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Abstract Schrödinger equation with position-dependent mass (PDM) allows the identifica-
tion of quantum wave functions in a complex environment. Following the progress of this
investigation field, in this work, we consider the non-Hermitian kinetic operators associated
with the PDM Schrödinger equation. We provide a simplified picture for PDM quantum
systems that admit exact solutions in confining potentials. First, we investigate the solutions
for a sinusoidal and an exponential PDM distributions in an infinite potential well. Next, we
consider the solutions for a PDM harmonic oscillator potential associated with a power-law
PDM distribution. The results presented in this work offer a way to approach new classes of
solutions for PDM quantum systems in confining potential (bound states). Complementarily,
we interpret the quantum partition function of the canonical ensemble of a PDM system in
the context of the superstatistics, which, in turn, allows us to express the inhomogeneity of
the PDM in terms of beta distribution f (β), Dirac delta distributions for f (β), and effective
temperatures. Our results are, hereby, reported for the sinusoidal and the exponential PDM
distributions.

1 Introduction

Quantum mechanics is one of the most vibrant theories of physics that emerged in the 20th

century. Hereby, the Schrödinger equation is the cornerstone for describing non-relativistic
quantum systems involving particles within the atomic scale. The dynamical information
of such particles is assumed to be indulged in the wave function, whose squared modulus
gives the probability distribution of the particle. Applications of the Schrödinger equation for
inhomogeneous semiconductors have manifested typical features, like abrupt discontinuities
of the wave function at the heterojunctions as well as extensions of the Wannier–Slater
theorem [1], that can be well modeled by a variable mass (i.e., position-dependent mass
(PDM)) [2]. In the PDM framework, it is assumed that a PDM Hamiltonian with such
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inhomogeneity would result an ordering ambiguity problem as an attempt to compatibilize
Galilean invariance along with Hermiticity of the PDM kinetic energy operator [2–4].

Furthermore, non-Hermitian extensions of the PDM Hamiltonians with real spectra have
also been studied to allow comprehensive description of non-Hermitian PDM quantum sys-
tems (c.f., e.g., [5]). Such systems are natural generalizations of the so-called non-Hermitian
PT - symmetric quantum mechanics by Bender and Boettcher [6]. From such non-Hermitian
PDM Hamiltonians, remarkable features have been obtained for a large amount of systems
by means of generalized Schrödinger equations. Typical examples include semiconductors
[2], Bohmian quantum theory [7], bound states [8], many-body theory [9], supersymmetrical
quantum mechanics [10,11], classical field theory [12], non-Hermitian potentials [13], etc.
[14–16]. Therefore, these applications reveal that PDM quantum systems provide a way to
address systems whose non-trivial potentials lead to effective mass distributions. To elucidate
this idea, we can consider that the maximum value of a static potential can be reinterpreted
as a minimum value in the mass distribution function. Following this insight, a non-trivial
static potential generates an effective mass. Consequently, this strengthens the phenomeno-
logical point of view, which allows us to investigate the probability distributions of quantum
systems with complicated potentials. Nevertheless, solving PDM quantum systems may be a
challenge, which involves choosing a PDM Schrödinger equation representation, potential,
and/or mass distribution.

Within this scenario, there are distinct forms to describe the PDM Schrödinger equation,
all of which arise from the general form of the PDM kinetic energy operator

K̂R = 1

4

{[m(x̂)]−η p̂[m(x̂)]−1+η+ν p̂[m(x̂)]−ν

+[m(x̂)]−ν p̂[m(x̂)]−1+η+ν p̂[m(x̂)]−η
}
, (1)

proposed by von Roos [2]. Equation (1) represents the mathematical formulation of a para-
metric ordering ambiguity problem, which characterizes a large range of Hermitian systems
with position-dependent mass. Some of the most prominent kinetic energy operators avail-
able in the literature can be obtained in a straightforward manner: Ben Daniel and Duke
(BDD) [17] (η = ν = 0), Gora and Williams (GW) [18] (η = 1, ν = 0), Zhu and Kroemer
(ZK) [19] (η = ν = 1

2 ), and Li and Kuhn (LK) [20] (η = 0, ν = 1
2 ). However, Morrow et

al. [21] have shown that only the parametric ordering constraint η = ν satisfies the continu-
ity conditions of the wave function at the boundaries of the abrupt heterojunctions between
crystals. Under such parametric settings, Mustafa and Mazharimousavi [22] have shown that
η = ν = 1

4 allows the mapping of a PDM quantum Hamiltonian into the usual constant mass
Hamiltonian by means of a point canonical transformation. They have suggested the PDM
kinetic energy operator

