibrium (0, 0)

depicted in Fig. 6, the comparisons of the phase portrait, time history and attractive basin
between the pendulum system (2) and the simplified approximate system (12) can be intro-
duced. When q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05 and f0 = 0.005, Fig. 8a shows a
comparison of the phase portraits of a stable periodic solution, where the blue loop corre-
sponds to the original system, the red loop represents the simplified approximate system,
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Table 1 The values of nine particular points in Fig. 6a

A B C D E F G H I

f0 0.005 0.00839 0.014 0.01832 0.014 0.00839 0.014 0.01832 0.025

a 0.0173 0.0298 0.0551 0.1038 0.159 0.2077 0.2449 0.2605 0.281

(d) (e) (f)

(a) (b) (c)

Fig. 6 When q = 0.1, λ = 1.15, ξ = 0.05 and ω = 0.8: (a) a typical response curve in the f0 −a plane with
f1 ≈ 0.0083945 and f2 ≈ 0.018381. The phase portraits of periodic solutions of the simplified approximate
system (12) (the red solid, thin solid, dotted loops correspond to stable, unstable and semi-stable, respectively):
(b) a small stable periodic solution for f0 = 0.005, (c) a stable periodic solution coexisting of a semi-stable
periodic solution for f0 ≈ 0.00839, (d) two stable periodic solutions coexisting of an unstable periodic
solution for f0 = 0.014, (e) a large stable periodic solution coexisting of a semi-stable periodic solution for
f0 ≈ 0.01832, (f) a large stable periodic solution for f0 = 0.025, respectively

and the black loop denotes the theoretical result derived by the averaging method. It is worth
pointing out that the phase trajectory of the theoretical results derived by the averaging method
corresponds to the standard ellipses satisfying

x2

a2 + y2

(aω)2 = 1. (32)

The phase trajectories marked by the black loop are plotted with the help of Eq. (32), where
the amplitude parameter a corresponds to a value of the response curve when f0 = 0.005.
Then, the corresponding comparison of time histories can be displayed in Fig. 8b, where the
blue line corresponds to the original system and the red dashed line represents the simplified
approximate system. To show exactly the degree of approximation between the two systems,
an amplified description of two time histories is presented in Fig. 8c. Similarly, for q =
0.1, λ = 1.15, ω = 0.8, ξ = 0.05 and f0 = 0.025, the comparisons of the phase portraits
and time histories between the pendulum system (2) and the simplified approximate system
(12) are plotted in Fig. 8d and e, respectively. In order to get a more accurate comparison, an
amplified description of two time histories is introduced in Fig. 8f. Obviously, the oscillating
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(a) (b)

(c) (d)

Fig. 7 Bifurcation diagrams for f0 versus x with q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05: one bifurcation
diagram for f0 starting from 0 to 0.03: (a) the original system with a jump phenomenon at f2 ≈ 0.018401
and (b) the simplified approximate system with a jump phenomenon at f2 ≈ 0.01832; the other bifurcation
diagram for f0 starting from 0.03 to 0: (c) the original system with a jump phenomenon and (b) the simplified
approximate system with a jump phenomenon

periodic solutions of the approximate system colored in red coincide well with that of the
original system by comparing with their phase trajectories and time histories. It is worth
reiterating here that the black loops depicted in Fig. 8a (with a = 0.0173 and ω = 0.8) and
Fig. 8d (with a = 0.2810 and ω = 0.8) can be potted by means of Eq. (32). The smaller the
amplitude a of the response curve is, the higher the precision of the approximate analytical
solution will be.

Interestingly, it is found that both the original system (2) and the simplified approximate
system (12) exhibit the coexistence of stable periodic solutions for f0 ∈ [ f1, f2], which
shows a good agreement with the theoretical analysis in Fig. 6a. Taking f0 = 0.01 and
f0 = 0.014 for example, the corresponding phase portraits of the coexistence of stable
periodic solutions are presented in Fig. 9a and b, respectively, where two blue closed orbits
correspond to the original system, two red closed orbits correspond to the approximate system
and two black closed orbits are the theoretical results derived by the averaging method. Note
that the black loops depicted in Fig. 9a (with a = 0.2265 and ω = 0.8) and Fig. 9b (with
a = 0.2449 and ω = 0.8) can be potted by means of Eq. (32). For a better understanding of
the coexistence of stable periodic solutions, the attractive basins can be introduced in Fig. 10a
(the original system denoted by OS) and Fig. 10b (the approximate system marked by AS). It
is worth pointing out that the blue region corresponds to the attractive basin of a small stable
periodic solution of which attractor can be denoted by red solid point. Similarly, the attractive
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(a) (d)

