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Abstract The objective of the present paper is to study four-dimensional weakly Ricci sym-
metric spacetimes (WRS)4 with nonzero constant Ricci scalar. We prove that such a (WRS)4

satisfying F(R)-gravity field equations represents a perfect fluid with vanishing vorticity.
Some energy conditions are studied under the current setting to constrain the functional form
of F(R). We examine a couple of popular toy models in F(R)-gravity, F(R) = eαR where
α is constant and F(R) = R − β tanh(R), β is a constant. We also find that the equation
of state parameter (EoS) in both models supports the universe’s accelerating behavior, i.e.,
ω = −1. According to the recently suggested observations of accelerated expansion, both
cases define that the null, weak, and dominant energy conditions justify their requirements
while the strong energy conditions violate them.

1 Introduction

Einstein’s field equations (EFE)

Ri j − R

2
gi j = κ2Ti j , (1)

where κ2 = 8πG, G being Newton’s gravitational constant and R = Ri
i the Ricci scalar,

imply that the energy-momentum tensor Ti j is of vanishing divergence. This requirement is
satisfied if Ti j is covariantly constant. Chaki and Ray showed that a general relativistic space-
time with covariant-constant energy-momentum tensor is Ricci symmetric, that is, ∇i R jl = 0
[1]. Generalizing this concept, in [2] Tamássy and Binh introduced the notion of a weakly
Ricci symmetric manifold (WRS)n as a non-flat Riemannian manifold of dimension n > 2
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whose Ricci tensor Ri j of type (0, 2) is not identically zero and satisfies the condition

∇i R jl = Ai R jl + Bj Rli + Dl Ri j , (2)

where Ai , Bi , Di are three nonzero 1-forms.
General relativity models the universe as a four-dimensional smooth, connected, para-

compact, Hausdorff spacetime manifold with a Lorentzian metric of signature (−,+,+,+).
A Lorentzian manifold is said to be a weakly Ricci symmetric spacetime if the Ricci tensor
satisfies (2).

A compact, orientable (WRS)n of constant Ricci scalar without boundary admitting a non-
isometric conformal transformation was shown to be isometric to a sphere [3]. The authors
also obtained a sufficient condition for a compact, orientable (WRS)n without boundary to
be conformal to a sphere in En+1. A conformally flat (WRS)4 with nonzero Ricci scalar
is proved to be a Robertson–Walker spacetime [4]. Shaikh and Kundu [5] proved some
necessary and sufficient conditions for a warped product manifold to be (WRS)n and thus
produced a condition for a Robertson–Walker spacetime to be (WRS)4. Recently, Mantica
and Molinari used Lovelocks identity to discuss some general properties of Ai , Bi and Di

and proved that in a (WRS)n , Bi = Di if the Ricci tensor is non-singular [6]. A conformally
flat perfect fluid (WRS)4 spacetime obeying EFE without cosmological constant and having
the basic vector field of (WRS)4 as the velocity vector field of the fluid is infinitesimally
spatially isotropic relative to the velocity vector field [7]. A non-Einstein quasi-conformally
flat (WRS)n was shown to be K -special conformally flat and isometrically immersed in
En+1 as a hypersurface [8]. De et al. [4,7] published several interesting results about curva-
ture conditions in a (WRS)n spacetime considering Bi �= Di . The first author [9] recently
investigated a (WRS)4 spacetime satisfying EFE considering Bi �= Di . Several examples of
(WRS)n are present in the literature.

EFE are unable to explain the late time inflation of the universe without assuming the
existence of some yet undetected components abbreviated as dark energy. This motivated
some researchers to extend it to get some higher-order field equations of gravity. One of
these modified gravity theories is obtained by replacing the Ricci scalar R in the Einstein–
Hilbert action with an arbitrary function F(R) of R. Of course the viability of such functions
is constrained by several observational data and scalar-tensor theoretical results. Additionally
we can always propose some phenomenological assumption about the form of the function
F(R) and later verify its validity from the present viability criteria.