K̂MM = 1

2
[m(x̂)]− 1

4 p̂[m(x̂)]− 1
2 p̂[m(x̂)]− 1

4 , (2)

which obviously adheres to the continuity conditions mentioned above. Very recently, how-
ever, Mustafa and Algadhi [23] have constructed the PDM momentum operator

p̂(x) = p̂ + i

4

m′(x)
m(x)

�⇒ K̂MM = 1

2

(
p̂(x)√
m(x)

)2

= 1

2
Π̂(x)2,

and consequently fixing the ambiguity parameters at η = ν = 1
4 (i.e., MM parametric

ordering). Moreover, in a straightforward manner, one may show that

[x, p̂(x)] = i
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which is in exact analogy with the textbook commutation relation [x, p̂] = i for constant
mass settings. Yet, we may map Mustafa–Mazharimousavi’s PDM kinetic energy operator

into alternative forms using an auxiliary field that allows a variable change, i.e., Φ
T−→ Ψ ,

and yields a transformation (T ) of the wave functions (see [24,25] for more details). Among
the feasibly admissible alternative forms is the non-Hermitian kinetic operator

K̂ = 1

2
p̂[m(x̂)]− 1

2 p̂[m(x̂)]− 1
2 , (3)

which is, in fact, an immediate consequence of the wave function transformation mentioned

above. That is, if the transformation ΦMM

T−→ [m(x̂)]− 1
4 Ψ is used in the corresponding PDM

Schrödinger (2), it would lead to the PDM kinetic energy operator of (3). In addition, their
adjoint form was recently reported for PDM quantum systems in [26,27]. In the current
proposal, we shall show that this representation allows us to find generalized classes of
solutions in confining potentials framework. To the best of our knowledge, the methodology
as well as the results of the current study has never been reported elsewhere.

In this paper, we provide a thorough analysis of the PDM Schrödinger equation associated
with kinetic operator shown in Eq. (3). In so doing, we organize our analysis in the following
order. In Sect. 2, we contextualize the Schrödinger equation in the PDM framework and show
that our approach satisfies the conservation equation for probability density. Moreover, we
use a change of variable (x → y(x)) that allows us to rewrite the PDM Schrödinger equation
in a simplified picture and find new classes of exact solutions. In Sect. 3, we solve for the one-
dimensional infinite potential well by considering an arbitrary PDM, m(x). Therefore, we
present explicit solutions for two types: a sinusoidal and an exponential PDM distributions. In
Sect. 4, we solve for a PDM harmonic oscillator like potential manifested by a power-law-type
PDM distribution. Next, in Sect. 5 we study the quantum partition functions of the canonical
ensembles of PDM systems in terms of associated superstatistical partition functions that
accounts for the heterogeneity of the PDM expressed by means of local inverse temperatures
β. Finally, in Sect. 6 we draw our conclusions and outline some perspectives.

2 Theoretical formulation and connections

Let us begin our analysis with the PDM kinetic operator of (3) in the corresponding PDM-
Hamiltonian operator

Ĥ(x̂, p̂) = 1

2
p̂[m(x̂)]− 1

2 p̂[m(x̂)]− 1
2 + V (x̂)

= 1

2m0
P̂2

ζ + V (x̂), (4)

with P̂ζ = p̂ ζ(x̂) and ζ(x̂) = √
m0/m(x̂). Consequently, the PDM Schrödinger equation

reads

i h̄
∂

∂t
Ψ = − h̄2

2

∂

∂x

(
1√
m(x)

∂

∂x

Ψ√
m(x)

)
+ V (x)Ψ, (5)

where Ψ = Ψ (x, t) is the quantum wave function. Multiplying, from the left, Eq. (5) by Ψ ∗,
and the conjugate of Eq. (5) by Ψ , we obtain in a straightforward subtraction procedure the
following result
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i h̄
∂

∂t

{
Ψ ∗Ψ

} = −Ψ ∗ h̄2

2

∂

∂x

(
1√
m(x)

∂

∂x

Ψ√
m(x)

)

+Ψ
h̄2

2

∂

∂x

(
1√
m(x)

∂

∂x

Ψ ∗
√
m(x)

)
. (6)

Moreover, multiplying (from the left) both sides of (6) by
√
m0/m(x), we obtain (under

PDM settings) the continuity equation

∂

∂t
ρ(x, t) = − ∂

∂x
J (x, t). (7)

The PDM probability density function is given by

ρ(x, t) =
√

m0

m(x)
Ψ ∗(x, t)Ψ (x, t), (8)

and the PDM probability current is

J = √
m0

h̄

2i

(
Ψ ∗

m(x)

∂

∂x

Ψ√
m(x)

− Ψ

m(x)

∂

∂x

Ψ ∗
√
m(x)

)
. (9)

Hence, Eq. (5) preserves the probability (i.e.,
∫
Ω

ρ(x)dx = 1; Ω ⊂ R), and thus, the
conservation law is satisfied. It is worth to note that the positivity of the PDM probability
density ρ(x, t) (8) is guaranteed by the factor

√
m0/m(x) > 0.