(b) (e)

(c) (f)

Fig. 8 When q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05, the comparisons of phase portraits of the periodic
solutions x(t) among the original system (blue lines), the simplified approximate system (red lines) and the
corresponding theoretical results (black lines) starting from the initial condition (x(0), y(0)) = (0, 0) for (a)
f0 = 0.005 and (b) f0 = 0.025. (c) The comparisons of time histories for f0 = 0.005 and the amplified
figure (d), (e) the comparisons of time histories for f0 = 0.025 and the amplified figure (f)

basin of the gray region represents a large stable periodic solution whose attractor can be
marked by green solid point. It is well known that the boundary of two attractive regions
is the basin of a unstable periodic solution. Then, the comparisons of time histories of the
small and large stable periodic solutions between the original system colored in blue and the
simplified approximate system denoted by red dashed line can be displayed for f0 = 0.01 in
Fig. 10c and e. It is clear that the time history of the simplified approximate system shows
a good agreement with that of the original system; the detailed comparison is displayed in
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(a) (b)

Fig. 9 Comparisons of phase portraits among the original system denoted by blue solid lines, the simplified
approximate system marked by red solid lines and the theoretical results with black solid lines for q = 0.1, λ =
1.15, ω = 0.8, ξ = 0.05: (a) the coexistence of two stable periodic solutions for f0 = 0.01, (b) the coexistence
of two stable periodic solutions for f0 = 0.014

Fig. 10d and f. Similarly, for f0 = 0.014, the comparisons of the attractive basin and time
history are carried out to describe the stable periodic solutions in both the original system and
approximate system, seen in Fig. 11. More specifically, Fig. 11a and b presents the attractive
basin of small and large periodic solutions in two systems, respectively. In order to detect
the degree of proximity of two system, the corresponding comparisons of the time history
can be displayed in Fig. 11c (the amplified description seen in Fig. 11d) and Fig. 11e (the
amplified description shown in Fig. 11f). It is worth reiterating here that the smaller the
response amplitude of the pendulum system is, the higher the accuracy of the theoretical
periodic solution will be.

As can be seen from Fig. 6a, the response curve undergoes one jump phenomenon at
f0 = f2 as the parameter f0 increases from 0 to 0.03. In order to detect the nonlinear
dynamical behavior near the jump phenomenon, Fig. 12a and b depicts the attractive basins
of the original system (OS) and approximate system (AS) by taking the value of parameters
near the jump phenomenon. When the parameter f0 increases from 0 to 0.03, the attractive
region colored in blue of small stable periodic solution gradually reduces until disappears,
and the detailed changes for the original system can be seen from Fig. 10a to Fig. 11a to
Fig. 12a. Moreover, it is found that the attractive basins for the oscillating periodic solutions
of the simplified approximate system coincide well with that of the original system.

For the discontinuous case [44,47], we choose the parameters q = 0.1, λ = 1 and
ξ = 0.05. The response curves in the f0 − a plane can be plotted with the help of Eq. (25)
for different values of parameter ω in Fig. 13a, where the solid curves represent the stable
branch and the dashed curves are the unstable branch. When f0 = 0.05 and ω = 0.8, Fig. 13b
gives a phase portrait comparison of the stable periodic solutions between the original system
colored in blue and the theoretical analysis denoted by black. Meanwhile, the corresponding
phase portrait comparison of the stable periodic solutions between the simplified approximate
system colored in red and the theoretical analysis denoted by black is demonstrated in Fig. 13c.
Similarly, for f0 = 0.15 and ω = 0.7, the phase portraits of the stable periodic solutions
of the original system colored in blue and the simplified approximate system denoted by
red are presented in Fig. 13d and e, respectively, where the black closed orbit corresponds
to the theoretical result. Then, Fig. 13f and g describes the stable periodic solutions of the
original system colored in blue and the simplified approximate system denoted by red for
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 When q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05, f0 = 0.01, (a) the attractive basin of the pendulum
system (2), (b) the attractive basin of the simplified approximate system (12). The corresponding comparisons
of the stable periodic solution between the original system (blue solid lines) and the simplified approximate
system (red dashed lines): (c) the comparison of time history x(t) for t ∈ [0, 1000] starting from the initial
condition (x(0), y(0)) = (0.2, 0) and (d) the amplified description for t ∈ [980, 1000], (e) the comparison
of time history x(t) for t ∈ [0, 1000] starting from the initial condition (x(0), y(0)) = (0, 0) and (f) the
amplified description for t ∈ [980, 1000]