The matter content in EFE is more often assumed to be a perfect fluid continuum. Let ui
denote a unit time-like vector. Then the spatial part hi j of the metric gi j can be defined as
hi j = gi j +uiu j so that hi j ui = 0. hij thus can be called the projection operator orthogonal to

the vector ui . The energy momentum tensor Ti j of type (0, 2) is given by Ti j = phi j +ρuiu j ,

where ρ = Ti j ui u j and p = Ti j hi j are the energy density and the isotropic pressure,
respectively, ui is called the four-velocity vector of the fluid. The expansion scalar is given
by θ = θi j hi j = ∇l ul . The shear is given by a symmetric tensor si j = θi j − 1

3hi jθ and the
vorticity by an anti-symmetric tensor Ωi j = ∇[l uk]hki h

l
j . Both shear and vorticity tensors

are orthogonal to ui .
In addition, we assume that p and ρ are related by an equation of the form p = ωρ.

Moreover, if p = ρ, then the perfect fluid is termed as stiff matter. The stiff matter era
preceded the radiation era with p = ρ

3 , the dust matter era with p = 0 followed by the
dark matter era with p = −ρ [10]. There are some works on energy conditions in different
gravity models, in which the model parameters are often constrained by the equation of state
parameter resulting in an accelerating universe ([11,12]).
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The present paper is organized as follows: After the introduction, in Sect. 2 we study
weakly Ricci symmetric spacetimes with constant Ricci scalar which satisfies F(R)-gravity
equations. We show that the perfect fluid is vorticity free. In the next section, we discuss
the energy conditions in such a setting, followed by some toy models of F(R)-gravity,
investigated in (WRS)4 with constant R.

2 (WRS)4 satisfying F(R)-gravity

This section is devoted to study weakly Ricci symmetric spacetimes, so the covariant deriva-
tive of Ri j satisfies (2). If we denote vi = Bi − Di , (2) gives us

0 = v j R
l
i − R jiv

l , (3)

which on contraction over i, j gives

0 = vi Rl
i − Rvl . (4)

Further, by transvecting with v j in (3), we get

0 = v jv j R
l
i − v j R jiv

l , (5)

which by (4) reduces to

0 = v jv j R
l
i − Rviv

l . (6)

Therefore, R = 0 if and only if either Rl
i = 0 which is inadmissible by the definition of

(WRS)4 or Bi −Di = vi = 0. So throughout the study, we strictly assume that the spacetime
is not scalar flat. Moreover, we can express Ri j = −Rviv j , where vi = Bi −Di is considered
to be unit timelike.

We consider a modified Einstein–Hilbert action term [14],

S = 1

κ2

∫
F(R)

√−gd4x +
∫

Lm
√−gd4x,

where F(R) is an arbitrary function of the Ricci scalar R, Lm is the matter Lagrangian
density, and we define the stress-energy tensor of matter as

Ti j = − 2√−g

δ(
√−gLm)

δgi j
.

By varying the action S of the gravitational field with respect to the metric tensor compo-
nents gi j and using the least action principle, we obtain the field equation

FR(R)Ri j − 1

2
F(R)gi j + (gi j� − ∇i∇ j )FR(R) = κ2Ti j , (7)

where � represents the d’Alembertian operator, FR = ∂F(R)
∂R . Einstein’s field equations can

be reawakened by putting F(R) = R. For a constant Ricci scalar, we can express the above
field equations (7) as follows:

Ri j − R

2
gi j = κ2

FR(R)
T eff
i j , (8)

where

T eff
i j = Ti j + T curv

i j , T curv
i j = F(R) − RFR(R)

2κ2 gi j .
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Remembering the term κ2 = 8πG, the quantity Geff = G
FR(R)

can be regarded as the effective
gravitational coupling strength in analogy to what is done in Brans–Dicke type scalar-tensor
gravity theories, and further the positivity of Geff (equivalent to the requirement that the
graviton is not a ghost) imposes that the effective scalar degree of freedom or the scalaron
term fR(R) > 0.

