
Eur. Phys. J. Plus         (2021) 136:289 
https://doi.org/10.1140/epjp/s13360-021-01237-x

Regular Art icle

Thermal conductivity dependent temperature
during photo-thermo-elastic excitation of semiconductor
material with volumetric absorption laser heat source
in gravitational field

Kh. Lotfy1,2,a, Ramdan. S. Tantawi1,2,b

1 Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt
2 Academy of Scientific Research and Technology (ASRT), 101 Qasr Al Aini St., P. O. Box 11516, Cairo,

Egypt

Received: 3 October 2020 / Accepted: 16 February 2021
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany,
part of Springer Nature 2021

Abstract In this following work, a theoretical novel model for exited semiconducting
medium is studied in the context of photothermal transport process. The dual-phase-lag
(DPL) is used to modify the heat (energy) conduction equation when the thermal conduc-
tivity is variable during an initial hydrostatic stresses. The thermal conductivity depends
on a temperature. The photo-thermoelasticity theory is introduced in a generalized form
under the impact of gravitational field with a volumetric absorption laser which considered
a heat source. The governing equations are studied in two-dimensional (2D) deformations
and are solved using the harmonic wave technique. The considered physical quantities are
obtained completely when are applied some thermal and mechanical loads at the free surface
of silicon (Si) semiconductor elastic medium. The considered numerical physical fields are
obtained graphically and discussed theoretically. The impacts of various variables are illus-
trated graphically which based on the thermal relaxation time (memories time, DPL theory).
The comparisons are made under the effect of heat source, gravity and the variable thermal
conductivity graphically.

1 Introduction

In modern technology, the elastic semiconductor materials are very important in various
circuit applications. Most of semiconductor materials have economic importance because it
is widely spread in the environment. In modern geophysics, the silicon (Si) and germanium
have many applications specially for electrical renewable energy. To understand the physical
properties of these materials, the surface wave propagations through the semiconductor media
must be studied. The effect of laser beam on the semiconductor media is very useful with the
applications in generating clean electrical energy. The internal structure of the semiconductor
media may be depends on gravitational forces. Since recently, semiconductor materials have
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been studied in mechanical engineering with structure as elastic materials. In this case, the
thermal effect of laser or light, gravity and the electrical connection was being neglected
with neglected. But in modern studies, the thermal effect of laser, gravity and sunlight must
be taken into account. In this case, the microelement structures of the semiconductors from
electrons and holes must be inserted into the calculations. As a result of the thermal effect,
vibrations (elastic wave) of the particles occur and the electrons on the surface move from
one place to the other. However, a weak electrical current is generated due to the electronic
deformation (ED) with carrier density which it occurs inside the material and the plasma wave
is obtained. The heat source as a laser has a great significant to understand the microelement
structure with thermoelastic deformation (TE) of the elastic semiconductor material. The
thermal conductivity parameter is very important to discuss TE specially when it depends on
the temperature. In this case, the thermoelastic mechanism based on the thermal conductivity.
Based on all the above studies, the photo-thermoelasticity theory of elastic semiconductor
with the effect of gravity and variable thermal conductive must be taken into consideration.

In the middle of the last century, it was introduced the coupled dynamic thermoelasticity
theory with a paradox when it was studied the wave propagation in elastic medium by Biot
[1]. Chadwick [2] predicted that during disturbance processes the wave propagation through
the elastic medium has an infinite speed. To address this contradiction, Lord and Şhulman’s
(LS) [3] developed a new model for the thermoelasticity theory when insert in the heat
(energy) equation one relaxation time which it called a single-phase-lag model. On the other
hand, Green and Lindsay (GL) [4] investigated and modified the thermoelasticity theory
when added a two thermal relaxation times which they called thermal memories to the main
heat conduction equation. Several scientists have developed the generalized thermoelasticity
theory [5–7]. Tzou [8, 9] introduced the new DPL model which is a modification of the
classical thermoelastic theory. In this model, the interaction between electrons and phonons is
described with the heat transfer behavior of microelement structural when an elastic medium
is studied [10]. The DPL model introduced a two various type of translations (relaxation)
time. However, in the micro-scale, the first time names the first phase-lag (PL) τq which
describe the heat flux, and the second describes the temperature gradient which it calls a
second phase-lag (PL) τθ . Ailawalia et al. [11, 12] studied the effect of gravitational field
and the rotation with two temperature theory during the generalized thermoelastic medium
in the context of the hydrostatic initial stress impact. Hosseinzadeh et al. [13, 14] modified
many models during they studying the micropolar hybrid nanoparticles with mixture fluid
flow in the context of the influence of radiation and magnetic field. On the other hand,
Hosseinzadeh et al. [15–18] investigated a hydrothermal analysis during a cross-fluid flow
for ethylene glycol nanoparticles and microorganisms in three-dimensional cylinder and used
the numerical simulation to prove the obtained results.