ω = 0.6 and f0 = 0.15. Moreover, the corresponding time histories of two systems can
be plotted in Fig. 13h and its amplified description is presented in Fig. 13i, which shows a
good agreement with the theoretical predictions and an excellent efficiency of the analysis
for this pendulum system. The detailed value of the parameters taken in Fig. 13 can be found
in the corresponding captions. It is worth reiterating here that a smooth periodic solution
denoted by black loop in Fig. 13b–g is used to approximately describe the periodic solution

123



  277 Page 18 of 23 Eur. Phys. J. Plus         (2021) 136:277 

(a) (b)

(c) (d)

(e) (f)

Fig. 11 When q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05, f0 = 0.014, (a) the attractive basin of the pendulum
system (2), (b) the attractive basin of the simplified approximate system (12). The corresponding comparisons
of time histories of the stable periodic solution x(t) between the original system (blue solid lines) and the
simplified approximate system (red dashed lines): (c) and (d) the time histories starting from the initial
condition (x(0), y(0)) = (0.1, 0) (the gray region of the attractive basin), (e) and (f) the time histories starting
from the initial condition (x(0), y(0)) = (−0.1, 0) (the blue region of the attractive basin)

of the non-smooth system. For a better understanding of this approximation, Fig. 14 shows
the transition characteristics of the resonance curves from smooth systems to discontinuous
systems. From a mathematical perspective, we derive the response curve of the discontinuous
system by using the idea of limit.

Based upon the above theoretical analysis and numerical simulations, it is found that the
simplified approximate system completely reflects the local dynamic behaviors of the orig-
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(a) (b)

Fig. 12 When q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05, (a) the attractive basin of the pendulum system (2) for
f0 = 0.018401, (b) the attractive basin of the simplified approximate system (12) for f0 = 0.01832

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 When q = 0.1, λ = 1 and ξ = 0.05, (a) the response curves of the discontinuous case for different
values of parameter ω. The stable periodic solutions among the original system (blue), the simplified approx-
imate system (red) and the corresponding theoretical results (black): the phase portraits of the original system
(b) and approximate system (c) with similar parameters ω = 0.8, f0 = 0.05, the phase portraits of the original
system (d) and approximate system (e) with similar parameters ω = 0.7, f0 = 0.15, the phase portraits of
the original system (f) and approximate system (g) with similar parameters ω = 0.6, f0 = 0.15, (h) the
corresponding time history x(t) for t ∈ [0, 1000] starting from the initial condition (x(0), y(0)) = (1, 0) and
(i) the amplified description for t ∈ [800, 1000], respectively
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Fig. 14 Response curves of
smooth and discontinuous
systems with
q = 0.1, ξ = 0.05, ω = 0.8

(a) (b)

Fig. 15 When q = 0.1, λ = 1.15, ξ = 0.05, (a) the function �(a, ω) of the smooth case for different values
of parameter ω. When q = 0.1, λ = 1, ξ = 0.05, (b) the function �(a, ω) of the discontinuous case for
different values of parameter ω

inal system with small-angle oscillations in terms of the equilibrium bifurcation, nonlinear
restoring force, parameter bifurcation, attractive basin, phase portrait and time history. So, the
corresponding theoretical solution x(t) of the oscillating periodic motion of this pendulum
system is given by

⎧
⎪⎪⎨
⎪⎪⎩

x(t) = a cos
(
ωt + arctan

(

(a,ω)
�(a,ω)

))
, �(a, ω) < 0,

x(t) = ∓a cos (ωt + arctan (±∞)), �(a, ω) = 0,

x(t) = −a cos
(
ωt + arctan

(

(a,ω)
�(a,ω)

))
, �(a, ω) > 0.