If a (WRS)4 satisfies (8), we can express

T eff
i j = − RFR(R)

κ2 viv j − RFR(R)

2κ2 gi j , (9)

giving peff = p + F(R)−RFR(R)

2κ2 and ρeff = ρ − F(R)−RFR(R)

2κ2 .

Thus beside the usual relation T = RFR(R)−2F(R)

κ2 , between the trace of the energy momen-
tum tensor and the geometry of the spacetime, under the present situation, this particular Ti j
denotes a perfect fluid type energy-momentum tensor whose isotropic pressure p = − F(R)

2κ2

and density ρ = F(R)−2RFR(R)

2κ2 satisfy some specific relations with the geometry of the
spacetime. This leads to our first result:

Theorem 1 In a (WRS)4 with constant R satisfying F(R)-gravity, the matter content is
a perfect fluid with four-velocity vector vi ; constant isotropic pressure p = − F(R)

2κ2 and

constant energy density ρ = F(R)−2RFR(R)

2κ2 .

Theorem 2 The matter content in a (WRS)4 spacetime with constant R satisfying F(R)-

gravity obeys the simple barotropic equation of state p = ωρ if and only if F(R) = σ R
1+ω
2ω .

Proof Suppose p = ωρ. Then from Theorem 1 it is quite straightforward that (1+ω)F(R) =
2ωRFR(R) or 1+ω

2ω
∂R
R = ∂F(R)

F(R)
, and thus, after integrating the equation, we get the result,

where σ is an integrating constant. ��

Corollary 1 Corresponding to the different states of cosmic evolution of the universe, we
can conclude:

– The perfect fluid denotes dark matter (ω = −1) if F(R) is a constant function of R or
alternately if the spacetime is scalar flat.

– The perfect fluid denotes stiff matter (ω = 1) if F(R) is a constant multiple of R.
– The perfect fluid denotes radiation (ω = 1/3) if F(R) is a constant multiple of R2.
– The perfect fluid cannot represent a dust era for any viable F(R).

Theorem 3 In a (WRS)4 with constant R satisfying F(R)-gravity, the matter content is
a perfect fluid either with vanishing expansion scalar, acceleration vector or vorticity or
represents a dark matter.

Proof Since R is constant, the pressure and density of the perfect fluid as expressed earlier
are constant too. Using the conservation of energy gil∇l Ti j = 0 and (9), we obtain

0 = (p + ρ){∇iv
ivl + vi∇ivl}, (10)

Since vlv
l = −1, ∇ivlv

l = 0. Hence, either p + ρ = 0, or ∇iv
i = vi∇ivl = 0.

Since a conservative vector field is always irrotational, we get the vorticity of the perfect
fluid is zero. ��
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Theorem 4 In a perfect fluid spacetime with constant R satisfying the F(R)-gravity, if the
four-velocity vector is givenbyvi , then its isotropic pressure anddensity are given respectively
by

p = − F(R)

2κ2 + FR(R)

3κ2 {R + viv j Ri j }
and

ρ = 2viv j Ri j FR(R) + F(R)

2κ2 .

Proof We have

FR(R)Ri j − F(R)

2
gi j = κ2(p + ρ)viv j + κ2 pgi j , (11)

which on contraction gives

R = 3p − ρ

FR(R)
κ2 + 2

F(R)

FR(R)
(12)

On the other hand, by transvecting with viv j on in (11), we get

viv j Ri j = κ2ρ − F(R)/2

FR(R)
. (13)

From (12) and (13), we obtain

FR(R)viv j Ri j + F(R)

2
= κ2ρ = −RFR(R) + 3κ2 p + 2F(R), (14)

which gives 3κ2 p = − 3F(R)
2 + FR(R){viv j Ri j + R}. ��

Theorem 5 If a perfect fluid spacetime with constant R satisfying F(R)-gravity obeys the
timelike convergence condition, then ρ ≥ F(R)

2κ2 , provided the four-velocity vector is vi .