The photothermal theory is used to study physical properties of a sample on the from intra-
cavity spherical of semiconductor material [19]. The spectroscopy analyses are used during
a photoacoustic processes with laser heat sources which it fall on a semiconductor medium
[20]. In modern physics and electrical engineering, the photothermal phenomena are very
important to study the semiconductors [21–25]. Many applications for photo-thermoelasticity
theory are introduced with external many fields to study wave propagation during elastic
semiconductors by Lotfy et al. [26–30]. The thermal conductivity parameter of elastic media
may be constant and independents to temperature (when it is a constant). But in fact, the
thermal conductivity in theoretical and experimental studies in modern physics changes with
the gradient (change) in temperature. Many authors introduced a novel model when the ther-
mal conductivity is changed (variable). For the elastic semiconductor material, the thermal
conductivity may be depends on a liner presentation of temperature [31–35]. However, the
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thermal impact (temperature) of laser heat source on thermal conductivity parameter must be
taken into consideration [36–38]. Ailawalia and Kumar [39] used the ramp-type heating with
mechanical conditions to study a semiconductor medium during the photo-thermoelasticity
theory. In all the above studies, the impact of gravity field is neglected and thermal laser as
heat source is ignored in case of dependence of the thermal conductivity on temperature [26].

The main objective of this work is to investigate the interaction between the thermal-
elastic-plasma waves during the photo-thermoelasticity theory. The photothermal excitation
and transport processes are occurred when the thermal conductivity is changed in the context
of the gradient temperature. The influence of gravitational field under the impact of thermal
heat source of semiconductor medium is studied. The different thermal memories lead to
various photo-thermoelasticity models (LS model and DPL model). The harmonic wave
method in 2D deformation is applied of the governing equation to obtain the main expression
of the dimensionless physical quantities. Various thermal and mechanical load conditions at
the outer free surface of the medium are applied subjected to thermal shock. The effects of
DPL models with thermal relaxation times are obtained graphically. The thermal conductivity
parameters also are graphed and discussed theoretically in the context of the thermoelastic
and thermoelectric coupling parameters.

2 Governing equations

Considering the elastic semiconductor medium has isotropic properties and it taken in a non-
homogeneous case (the thermal conductivity is variable). The governing equations consider
about the coupling between the carrier density (plasma distribution) C (ri , t), the thermal
wave is the temperature distribution T (ri , t) and elastic mechanical wave is the displacement
distribution u (ri , t) which (ri is the space vector) in 2D deformation, the main quantities are
taken in the space coordinates x and z (ri (x, 0, z)) with independent to y-direction and the time
coordinate t. The system of equations which describe the interaction between the plasma,
thermal and elastic waves in gravitational field with laser heat source can be represented
according to the following main equations [37, 38, 40, 41]:

∂C(ri , t)

∂t
� AE N,i i (ri , t) − C(

⇀
r , t)

τ
+ κ T (ri , t), (1)

ρ Ce

(
1 + τq

∂

∂t

)
∂T(ri , t)

∂t
�

(
1 + τθ

∂

∂t

)
(KT,i (ri , t)),i +

Eg

τ
C(ri , t)

− γ T0

(
1 + τq

∂

∂t

)
∂

∂t
u,i (ri , t) −

(
1 + τq

∂

∂t

)
	. (2)

The equation of motion when the gravitational field is ignored with strain–stress relation
and carrier density without heat source can be represented in the following form [8, 42] (see
schematic representation of the problem):
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Schematic representation of the problem

ρ
∂2ui
∂t2 � σi j, j . (3)

The constitutive relations which describe strain–stress relation in 2D mechanical defor-
mation can be expressed as [8, 42]:

σxx � (2μ + λ)
∂u

∂x
+ λ

∂w

∂z
− (3λ + 2μ)

(
αT

(
1 + τθ

∂

∂t

)
T + dnC

)
, (4)

σzz � (2μ + λ)
∂w

∂z
+ λ

∂u

∂x
− (3λ + 2μ)

(
αT

(
1 + τθ

∂

∂t

)
T + dnC

)
, (5)

σxz � μ

(
∂u

∂z
+

∂w

∂x

)
. (6)

The thermal activation coupling parameter κ � ∂c0
∂T

T
τ

is taken in a nonzero form, where
the carrier concentration at temperature T is c0 which is taken in equilibrium case [42]. The
electrical physical constants are AE ,Eg , δn and τ which express the coefficient of carrier
diffusion, energy of the gap, the deformation valence band and the carrier lifetime (which
generated during photothermal transport), respectively. The elastic physical constants of the
material sample are (μ , λ), ρ, K , T0, γ � (3λ + 2μ)αT and Ce which they describe the
elastic Lamé constant, the density, the thermal conductivity in steady case, the reference
temperature, the volume thermal expansion and the specific heat respectively. On the other
hand, the parameter αT is the linear thermal expansion coefficient. The DPL models with
the thermal memories times τθ , τq must be satisfied the relation 0≤ τθ < τq≤ τθ < τq≤
τθ < τq≤ τθ < τq ≤ τθ < τq , τθ � 0 reduced the model to LS case. The quantity term 	

represents the effect of the volumetric absorption of uniform laser radiation heat source (input
laser heat source). Our displacement analysis is taken in 2D plasma-elastic deformation as:
ui � (u1, 0, u3) � (u, 0, w), u(x, z, t), w(x, z, t).