In order to analyze Eq. (5) in a simplified picture, we consider the following change of
variable

y(x) =
∫ x

√
m(x ′)
m0

dx, (10)

studied in classical and quantum contexts [26,28–30] and also in statistical physics [31].
Obviously, y(x) → x as m(x) → m0 and the transformed system, along with its boundary
conditions, returns back to the traditional constant mass Schrödinger settings. By means of
the variable y, we can express (5) with a modified wave function Ψ̃ (y, t), as

i h̄
∂

∂t
Ψ̃ (y, t) = − h̄2

2m0

∂2

∂y2 Ψ̃ (y, t) + V (y))Ψ̃ (y, t), (11)

where V (y) = V (y(x)) is the effective PDM potential and Ψ̃ (y, t) = Ψ
√
m0/m(x). The

mapping, through (10), between the PDM system in (5) and the constant mass system in (11) is
clear, therefore. Yet, the two systems admit isospectrality, which is an immediate consequence
of the substitutions Ψ̃ (y, t) = ψ̃(y)φ(t) in (11) and Ψ (x, t) = Ψ (x)φ(t) in (5), with
φ(t) = e−i Et/h̄ . In the most simplistic language, in short, all well-known available solutions
(eigenvalues and eigenfunctions) of the standard constant mass Schrödinger equation can be
implemented for solving

Eψ̃(y) = − h̄2

2m0

∂2

∂y2 ψ̃(y) + V (y)ψ̃(y), (12)

corresponding to (11), regardless of the PDM distribution function. Posteriorly, we expose
and report some relevant examples by considering confining potentials and rich classes of
PDM distributions.
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2.1 Alternative PDM Hamiltonians and PDM probability density correlations

Here, we discuss the connections of the PDM Schrödinger equation (5) with other parametric
orderings. We start with Mustafa–Mazharimousavi’s ordering and consider a transformation
of the form Φ(x, t) = 4

√
m0/m(x)Ψ (x, t) in (5), and we obtain

i h̄
∂Φ

∂t
= − h̄2

4
√
m(x)

∂

∂x

(
1√
m(x)

∂

∂x

Φ
4
√
m(x)

)
+ V (x)Φ, (13)

whose PDM-Hamiltonian operator is

Ĥ1 = 1

2
[m(x̂)]− 1

4 p̂[m(x̂)]− 1
2 p̂[m(x̂)]− 1

4 + V (x̂).

= 1

2m0
Π̂2

ζ + V (x̂), (14)

in which

Π̂ζ = 1

2
(P̂†

ζ + P̂ζ ) =
√

ζ(x̂) p̂
√

ζ(x̂)

is the so-called PDM pseudo-momentum operator (or the PDM Noether momentum operator)
[22]. Unavoidably at this point, one has to mention that Bagchi et al. [32] have used a similar
operator in their shape invariance study of PDM systems. However, our operator Π̂ζ should
not be confused with that of Bagchi et al.’s [32]. The operator π̂ = √

f (α; x) p̂√ f (α; x) of
Bagchi et al. is used to replace the standard momentum operator p̂ = −i∂/∂x , to serve for
their supersymmetric treatment, and is associated with an effective potential Veff (b; x) (see
the effective potential in Eq. (2.7) in Ref. [32]) which is still ambiguity parameters dependent,
whereas our approach is based on the PDM momentum operator (discussed above and in
comprehensive details in [23]) and our interaction potential in (14) is only PDM-deformed
potential and is not given in terms of the ambiguity parameters (c.f., e.g., [33,34] and related
references cited therein). Strictly speaking, our effective potential would be found from
Bagchi et al.’s [35] effective potential (3) and (4) for α = −1/4, β = −1/2. It should be,
therefore, clear that our approach is completely different than that of Bagchi et al. [32].