Proof vi is a timelike vector; hence, timelike convergence implies that

viv j Ri j ≥ 0.

As discussed earlier, FR(R) is positive to ensure attractive gravity. Therefore, from (13) we
obtain the result. Equivalently, the result holds for 3κ2 p ≥ RFR(R) − 3F(R)

2 . ��

3 Energy conditions in a (WRS)4

While exploring the possibility of different matter sources in the field equations of gravity,
in general relativity and the extended theories of gravity, energy conditions come in handy
to constrain the energy-momentum tensor and preserve the idea that not only the gravity is
attractive but also the energy density is positive. In the case of a perfect fluid type effective
matter in the F(R)-gravity theory, the conditions are given by:

– Null energy condition (NEC): ρeff + peff ≥ 0.
– Weak energy condition (WEC): ρeff ≥ 0 and ρeff + peff ≥ 0.
– Strong energy condition (SEC): ρeff + 3peff ≥ 0 and ρeff + peff ≥ 0.
– Dominant energy condition (DEC): ρeff ± peff ≥ 0 and ρeff ≥ 0.
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Fig. 1 Density parameter for
F(R) = exp(αR) with
0.1 ≤ α ≤ 0.8 and
−0.3 ≤ R ≤ −0.1

Using (9) and a nonnegative F(R)− RFR(R), we can rewrite the conditions as the following
[13],

– Null energy condition (NEC): ρ+ p ≥ 0. In the present scenario, this gives us RFR(R) ≤
0.

– Weak energy condition (WEC): ρ ≥ 0 and ρ + p ≥ 0. In the present context, we obtain
F(R) − 2RFR(R) ≥ 0, together with RFR(R) ≤ 0

– Strong energy condition (SEC): ρ + 3p ≥ 0 and ρ + p ≥ 0. In the present context, we
obtain RFR(R) ≤ 0 when F(R) + RFR(R) ≤ 0.

– Dominant energy condition (DEC): ρ ± p ≥ 0 and ρ ≥ 0. In the present context, we
obtain F(R) − 2RFR(R) ≥ 0, together with RFR(R) ≤ 0.

Since, FR(R) > 0 and R �= 0, in our present model, RFR(R) ≤ 0 implies a negative
Ricci scalar R < 0.

4 Analysis of some toy models of F(R)-gravity in (WRS)4

Many F(R) models have been proposed in the literature. Here we consider few models of
F(R)-gravity theories to analyse our results in a (WRS)4 with constant Ricci scalar setting.

Case I: F(R) = exp(αR), α is a constant. There are some exponential models studied
so far by S. I. Kruglov and S. D. Odintsov [15,16]. The pressure and energy density for a
perfect fluid continuum reads,

p = −eαR

2κ2 and ρ = eαR(1 − 2αR)

2κ2 . (15)

It is known that the equation of state parameter (EoS) is a relationship between pressure
and energy density given by p

ρ
. It is used to study the accelerated and decelerated phase of

the universe. The universe exhibits various phases according to the various values of ω. In
the case of ω = 1

3 , the universe is governed by radiation. In the accelerated evolutionary
phase, the quintessence phase is shown by −1 ≤ ω ≤ 0 and the cosmological constant is
shown by ω = −1, i.e., ΛCDM model. The equation of EoS parameter in this case reads as
ω = 1

2Rα−1 .
The plots of density and EoS parameter are shown in Figs. 1 and 2, which depict the

positive behavior of the density parameter and EoS parameter nearly close to −1. Therefore,
the EoS parameter is considered a suitable candidate for comparing our models with ΛCDM.
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Fig. 2 EoS parameter for
F(R) = exp(αR) with
0.1 ≤ α ≤ 0.8 and
−0.3 ≤ R ≤ −0.1