Assume that the thermal conductivity K during the temperature gradient due to the laser
thermal effect is taken as a linear function of temperature. In this case, thermal conductivity
can be chosen variable, this case has many applications in devices industry which depends
on thermal analysis of the thermal conductivity of elastic semiconductor medium. However,
the thermal conductivity can be chosen under the impact of laser heat source as a temperature
function [33, 36, 43]:

K (T ) � K0(1 + K1T ). (7)

In general case, a small non-positive parameter is K1 and K0 represents chosen constant
which expresses the thermal conductivity when K1 � 0 (independent of temperature). Using
Kirchhoff transformation to describe the integral form of thermal conductivity [36, 38]:

T̂ � 1

K0

T∫
0

K (�)d�. (8)
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The above transformation is used to exchange the nonlinear terms in the heat (energy)
equation into linear terms.

3 Formulation of the problem

For more simplicity, the Helmholtz’s theorem can be used to describe the displacement
components in terms of the scalar function �(x, z, t) (potential function) and the other in a
vector function ψ(x, z, t), which can be expressed in vector form as:

�u � grad
∐

+curl �ψ, �ψ � (0, ψ, 0). (9)

In 2D elastic deformation, Eq. (9) takes the following form:

u � ∂
∐

∂x
+

∂ψ

∂z
, w � ∂

∐
∂z

− ∂ψ

∂x
. (10)

In 2D deformation, the general form of the equation of motion [Eq. (3)] under the effect
of gravitational field g can be rewritten in two equations as [11]:

ρ

(
∂2u

∂t2 − g
∂w

∂x

)
� μ∇2u + (μ + λ)

∂e

∂x
− γ

(
1 + τθ

∂

∂t

)
∂T

∂x
+ (3λ + 2μ)dn

∂C

∂x
, (11)

ρ

(
∂2w

∂t2 + g
∂u

∂x

)
� μ∇2w + (μ + λ)

∂e

∂z
− γ

(
1 + τθ

∂

∂t

)
∂T

∂z
+ (3λ + 2μ)dn

∂C

∂z
. (12)

To insert the variable thermal conductivity in calculations, the transformation map Eq. (8)
can be used with using the differentiation technique relative to the space coordinates xi as:

K0T̂,i � K (T )T,i . (13)

Appling differentiation method again relative to the space coordinates xi for Eq. (13),
therefore:

K0T̂,i i � (K (T )T,i ),i . (14)

The linear form of Eq. (14) (with neglected the nonlinear term) can be represented as:

K0T̂,i i � K,i T,i + KT,i i � K0(1 + K1T ),i T,i + KT,i i � K0K1(T,i )
2 + KT,i i � KT,i i .

(15)

Applying the time differentiation also, tend to:

K0
∂ T̂

∂t
� K (T )

∂T

∂t
. (16)

Operating by ∂
∂xi

on both sides of the coupling Eq. (1) and using Eq. (11), yields:

∂

∂t
C,i � AE (N,mm),i − 1

τ
C,i +

κK0

K
T̂,i . (17)

Using Taylor expand with linearity property for the last term in Eq. (17) ( κK0
K T̂,i ) with

neglected the nonlinear terms, therefore

κK0

K0(1 + K1T )
T̂,i � κ(1 + K1T )−1T̂,i � κ(1 − K1T + (K1T )2 − · · ·)T̂,i

� κ T̂,i − κK1T T̂,i + (K1T )2T̂,i − · · · � κ T̂,i . (18)
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In this case, Eq. (17) with a linearity form can be represented as:

∂

∂t
C,i � AE (N,mm),i − 1

τ
C,i + κ T̂,i . (19)

Using the integral property for Eq. (19) relative to the space coordinates xi , yields:

∂C

∂t
� AE N,i i − 1

τ
C + κ T̂ . (20)

The heat (energy) conduction Eq. (2) under the impact of map transform can be rewritten
in the following form:

(
1 + τθ

∂

∂t

)
T̂,i i �

(
1 + τq

∂

∂t

)(
T̂

k
+

γ T0

K0

∂

∂t
u,i

)
− Eg

τ K0
C +

(
1 + τq

∂

∂t

)
	. (21)

The thermal diffusivity represents by 1
k � ρCe

K0
.

When a laser pulses fall on the outer surface of the elastic semiconductor, the volumetric
absorption of uniform laser radiation is generated and consider it a heat source which can be
expressed as:

	 � I0γ ′t
2πr2t2

0

exp

(
− z2

r2 − t

t0
− γ ′x

)
.

where I0 and t0 are the absorbed energy and the pulse rise time, respectively. The radius of
the laser beam is r and γ ′ is the heating energy which absorb at the depth (z).