Next, we can obtain another adjoint representation of Eq. (5) through the transformation
Λ(x, t) = 4

√
m0/m(x)Φ(x, t) = √

m0/m(x)Ψ (x, t). This transforms (13) into

i h̄
∂Λ

∂t
= − h̄2

2

1√
m(x)

∂

∂x

(
1√
m(x)

∂

∂x
Λ

)
+ V (x)Λ, (15)

which corresponds to yet another alternative PDM-Hamiltonian operator

Ĥ2(x̂, p̂) = 1

2
[m(x̂)]− 1

2 p̂[m(x̂)]− 1
2 p̂ + V (x̂)

= 1

2m0
(P̂†

ζ )2 + V (x̂). (16)

Here, P̂†
ζ is the adjoint of the operator P̂ζ used in (4), and the kinetic operator in (16) is

the adjoint form of that in Eq. (3), i.e., K̂ † = 1
2m0

(P̂†
ζ )2. Very recently, the two alternative

PDM Hamiltonians of (14) and (16) were investigated from the PDM harmonic oscillators’
point of view in Ref. [26]. Moreover, it should be noted that the linear combination of the
PDM Hamiltonian (4) and its adjoint yields ĤLK = 1

2 (Ĥ + Ĥ†), which is in fact the PDM
Hamiltonian of the Li–Kuhn’s ordering [20] (Fig. 1).
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We may now rewrite the PDM probability density function of (8) in a correlation that
indulges the connections/mappings among the alternative PDM Schrödinger equations (4),
(14), and (16) and report that

ρ(x, t) =
for (5)

︷ ︸︸ ︷
ζ(x)|Ψ (x, t)|2 =

for (13)
︷ ︸︸ ︷
|Φ(x, t)|2 =

for (15)
︷ ︸︸ ︷

1

ζ(x)
|Λ(x, t)|2, (17)

with ζ(x̂) = √
m0/m(x̂)> 0. Obviously, one would expect that the probability density

will be affected by the PDM settings as a natural mathematical consequence of the PDM
wave functions involved in this correlation (17). The first and the third terms on the R.H.S.
of (17) manifestly suggest this effect. This is yet documented in Figs. 2, 3, 4, 5, 6 and
7. Moreover, from the probability density point of view, this result suggests that all such
alternative representations are equivalent regardless of their non-Hermiticity. On the other
hand, the third term on the R.H.S. of (17) secures/guarantees the positive definiteness of our
PDM probability density.

In the following sections, we use some examples to illustrate the simplicity and applica-
bility of the our methodical proposal. We use the PDM Hamiltonians of (4) and (14) along
with the transformed Schrödinger equation (12) and show how to extract, with ease, some
well-known exact solutions for (12) to reflect on the solutions of the PDM systems of (4) and
(14). .

3 PDM particles in an infinite potential well

In this section, we consider, within the above new perspective, PDM particles in an infinite
potential well defined by

V (x) =
{

0, for x ∈ [0, L]
∞, otherwise.

(18)

This potential manifestly dictates the boundary conditions ψ(0) = ψ(L) = 0 on the wave
functions. The standard constant mass m(x) = m0 problem suggests a sinusoidal-type solu-
tion

ψn(x) =
√

2

L
sin
(nπx

L

)
�⇒ En = n2π2h̄2

2m0L2 ; n = 1, 2, 3, . . . .

Nonetheless, in order to illustrate the influence of PDM settings, we consider two examples.
The first of which is an isochronic sinusoidal PDM function, as shown in Fig. 1a,

m(x) = m0

1 + a

[
1 + 2a sin2

(
kπ

x

L

)]
; a > −1

2
, (19)

where the dimensionless parameter k is to be determined by the boundary conditions, and
a → 0 recovers the usual constant mass settings, i.e., m(x) = m0. The second one, on the
other hand, is an exponential PDM function , as shown in Fig. (1c),

m(x) = αm0

(1 − e−α)
e−α x

L , (20)

123
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that recovers the constant mass m(x) = m0 when α → 0. Both cases are illustrated in Fig.
1 and satisfy the following relation

1

L

∫ L

0
m(x)dx = m0. (21)

This relation shows that the distribution of the mass fluctuates around its mean value m0, and
it also allows us to analyze how the deformation of the mass affects the probability density
ρ(x, t).