(33)

In order to further understand the approximate analytic expression of the periodic solution
(33), we construct a detailed diagram of the function �(a, ω) for different parameter ω to
detect parameter a satisfying �(a, ω) < 0 or �(a, ω) > 0 in both smooth and discontinuous
cases, seen in Fig. 15a and b, respectively. With the help of the analysis of the averaging
method and the approximate analytic expression of the periodic solution (33), the theoretical
solution x(t) can be displayed with the red dotted lines for the smooth and discontinuous
cases in Fig. 16. When q = 0.1, λ = 1.15, ω = 0.8 and ξ = 0.05, Fig. 16a–e depicts five
typical stable periodic solutions x(t) marked by the red dotted lines for different parameter
f0, which shows a good agreement with the numerical solutions of the original system

123



Eur. Phys. J. Plus         (2021) 136:277 Page 21 of 23   277 

(a) (b)

(c)

(e) (f)

(d)

Fig. 16 When q = 0.1, λ = 1.15, ω = 0.8, ξ = 0.05, the comparisons of the stable periodic solution x(t)
between the original system (OS: blue solid lines) and the theoretical results (TR: red dotted lines) in the
smooth case for (a) f0 = 0.005, (b) f0 = 0.01, (c) and (d) f0 = 0.014, (e) f0 = 0.025. (f) The time history
of the discontinuous case for q = 0.1, λ = 1, ω = 0.8, ξ = 0.05 and f0 = 0.025. (Note that the initial
conditions (x(0), y(0)) for the stable solutions of the original system correspond to (a) (0,0), (b) (0,0), (c),
(0.1,0), (d) (−0.1,0), (e) (0,0), (f) (1,0))

denoted by the blue solid lines. For the discontinuous case, the comparison of the stable
periodic solution x(t) between the numerical and theoretical result is given in Fig. 16f with
q = 0.1, λ = 1, ω = 0.8, ξ = 0.05 and f0 = 0.025. Obviously, the theoretical solutions
coincide well with that of the original system. It is worth pointing out here that the analytic
expression of the theoretical solution x(t) can be marked in Fig. 16, and the corresponding
initial conditions for time history of the original system can be given in the captions.
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By comparing the phase portraits, bifurcation diagrams, time histories and attractive basins
between the original system and the simplified approximate system in this section, it is
concluded that the periodic oscillatory motion of the simplified approximate system bears
significant similarities to that of the original system regardless of the qualitative analysis and
quantitative calculation in both smooth and discontinuous cases. Furthermore, we precisely
calculate the approximate analytic expression of the periodic solution of this pendulum system
based upon the primary resonance analysis of the simplified approximate system.

5 Conclusions

The oscillating periodic motions of a classical pendulum system with small-angle oscillations
have been studied in terms of the qualitative analysis and quantitative calculation. Note that
this pendulum system having an irrational and fractional nonlinear restoring force exhibits
both smooth and discontinuous dynamics. Due to its intrinsic nonlinearity and discontinuous
characteristics, the traditionally polynomial approximation derived by a Taylor expansion
about the point x = 0 cannot precisely describe the local feature of this pendulum with
the small-angle oscillations, especially the discontinuous case. By introducing a simplified
approximate system, all the possible periodic solutions around the position x = 0 of this
pendulum system have been investigated theoretically by using the averaging method in the
smooth and discontinuous cases. Compared with the traditional polynomial system derived
by the Taylor expansion, it is concluded that the simplified approximate system not only suc-
cessfully retains the non-smooth characteristics but also completely reflects the local feature
of the original system. Numerical calculations, including the phase portrait, time history,
attractive basin, bifurcation diagram and response curve, have shown a good agreement with
the theoretical predictions and an excellent efficiency of the analysis for this pendulum system
with the small-angle oscillations. This study provides an effective approach to investigate
analytically the oscillating periodic solution of the complex pendulum system with the small-
angle oscillations with a given error. The future study on this classical pendulum system is
being carried out by the current authors in two aspects: one is the oscillating periodic solution
around the bi-stable position, and the other is the vibration isolation [48,49] and the energy
absorption [50–52].
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