For more simplicity, the dimensionless of the main quantities can be introduced as:

(x ′, z′, u′, w′) � (x, z, u, w)

CT t∗
, (t ′, τ ′

q , τ
′
θ ) � (t, τq , τθ )

t∗
, T̂ ′ � γ (T̂ )

2μ + λ

σ ′
i j � σi j

μ
, g′ � t∗

CT
g, C ′ � δnC

2μ + λ
, (

′∐
, ψ ′) � (

∐
, ψ)

(CT t∗)2 , 	′ � γ t∗2

ρK0
	. (23)

Substituting from Eq. (23) into the main equations after dropped the dashes, yields:(
∇2 − G1 − G2

∂

∂t

)
C + q3 T̂ � 0, (24)

(
1 + τθ

∂

∂t

)
∇2T̂ −

(
1 + τq

∂

∂t

)
q4

∂ T̂

∂t
+ q2C +

(
1 + τq

∂

∂t

){
q1

∂

∂t
∇2

∐}
� −	0	∗e−γ ′x ,

(25)(
∇2 − ∂2

∂t2

) ∐
+g

∂ψ

∂x
−

(
1 + τθ

∂

∂t

)
T̂ − C � 0, (26)

(
∇2 − β2 ∂2

∂t2

)
ψ − g

∂
∐

∂x
� 0. (27)

where G1 � K0t∗
AEρτCe

, G2 � K0
AEρCe

, q1 � γ 2T0t∗2

K0ρ
, q2 � −αT Egt∗

dnρτCe
, q3 � dnK0κt∗

αT ρCe AE
,

q4 � K0
ρCek

, C2
L � μ

ρ
, C2

T � 2μ+λ
ρ

, β2 � C2
T

C2
L

, δn � (2μ + 3λ)dn , t∗ � K0
ρCeC2

T
, 	0 � I0γ ′K0

2πa2t20
,

	∗ �
[
1 + τq (1 − t

t0
)
]
e
−

[
z2

r2 + t
t0

]
.

Where q1 and q2 are coupling parameters which reprsent the thermoelastic and thermo-
energy (novel parameter) effects, respectively. On the other hand, the quantity q3 represents
the effect of electricity conduction and named thermoelectric coupling parameter.
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The stress–strain equation in non-dimension can be rewritten as follows:

σxx � (2μ + λ)

μ

∂2 ∐
∂x2 +

λ

μ

∂2 ∐
∂z2 + 2

∂2ψ

∂x∂z
− (2μ + λ)

μ

((
1 + τθ

∂

∂t

)
T̂ + C)

)
, (28)

σzz � (2μ + λ)

μ

∂2 ∐
∂z2 +

λ

μ

∂2 ∐
∂x2 − 2

∂2ψ

∂x∂z
− (2μ + λ)

μ

((
1 + τθ

∂

∂t

)
T̂ + C

)
, (29)

σxz � ∂2ψ

∂z2 + 2
∂2 ∐
∂x∂z

− ∂2ψ

∂x2 . (30)

4 Solution of the problem

In our analysis, the wave propagation is taken in 2D deformation, in this case all calculations
must be obtained in the direction parallel to xz-plane. The harmonic wave plane propagation
method can be used, the solutions of the physical quantities can be represented as [18]:

[∐
, ψ, φ, T̂ , σi j ,C

]
(x, z, t) �

[ ∗∐
(x), ψ∗(x), φ∗(x), T̂ ∗(x), σ∗

i j (x),C∗(x)

]
exp(ωt + ibz).

(31)

The parameter ω is the complex circular time–frequency, i is the imaginary unit. The wave
propagation is b which it taken in the direction of propagation (z-direction). The quantities∐∗(x), ψ∗(x),C∗(x), φ∗(x), T̂ ∗(x) and σ ∗

i j (x) are the amplitude of the main physical quanti-
ties in this problem. Using the normal mode method which is defined in Eq. (31) of the main
Eqs. (24)–(27) yields:

(D2 − α1)C∗ + ε3 T̂
∗ � 0, (32)

(D2 − s2)T̂ ∗ + s4C
∗ + α2(D2 − b2)

∗∐
� −	0	̃e−γ ′x , (33)

(D2 − α3)
∗∐

+gDψ∗ − s5 T̂
∗ − C∗ � 0, (34)

(D2 − α4)ψ∗ − gD
∗∐

� 0. (35)

On the other hand, the harmonic wave method can be applied of stresses-strain relations
(28)–(30), yield:

σ ∗
xx � α5D

2
∗∐

−α6 b2
∗∐

+2ibDψ∗ − α5( T̂ ∗ + C∗), (36)

σ ∗
zz � −α5b

2
∗∐

+α6D
2

∗∐
−2ibDψ∗ − α5(T̂ ∗ + C∗), (37)

σ ∗
xz � 2ibD

∗∐
−(D2 + b2)ψ∗. (38)

where D � d
dx , α1 � b2 + G1 + ωG2,α2 � q1ω(1 + τqω),α3 � b2 + ω2, α4 � b2 +

ω2β2,s4 � q2
s5

,α6 � λ
μ

, s2 � b2 + s3, s3 � ω(1+τqω)
s5

, s5 � (1 + τθω), α5 � (2μ+λ)s5
μ

,

	̃ � 	∗ exp(−ωt − ibz).
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Using the eliminate technique in terms of the amplitudes T̂ ∗(x),
∐∗(x), C∗(x) and