3.1 An isochronic Sinusoidal PDM in infinite potential well

Here, we consider the PDM in Eq. (19) and substitute it in Eq. (10) to obtain the new
coordinate

y(x) = L

πk
√
a + 1

E
(

sin

(
kπx

L

)
;√−2a

)
, (22)

where E is the incomplete elliptic integral of the second kind. By employing this change
of variable in (11), we elucidate the dynamics of the problem at hand. Therefore, we must
rewrite the boundary conditions in the new variable y(x) as

ψ̃ (0) = 0 and ψ̃ (y(L)) = 0. (23)

At this point, moreover, one should notice that as a → 0, not only the PDM collapses into
m(x) = m0 but also y(L) = L (by virtue of (10) and as a natural consequence of returning
back to the usual boundary conditions of the constant mass problem of (18)). Hence, in a
straightforward manner, one can show that the condition y(L) = L manifestly introduces the
restriction that k = 1/2. Considering these boundary conditions, the solution of (11) results
in

ψ̃n(y) = An sin

(
nπ

y(L)
y

)
, (24)

and the energy spectra

En,a = n2π4h̄2

8m0L2

(a + 1)

E
(√−2a

)2 , (25)

where E
(√−2a

)
is the complete elliptic integral. Obviously, this result recovers the energy

levels of the standard constant mass at the limit a → 0. That is,

En = lim
a→0

En,a = n2π2h̄2

2m0L2 .

The effect of the PDM (19) on the spectra is shown in Fig. 1b where the energy levels
are infected by the PDM parameter a and abandon their regular constant textbook values
for constant mass setting. Now, we may use the correlation between the wave functions,
ψ̃n(y(x)) = √

m0/m(x)ψn(x), and report the wave functions of the PDM system (19) as

ψn(x) = Ãn(x) sin

(

nπ
E
(
sin
(

πx
2L

) ;√−2a
)

E(
√−2a)

)

(26)

123
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Fig. 1 PDM functions versus
scaled position, i.e., x/L . a
Considers the sinusoidal mass
distribution of (19) for k = 1/2
and different a values. b Shows
the effect of (19) on the energy
spectrum. c Considers the
exponential mass distribution of
(20) for different α values. d
Shows the effect of (20) on the
energy spectrum. For energies
shown in b, d, we consider
(π h̄)/(23/2L

√
m0) = 1 in Eqs.

(25) and (30) 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x/L

m
[x

/L
]/

m
0
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a = 0
a = 0.2
a = 0.45

0 1 2 3 4 5100.3

101

101.48

102

102.48

a

E
n

,a

(b)
k = 1/2

n = 1
n = 2
n = 3
n = 4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x/L

m
[x

/L
]/

m
0

(c) α = −2
α = −1
α = 0
α = 1
α = 2

−10 −5 0 5 10100.3

101

101.48

102

102.48

α

E
n

,α

(d)n = 1
n = 2
n = 3
n = 4
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Fig. 2 Probability density (8) of
the wave function versus x/L for
the sinusoidal mass (solid curves)
and the uniform mass (dashed
curves). The figures present
different cases of the fundamental
state and the first excited cases.
The a and b correspond to the
values (m0, k, n) = (1, 0.5, 1)

and (m0, k, n) = (1, 0.5, 2),
respectively

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x/L

ρ
(x

/
L
)

(a) Case 1 (n = 1)
a = −0.49
a = −0.2
a = 0 (usual)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x/L

ρ
(x

/L
)

(b) Case 1 (n = 2)
a = −0.49
a = −0.2
a = 0 (usual)

with

Ãn(x) = An√
1 + a

(
1 + 2a sin2

( π

2L
x
)) 1

2
, (27)

where An is the normalization constant. In Fig. 2a, b, we show the probability densities of the
wave functions corresponding to the standard mass case and the sinusoidal PDM for some
values of the quantum number n and the PDM parameter a. It can be seen that as the value
of a decreases, the probability density curve is amplified and pends to the left toward L = 0.
This would indicate that the state becomes more localized to the left as a consequence of
PDM, which manifestly introduces a new dynamical effect on the standard quantum systems.
Similar trend is observed for the wave functions as in Fig. 3a, b. Such irregular dynamics are
nothing but a manifestation of the PDM deformation in the effective potential force field as
it adapts to PDM settings.

3.2 An Exponential PDM in infinite potential well

We now consider the exponential mass distribution of (20) (e.g., Gönül et al. [28]) and use
our transformation (10) to obtain

y(x) = 2L
√

α(1 − e−α)

(
1 − e− αx

2L

)
. (28)
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Fig. 3 Wave function multiplied
by a mass factor versus x/L for
the sinusoidal mass (see Eq. (19),
solid curves) and
uniform-standard mass
(dashed-black curve). The figures
present different cases of
fundamental state and the first
excited cases. The a and b
correspond to the values
(m0, k, n) = (1, 0.5, 1) and
(m0, k, n) = (1, 0.5, 2),
respectively

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x/L

m
1 4 0
m

−
1 4

x
ψ
1
(x

/L
)

(a) Case 1 (n = 1)
a = −0.49
a = −0.2
a = 0
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−1

0

1

2

x/L

m
1 4 0
m

−
1 4

x
ψ
1
(x

/L
)