Fig. 3 Energy conditions for F(R) = exp(αR) with 0.1 ≤ α ≤ 0.8 and −0.3 ≤ R ≤ −0.1

In this section, the EoS parameter is useful in constraining the model parameters to study
various energy conditions. The previous section clearly states the conditions on R to satisfy
various energy conditions. So, Fig. 3 shows the behavior of NEC, DEC, and SEC. We know
WEC is the combination of NEC and positive density. We can observe NEC, WEC, and DEC
satisfy the conditions, whereas SEC violates them. According to recent observational studies
[19], the violation of SEC depicts the accelerated expansion of the universe.

Case II: F(R) = R − β tanh(R), β is a constant. S. Tsujikawa, Appleby and Battye also
studied this type of F(R) model [17,18]. The pressure and energy density for a perfect fluid
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Fig. 4 Density parameter for
F(R) = R − β tanh(R) with
0.8 ≤ β ≤ 2.9 and
−1.5 ≤ R ≤ −1.1

Fig. 5 EoS parameter for
F(R) = R − β tanh(R) with
0.8 ≤ β ≤ 2.9 and
−1.5 ≤ R ≤ −1.1

continuum are as follows:

p = β tanh(R) − R

2κ2 and ρ = 2βR sech2(R) − β tanh(R) − R

2κ2 . (16)

The equation of state parameter in this case reads as

ω = β tanh(R) − R

−β tanh(R) + 2βR sech2(R) − R
. (17)

The plots of density and EoS parameter are shown in Figs. 4, and 5. The behavior of
density is positive, whereas the EoS parameter shows the phase transition from positive to
negative depicting a transition from radiation dominated era to the accelerated phase of the
universe. The EoS parameter is close to −1, which is consistent with the ΛCDM model.

Figure 6 shows the behavior of NEC, DEC, and SEC. So, we can observe NEC, WEC,
and DEC satisfy the conditions, whereas SEC shows the negative behavior, i.e., violating its
condition. Therefore, according to recent observational studies, the SEC’s violation depicts
the universe’s accelerated expansion.
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Fig. 6 Energy conditions for F(R) = R − β tanh(R) with 0.8 ≤ β ≤ 2.9 and −1.5 ≤ R ≤ −1.1

5 Discussion

To understand the observed accelerated cosmic expansion, modified theories of gravity have
gained considerable attention. One of the viability criteria of modified gravity theories is
its compatibility with the causal and geodesic spacetime structure, which can be addressed
through different energy conditions. In the present study, we investigate the strong, weak, null,
and the dominant energy conditions for the modified F(R)-gravity theories under a geometric
restriction of weakly Ricci symmetric type spacetimes. Nevertheless, the arbitrariness in
choosing various functional forms of F(R) are used to constrain on physical grounds the
several possible F(R) gravity theories. In two separate F(R) groups, i.e., F(R) = eαR

where α is constant, and F(R) = R − β tanh(R), where β is a constant, we explored
different energy conditions. The conditions derived in Sect. 3 are used to constrain the model
parameters in two different F(R) models. The model parameters must satisfy R < 0, α ≥ 0,
and α ≤ − 1

R in Case I to satisfy different energy conditions, whereas in Case II, R < 0
and β ≥ 0 are provided. We observed that the null, weak, and dominant energy conditions
validate their requirements when 0.1 ≤ α ≤ 0.8, −0.3 ≤ R ≤ −0.1 and 0.8 ≤ β ≤ 2.9,
−1.5 ≤ R ≤ −1.1 for the two cases, respectively. However, on the other, the strong energy
conditions show negative behavior indicating the violation of the conditions. We conclude
that the matter contained in this current setting is a perfect fluid with vanishing vorticity.
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