ψ∗(x) which are represented into the four Eqs. (32)–(35), therefore, the non-homogenous
ordinary differential equation from eighth order in terms of �∗(x) can be get as:

[D8 − ED6 + FD4 − GD2 + H ]
∗∐

(x) � −� exp(−γ ′x). (39)

where the coefficients of the above equation take the form:

ξ1 � s5α4 + q3, ξ2 � α4 + α3g
2, ξ3 � α3α4, E � ξ2 + α1 + s2 − s5α2,

F � ξ3 + α1s2 + ξ2(α1 + s2) − s4q3 − α2(ξ1 + s5(b2 + α1)),

H � ξ3(α1s2 − s4q3) − α2α1b
2ξ1,

G � ξ3(α1 + s2) + ξ2(α1s2 − s4q3) − α2(ξ1α1 + b2(ξ1 + s5α1)),

� � (γ ′2 − α1)
[
(γ ′2 − α3) + g2γ ′2]	0	̃.

The factorization form of the differential Eq. (39) can be rewritten as:

(
D2 − 	2

1

)(
D2 − 	2

2

) (
D2 − 	2

3

) (
D2 − 	2

4

) ∗∐
(x) � −� exp(−γ ′x). (40)

The parameters 	2
n (n � 1 , 2, 3, 4) are the roots of the homogenous solution of Eq. (39).

On the other hand, the homogenous characteristic equation of Eq. (40) can be represented
as:

k8 − Ek6 + Fk4 − Gk2 + H � 0. (41)

However, the general solution form of Eq. (40) with the non-homogeneity property and
bounded at x → ∞ which takes the following form:

∗∐
(x) �

4∑
n�1

Nn(b, ω) exp(−	nx) + L1� exp(−γ ′x). (42)

The value of the parameter L1 can obtained as: L1 � − 1
γ ′8−Eγ ′6+Fγ ′4−Gγ ′2+H

. By the
same method, the other quantities can be represented as:

T̂ ∗(x) �
4∑

n�1

N ′
n(b, ω) exp(−	nx) + L2� exp(−γ ′x), (43)

C∗(x) �
4∑

n�1

N ′′
n (b, ω) exp(−	nx) + L3� exp(−γ ′x), (44)

ψ∗(x) �
4∑

n�1

Nm
n (b, ω) exp(−	nx) + L4� exp(−γ ′x). (45)

where L2 � − ξ3
ξ1(γ ′8−Eγ ′6+Fγ ′4−Gγ ′2+H )

, L3 � − ε3ξ3
α1ξ1(γ ′8−Eγ ′6+Fγ ′4−Gγ ′2+H )

, L4 �
− g

α4H (γ ′8−Eγ ′6+Fγ ′4−Gγ ′2+H )
.
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The displacement components can be obtained from the amplitude of the two the potential
functions �∗(x) and ψ∗(x) as:

u∗(x) � D
∗∐

+i bψ∗

u∗(x) � −
4∑

n�1

Nn(b, ω) 	ne
−	n x + ib

(
4∑

n�1

N ′′′
n (b, ω) e−	n x + (L4 − γ ′L1

)
� exp(−γ ′x)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(46)

w∗(x) � i b
∗∐

−Dψ∗

w∗(x) � ib(
4∑

n�1

Nn(b, ω) e−	n x + (L1 − L4γ
′)� exp(−γ ′x) +

4∑
n�1

knN
′′′
n (b, ω) e−	n x

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(47)

The parameters Nn, N ′
n ,N ′′

n and N ′′′
n are unknown on the other hand they depend on the

values of the wave number b and ω.

The relations between Nn, N ′
n ,N ′′

n and N ′′′
n can be detriment from the Eqs. (32)–(35),

which yield:

N ′
n(b, ω) � H1nNn(b, ω), n � 1, 2, 3, 4, (48)

N ′′
n (b, ω) � H2nNn(b, ω), n � 1, 2, 3, 4, (49)

N ′′′
n (b, ω) � H3nNn(b, ω), n � 1, 2, 3, 4. (50)

where H1n � (	4
n−ξ2	2

n+ξ3)
(s5	2

n−ξ1)
, H2n � − q3(	4

n−ξ2	2
n+ξ3)

(	2
n−α1)(s5	2

n−ξ1)
, H3n � g	n

	2
n−α4

.