(b) Case 1 (n = 2)
a = −0.49
a = −0.2
a = 0

Implementing the boundary conditions ψ̃ (0) = 0 = ψ̃ (y(L)) would again result in the
general solution in (24). In turn, along with ψn(x) = √

m(x)/m0ψ̃n(y(x)), this allows us to
find

ψn(x) = An

√
αe− α

2
x
L

(1 − e−α)
1
2

sin

⎡

⎣nπ

(
1 − e− αx

2L

)

(
1 − e− α

2

)

⎤

⎦ , (29)

which is the wave function for the exponential PDM (20) particle moving in the infinite
potential well (18). Consequently, we obtain the energy spectra for different α values as

En,α = h̄2π2n2

8m0L2

α(1 − e−α)
(

1 − e− α
2

)2 . (30)

As before, from this result we recover the constant mass energies

En = lim
α→0

En,α = n2π2h̄2

2m0L2 .

Moreover, each value of α yields an energy spectrum. Figure 1d shows the effect of the PDM
(20) on the spectra and clearly indicates that the spectra are infected by the PDM parameter
and once again abandon the textbook constant values for the energy levels for constant mass.
Yet, again, we see that when α → 0, not only the PDM collapses into m(x) = m0 but
also y(L) = L and it allows us to recover the usual boundary conditions of the constant
mass problem of (18). In Fig. 4, we show the probability densities of the wave functions
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Fig. 4 Probability densities (8)
of the wave functions versus x/L
for the exponential PDM of (20)
(solid curves) and for the
constant mass (dashed curves). a
Shows the probability density of
the ground state and first excited
state for α = 4. b Shows the
probability densities of the
ground state for different α

values. In both figures, we
considered m0 = 1
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(b) n = 1

α = 0
α = 1
α = 2
α = 4
α = 6

corresponding to the exponential PDM and the standard constant mass for the ground and
the first excited states. Figure 5 represents the ground and first excited states wave functions
for the exponential PDM. These figures clearly show similar trends as those observed for
the PDM of (19). Namely, as the PDM parameter α increases, the probability density curves
are amplified and tend to shift to the left toward L = 0 that can be considered a natural
dynamical effect as the effective potential force field adapts to PDM settings.

4 Probability density for a power-law PDM in a PDM-oscillator potential

The harmonic oscillator potential V (x) = 1
2m0ω

2
0x

2 is not only a standard textbook potential
of pedagogical academic interest, but it is also immensely used as a model of a wide range
of applicability and research interest in classical and quantum physics (cf., e.g., [26,36] and
related references cited therein). Within the PDM settings, moreover, this potential has been
addressed through some analytical and/or numerical approaches using different parametric
settings for the von Roos PDM kinetic operators [37–39]. However, very recently, it has been
asserted that under PDM setting, the potential energy transforms/deforms in a completely
different manner than the kinetic energy (in both classical and quantum systems) (c.f., e.g.,
[26] and related references cited therein). That is, the oscillator potential would inherit a
new PDM form so that V (x) = 1

2m0ω
2
0(
∫ x √m(x ′)/m0dx ′)2 [26,37]. Consequently, if we

recollect the new variable y(x) in (10), then the PDM oscillator potential reads
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Fig. 5 Wave functions ψ̃(x/L)

(24) multiplied by a mass factor
versus x/L for the ground
(n = 1) and the first (n = 2)
excited states for the exponential
PDM (20) (solid curves) and for
the constant mass (dashed
curves), with m0 = 1 and α = 4
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(a) Case 2 (n = 1)

α = 0
α = 4
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m

−
1 4

x
ψ
1
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(b)

Case 2 (n = 2)

α = 0
α = 4

V (x) = 1

2
m0ω

2
0

(∫ x √
m(x ′)/m0dx ′

)2

⇐⇒ V (y(x)) = 1

2
m0ω

2
0 y(x)

2. (31)

We now consider a power-law-type PDM function in the form of

m(x) = m0

∣∣∣∣
x

x0

∣∣∣∣

−α

, (32)

which when substituted in (10) implies

y(x) = x

1 − α
2

∣∣∣∣
x

x0

∣∣∣∣

− α
2 ; α �= 2. (33)

This would, in turn, allow us to obtain the PDM harmonic oscillator potential (31) as