In this case, the complete solutions by the unknown parameters Nn for the amplitudes
quantities of the main quantities can be represented as:

T̂ ∗(x) �
4∑

n�1

H1n Nn(b, ω) exp(−	nx) + L2� exp(−γ ′x), (51)

C∗(x) �
4∑

n�1

H2nNn(b, ω) exp(−	nx) + L3� exp(−γ ′x), (52)

ψ∗(x) �
4∑

n�1

H3nNn(b, ω) exp(−	nx) + L4� exp(−γ ′x). (53)

σ ∗
xx �

4∑
n�1

hn Nn(b, ω) exp(−	nx) − ς1� exp(−γ ′x), (54)

σ ∗
zz �

4∑
n�1

h′
n Nn(b, ω) exp(−	nx) − ς2, (55)

σ ∗
xz �

4∑
n�1

h′′
n Nn(b, ω) exp(−	nx) − ς3� exp(−γ ′x), (56)

u∗(x) � −
4∑

n�1

(	n + ibH3n)Nn(b, ω) e−	n x + (L4 − γ ′L1)� exp(−γ ′x), (57)

w∗(x) �
4∑

n�1

(ib + 	nH3n)Nn(b, ω) e−	n x + (L1 − L4γ
′)� exp(−γ ′x). (58)
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where hn � α5	2
n −α6b2 − 2ib	nH3n −α5(H1n + H2n),ς1 � −α6b2 + α5(γ ′2 − 1) − 2ib−

γ ′L4 + L2 + L3), ς2 � −α6b2 + α5(γ ′2 − 1) − 2ib − γ ′L4 + L2 + L3), ς3 � γ ′2L4 − γ ′L1,
h′′
n � 2ib	n − (b2 + 	2

n)H3n , h′
n � −α5b2 + α6	2

n − 2ib	nH3n − α5(H1n + H2n).

5 Boundary conditions

Using some mechanical and thermal loads at the boundary ( x � 0) of the medium under
investigation to determine the unknown parameters Nn(n � 1, 2, 3, 4).

1. The thermal shock condition is taken at boundary surface ( x � 0), which it can be
represented as:

T (x, z, t) � f (z, t),
∂T (0, z, t)

∂x
� 0. (59)

2. The mechanical force condition which can be expressed by the normal stress component
is taken at the surface ( x � 0) as a fallen load p∗

1 on the semiconductor medium, which
it can be expressed as:

σxx (0, z, t) � −p∗
1 � p1 exp(ωt + ibz). (60)

The parameter p1 is the mechanical force magnitude.
3. The tangential mechanical stress can be chosen as a second mechanical condition which

can be expressed as a free traction at boundary of the semiconductor as:

σxz(0, z, t) � 0. (61)

4. The plasma condition can be expressed when a photothermal transport processes occur, in
this case the mass diffusion process with carriers density can be obtained. This condition
can be expressed by a finite probability of recombination process at the boundary which
can be presented as:

∂C(0, z, t)

∂x
� s

AE
. (62)

Using these conditions when the harmonic wave technique is applied of the considered
quantities, yield:

4∑
n�1

H1n 	nNn + L2γ
′� � 0, (63)

4∑
n�1

hn Nn − ς1� � −p1, (64)

4∑
n�1

h′′
n Nn − ς3� � 0, (65)

4∑
n�1

H2n	nNn + L3�γ ′ � − s

AE
. (66)

Expanding the summation notation of the system of Eqs. (63)–(66), in this case a four
equation in terms of the unknown parameters Nn . After that, the algebraic Cramer’s rule or
the inverse of matrix method can be used to get the values of the parameters Nn . In this case,
the full solutions of the main quantities fields can be obtained.
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Using the map transform to obtain the relation between T and T̂ , in this case the following
relation can be represented as:

T̂ � 1

K0

T∫
0

K0(1 + K1T )dT � T+
K1

2
T 2 � K1

2

(
T +

1

K1

)2

− 1

2K1
, or (67)

T � 1

K1

[√
1 + 2K1T̂ − 1

]
� 1

K1

[√
1 + 2K1T̂ ∗ exp(ωt + ibz) − 1

]
. (68)

6 Validation

6.1 The theory of thermoelasticity

The generalized thermoelasticity theory is obtained when the carrier density C(
⇀
r ,t) effect

is vanished. In this case, the photothermal transport with diffusion processes is neglected and
the free electrons on the surface are not appear. On the other hand, the physical quantities
are evaluated in the theory of thermoelasticity only [9].

6.2 Different theories of the photo-thermoelasticity

The photo-thermoelasticity theory with different models according to the thermal relaxation
times can be obtained. The governing equation in a gravitational field with the effect of laser
thermal source in equation of motion and heat conduction equation based on the thermal
memories. The photo-thermoelasticity theory can be observed as follows:

• When τθ � 0, in this case the LS model is obtained and the heat conduction equation can
be expressed in the following form [44]:

ρ Ce

(
1 + τq

∂

∂t

)
∂T

∂t
� (KT,i ),i − Eg

τ
C + γ T0

(
1 + τq

∂

∂t

)
∂u,i

∂t
+

(
1 + τq

∂

∂t

)
	. (69)

• The classical coupled photo-thermoelasticity theory (CT) can be obtained when neglected
the thermal memories (τθ � τq � 0). In this case, the heat equation under the effect of
carrier density with laser heat source can be rewritten in the form [45]:

ρ Ce
∂T

∂t
� (KT,i ),i +

Eg

τ
C − γ T0

∂u,i

∂t
+ 	. (70)

• The DPL model can be appeared when τq � 1.85 × 10−12s > τθ � 1.5 × 10−12s ≥ 0.