V (x) = V (y(x)) = m0ω
2
0

2x2

(2 − α)2

∣∣∣∣
x

x0

∣∣∣∣

−α

, (34)

which recovers the usual constant mass case for α → 0. At this point, one may observe that
this PDM-deformed harmonic oscillator in y-space, (31), represents the same mathematical
structure of the standard one in (12). The consequence of this is that the energy spectrum
is preserved due to a subtle balance between the deformation in the standard kinetic energy
operator and in the potential terms of the PDM Schrödinger equation. The two systems are
isospectral and share the same energy levels [26]
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Fig. 6 Wave function ψ̃(x) (35)
multiplied by a mass factor
versus x for the fundamental state
(̃n = 0) and the first excited state
(̃n = 1) to a and b, respectively.
The power-law mass distribution
(32) in Schrödinger equation is
represented by blue and violet
curves, and standard case, i.e.,
constant mass, is represented for
black curve. In both situations,
we considered ω0m0/h̄ = 1 and
x0 = 1
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Eñ = h̄ω0

(
ñ + 1

2

)
; ñ = 0, 1, 2, . . .

Within this context, we may assume the symmetry of the wave functions ψ̃(y) = ψ̃(−y)
and their asymptotic convergence limits, i.e., limy→±∞ ψ̃(y) = 0. Following the procedure
used above, this would allow us to write the PDM wave functions in x-space as

ψñ(x) = 1√
2nñ!

(
m0ω0

h̄π

) 1
4
∣∣∣∣
x

x0

∣∣∣∣

− α
2

exp

(
−m0ω0

2h̄
y(x)2

)
Hñ

(√
m0ω0

h̄
y(x)

)
, (35)

where Hñ are the Hermite polynomials and y(x) is defined in (33). For α = 0 ( i.e., m(x) →
m0), we recover the standard solution for quantum oscillators. In order to illustrate the
differences of the mass variation as a function of the position, in Fig. 6 we show the behavior
of the solution (35) for the first two quantum states, in Fig. 7 we show the same situation
from point of view of the probability density distribution.

5 PDM quantum partition function via superstatistics

In this section, we calculate the partition functions for quantum systems with PDM. Our
motivation is to interpret the heterogeneity of the PDMs (19) and (20) in the infinite potential
well in terms of a continuous superposition of the canonical ensembles of inverse temperature
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Fig. 7 Probability distribution
function versus x for the
fundamental state (̃n = 0) and the
first excited state (̃n = 1) to a and
b, respectively. The power-law
mass distribution (32) in
Schrödinger equation is
represented by blue and violet
curves, and standard case, i.e.,
constant mass, is represented for
black curve. In both situations,
we considered ω0m0/h̄ = 1 and
x0 = 1
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β. We shall, therefore, appeal to the superstatistical partition function [40,41],

Γ =
∑

n

B(En), (36)

where

B(En) =
∫ ∞

0
dβ f (β) exp(−βEn) (37)

is the superstatistical beta and f (β) is its distribution. The standard partition function is
recovered from (36) and (37) for f (β) = δ(β −β0), where β0 is constant. Next, we consider
two quantum systems: The first is for a PDM m(x) described by H̃ and the second for a
constant mass m0 described by H , with Ẽn and En their respective energies. By assuming
that H̃ is a PDM deformation of H , then it results in natural to consider that H̃ is a non-
degenerate if H is a non-degenerate one. This situation fits very well with the one-dimensional
motion and so is the case we consider here.

With the aim of linking PDM systems with superstatistics, we can represent the partition
function of H̃ by means of the superstatistical one (36) and the energies En for a suitable
f (β). In other words, we impose the condition

exp(−β0 Ẽn) =
∫ ∞

0
dβ f (β) exp(−βEn) (38)

that represents the arising of the spectrum of a PDM system, as the results of the associated
superstatistics applied over a constant mass system and given by f (β). Moreover, we see
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that (38) allows us to connect between the position-dependent mass m(x) and f (β), which
has never been reported before (to the best of our knowledge). One of the advantages of (38)
is that both the PDM Hamiltonian H̃ and the standard Hamiltonian H are arbitrary. Under
such PDM-superstatistical settings, we consider the sinusoidal PDM of (19) and exponential
PDM of (20) in the infinite potential well (18).