6.3 Laser heat source effect

When the laser heat source is ignored (i.e.,	 � 0), the governing equations describe the
photo-thermoelasticity theory in a gravitational field only. However, the heat conduction
equation in DPL models can be expressed as [46]:

ρ Ce

(
1 + τq

∂

∂t

)
∂T

∂t
�

(
1 + τθ

∂

∂t

)
(KT,i ),i +

Eg

τ
C + γ T0

(
1 + τq

∂

∂t

)
∂u,i

∂t
. (71)

6.4 Gravity field impact

The photo-thermoelasticity theory with laser heat source can be obtained only when the
gravitational field is neglected (i.e.,g � 0) [29].
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Table 1 The physical constants of Si material

Name (unit) Symbol Value

Lamé’s constants (N/m2) λ 6.4 × 1010

μ 6.5 × 1010

Density (kg/m3) ρ 5504

Absolute temperature (K) T0 298

The photogenerated carrier lifetime (s) τ 5 × 10−5

The coefficient of electronic deformation (m3) dn −9 × 10−31

The carrier diffusion coefficient (m2/s) AE 2.5 × 10−3

The energy gap (eV) Eg 1.11

The coefficient of linear thermal expansion (K−1) αt 4.14 × 10−6

The thermal conductivity of the sample (W m−1 K−1) K0 150

Specific heat at constant strain (J/(kg K)) Ce 298

The recombination velocities (m/s) s 2

The pulse rise time (ps)

The radius of the laser beam (µm)

The heating energy parameter (m−1)

The absorbed energy (J)

τq � 1.85 × 10−12 s, P � 5 ξ � 0.01

τθ � 1.5 × 10−12 s p1 � 4 z � 1.2

t � 2 × 10−11 s b � 1.1 ω0 � −0.03

6.5 The variable thermal conductivity

When the thermal conductivity parameter independent to temperature (i.e.,K1 � 0, K �
K0), the elastic semiconductor problem with relaxation times is investigated with a constant
thermal conductivity in the photo-thermoelasticity theory with laser heat source [26].

7 Numerical results and discussions

The semiconductor material in this investigation can be a chosen as silicon (Si) material
to make the numerical simulation to understand the wave propagation in the medium. The
following physical constants of Si material in SI unit can be introduced in Table 1 [45, 46].
The MATLAB 2018 program is used on the personal computer with accuracy 7 digits to
make the numerical simulation. Graphically the real part of the main distributions of the
physical quantities is used. For small value of the time, the complex circular frequency of
the time can be given as ω � ω0 + iξ where ω � ω0(real) which can be expanded as
eωt � eω0t (cos ξ t + i sin ξ t).

7.1 Comparison between relaxation times

Figure 1 represents the first category which contain six subfigures express the variation
of the main physical quantity distributions (temperature (T ) (thermal distribution), two com-
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Fig. 1 The variations of the main physical fields in the direction of x-axis with different three theories under
the effect of gravitational field and laser heat source when K1 � −0.04 and q3 � −3 × 10−12

ponents of displacement (u and w) (elastic distributions), carrier density (N ) (plasma wave
distribution), normal stress force and tangent stress force (σxx ,σxz) (mechanical distributions)
in the direction of the horizontal axis x (in the dimensionless form). The category displays
the impact of different three values of thermal memories (presenting various choices of delay
parameters) according to the thermal relaxation times, namely solid lines represent the CT
theory at τθ � τq � 0, the dotted lines express the LS model when τθ � 0 and third case
which represented by the dash lines according to DPL model at τq > τθ ≥ 0. This category
is carried out numerically under the thermal impact of laser heat source in the gravitational
field. On the other hand, all calculations are made under the effect of the variable thermal
conductivity at K1 � −0.04 in weak electricity (the thermoelectric coupling parameter) at
q3 � −3 × 10−12. From this six subfigures, all physical fields depend on the variations in
the thermal memories which included in the general form of the heat (energy) equation. It
is clear that the variation of the relaxation times have a very great effect on the all physical
distribution. The main reason is due to the thermal effects (due to the impact of thermal
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Fig. 2 The variations of the main physical fields in the direction of x-axis for DPL theory with different values
of thermal conductivity parameters in a gravitational field with laser heat source when q3 � −3 × 10−12

memories) in the Fourier’s heat conduction equation, the thermal, plasma and stress-elastic
waves propagate in infinite speed as opposed behavior to finite speed in the non-Fourier case.

7.2 The influence of the variable thermal conductivity

The second figure (Fig. 2) represents six subfigures which exhibit that the variations of the
obtained physical fields in this phenomenon in the direction of the x-axis in different cases
of the thermal conductivity parameters. All numerical results are carried out for DPL model
(when delay parameters are τq > τθ ≥ 0) under the impact the thermal effect of laser
heat source and gravity field g � 9.8 in a weal electricity at the thermoelectric coupling
parameter is q3 � −6 × 10−12. The three cases represented at K1 � 0.0 which shows the
non-dependence on temperature, classical case of thermal conductivity. On the other hand,
the other two cases at negative parameters are K1 � −0.02 and K1 � −0.04. However, in
these cases the thermal conductivity depends on the temperature effect. From this category,
the conditions at the boundary are satisfied of all physical quantities. The behavior of physical
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Fig. 3 The variations of the main physical fields in the direction of x-axis for DPL theory with various values
of q3 in the gravitational field and laser heat source when K1 � −0.04

field wave distribution has the different behaviors with respect to the various values of the
thermal conductivity magnitude. The physical field distributions are very sensitive to the
change of the thermal conductivity parameter. However, any little changes occur in the
parameters of thermal conductivity lead to a great impact in the thermal, elastic, plasma and
mechanical waves propagation.

7.3 The electrical conduction influence

Figure 3 which represents six subfigures shows the influence of the different values of the
thermoelectric coupling parameter q3 on the physical quantity distributions when they studied
in the direction of the x-axis. The obtained results are made numerically when delay param-
eters are τq > τθ ≥ 0 (DPL theory) under the effect of input laser heat source with gravity
field impact g � 9.8 when the thermal conductivity depends on temperature at K1 � −0.08.
From this category, the values of all physical field distributions investigated increase with
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Fig. 4 The variations of the main physical fields in the direction of x-axis for DPL theory in two cases with
gravity field and without it under the effect laser heat source when q3 � −3 × 10−12 and K1 � −0.04

an increase in the thermoelectric coupling parameter. However, the thermoelectric coupling
parameter has a significant impact on the physical field distributions. All the amplitude of
physical field distributions (T , u, w, N , σxx and σxz) match to the zero line with an increase
in the distance x .

7.4 The impact of gravity field

Figure 4 which represents six subfigures exhibits the influence of the gravitational field on
the wave distributions of thermal T , elastic (u and w), plasma N and mechanical (σxx , σxz)
in the direction of the x-axis. In this case, a two cases of gravity (g � 0.0 and g � 9.8) are
studied. All numerical calculations are made when delay parameters are τq > τθ ≥ 0 (DPL
theory) with input laser heat source when q3 � −3 × 10−12, when the thermal conductivity
(K1 � −0.04) depends on the temperature. From this category, the gravitational field has
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Fig. 5 The variations of the main physical fields in the direction of x-axis for DPL theory in two cases, WOLHP
and WLHP in gravitational field when q3 � −3 × 10−12 and K1 � −0.04

a great impact on all physical distributions and causes vary in movement of the waves. All
physical field distributions have a great change in case of the presence of the gravity field.

7.5 Effect of internal steady heat source

Figure 5 which represents six subfigures shows the changes of the physical quantity dis-
tributions in the direction of the x-axis at two different cases of input laser heat source.
The first case in the presence of input laser heat source (WLHS) and the other case in the
absent of the input laser heat source (WOLHS). All obtained results are made numerically
under the impact gravity field when the delay parameters are τq > τθ ≥ 0 (DPL theory) at
q3 � −3 × 10−12 when the thermal conductivity depends on temperature at K1 � −0.04.
The presence of input laser heat source WLHS affects on all physical fields investigated
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Fig. 6 The variations of the main physical fields in 3D (x and z) for DPL theory with laser heat source under
the effect of the gravitational field when q3 � −3 × 10−12 and K1 � −0.04

and increase the wave propagation. However, the presence of input laser heat source (pulses)
causes an increase in the inside particles movement and the internal collisions of the particles.

7.6 Three-dimensional representation

Figure 6 which represents a six subfigures shows the variation of the physical wave distri-
butions with the x-axis and the vertical axis z (three-dimensional (3D) representation). All
numerical results in this category are carried out when a delay parameters are τq > τθ ≥ 0
(DPL theory) under the effect of gravity field in weak electricity conduction q3 � −3×10−12

in the context of the effect of the variable thermal conductivity K1 � −0.04 with input laser
heat source. The magnitude values of the physical field distributions change with the change
of the horizontal distance x and the vertical distance z axis and vanished with the increasing
of the axial x and z.
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8 Conclusion

The main objective of this work is to focus on studying many parameters on the physical field
distributions in the context of the photo-thermoelasticity theory of semiconducting medium.
The problem is studied under the effect the various delay parameters with the CT, LS, and
DPL models (different thermal relaxation times), various thermal conductivity parameters,
gravity field and input laser heat source during electrical conduction. The harmonic wave
technique is used to get the main physical distributions. Through the discussion, the delay
parameters with DPL model (memories theory) have a significant effect and play an important
role to understand the wave propagation of the main fields. The thermal conductivity when it
changes (depends on the linear form of temperature) is clear to modify the wave propagations.
On the other hand, the thermoelectric coupling parameters have an impact role on the wave
propagations and used to improve of the physical field distributions. In the presence of
gravitational field, input laser heat source is very sensible form in the physical quantities
under investigation. The investigated results give the researches and engineers which they
work in the geology, mechanical engineering and petroleum extracting ability to design and
manufacture different semiconductor devices and reduce the cost of industries.
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