5.1 PDM-superstatistics for a sinusoidal and an exponential PDMs in an infinite potential
well

Here, we elaborate on the PDM-superstatistical results for the sinusoidal (19) and the
exponential (20) PDM functions, in the infinite potential well, with their corresponding
energies spectra reported above in (25) and (30), respectively. Then, equation (38) along
with the relationships Ẽn = En,a , Ẽn = En,α (given, respectively, by (25) and (30)) and
En = n2π2h̄2/2m0L2 leads to

exp

(
−β0

n2π4h̄2

8m0L2

(a + 1)

E(
√−2a)2

)
=
∫ ∞

0
dβ fsin(β) exp

(
−β

h̄2π2n2

2m0L2

)
, (39)

and

exp

⎛

⎜
⎝−β0

h̄2π2n2

8m0L2

α(1 − e−α)
(

1 − e− α
2

)2

⎞

⎟
⎠ =

∫ ∞

0
dβ fexp(β) exp

(
−β

h̄2π2n2

2m0L2

)
. (40)

Here, fsin(β) and fexp(β) are the distributions to be determined for the sinusoidal PDM
(19) and the exponential PDM (20), respectively. From (39) and (40), we see that fsin(β) and
fexp(β) are Dirac delta distributions. More precisely, using the property

g(Bβ0) =
∫ ∞

0
dβδ(β − Bβ0/A)g(Aβ) (41)

with g(β) = exp(−β),

A = h̄2π2n2/(2m0L
2),

Bsin = n2π4h̄2

8m0L2

(a + 1)

E(
√−2a)2

,

and

Bexp = h̄2π2n2

8m0L2

α(1 − e−α)
(

1 − e− α
2

)2 ,

we, respectively, obtain

fsin(β) = δ

(
β − π2(a + 1)

4E(
√−2a)2

β0

)
, (42)

and

fexp(β) = δ

⎛

⎜
⎝β − α(1 − e−α)

4
(

1 − e− α
2

)2 β0

⎞

⎟
⎠ . (43)
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Fig. 8 Shows the characteristic
temperature ratios a for the
isochronic sinusoidal PDM
function, (44), and b for the
exponential PDM function, (45)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

a

T
si
n
/
T
0

(a)

k = 1/2

−40 −20 0 20 40
0

0.2

0.4

0.6

0.8

1

α

T
ex

p
/T

0

(b)

In turn, the relationship β0 = 1/(kBT0) allows us to identify the characteristic temperatures
in (42) and (43), respectively, as

Tsin

T0
= 4E(

√−2a)2

π2(a + 1)
, (44)

and

Texp

T0
=

4
(

1 − e− α
2

)2

α(1 − e−α)
(45)

with the suffixes standing for the sinusoidal and the exponential masses, respectively. More-
over, in a straightforward manner, one can show that lima→0 Tsin = T0 and limα→0 Texp = T0,
where T0 represents the temperature for the constant mass casem0. Such limits tendencies are
also obvious in Fig. 8. Yet, we may very well observe from Fig. 8 that a PDM characteristic
temperature inherits a maximum possible value T0. Moreover, the PDM parametric effects
are observed to lower such characteristic temperatures as the mass parameters increase or
decrease far from their zero limits. Equations (44) and (45) express that the effect of a
sinusoidal mass or an exponential one can be thermodynamically mimicked by the standard
infinite potential well but with an effective temperature Tsin or Texp whose magnitudes depend
on the parameters of the corresponding mass distributions. It is worth to note that other mass
distributions could give place to beta distributions different from the Dirac delta one.
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6 Conclusions

In a broad context, we have provided a thorough analysis of non-Hermitian PDM kinetic
energy operator (K̂ in Eq. (3)) in the Schrödinger equation framework. We have shown that
our proposal satisfies the continuity equation and can be mapped into a standard Schrödinger
equation in which a PDM becomes implicitly indulged in a new scaled spatial variable
(i.e., transforming Eq. (5) into Eq. (11)). We have shown how this simplified picture of
PDM systems connects with other orderings including a Hermitian one. Our approach easily
allows to obtain solutions for PDM quantum systems in confining potentials, such as infinite
potential well and the quantum harmonic oscillator.

Moreover, we have observed that PDM particles in infinite potential well have disrupted the
traditional (i.e., constant mass) energy spectra which only explicitly depends on the principle
quantum number into some energy spectra which is of explicit dependence on the principle
quantum number as well as the PDM parameters (as documented in Fig. 1b, d, whereas for
the PDM-oscillator potential (a nonzero potential unlike the infinite potential well), we have
retrieved the exact traditional constant mass energy spectrum. Such results would basically
emphasize that a deformation in the coordinate system may very well introduce position-
dependent effective mass PDEM [25,26,32,33,42] or in short PDM.

The PDM Schrödinger equation investigated in this work presents two major remarkable
features. One of them is that the orderings investigated here allow a connection with that of
Mustafa–Mazharimousavi [22], and presumably with others like [25,26], thus showing an
equivalence from the probability density point of view. The other feature is also an advantage,
such that the solutions can be determined for general classes regardless of the explicit form
of the position-dependent mass distributions.

Regarding superstatistics, we were able to characterize the quantum partition functions
corresponding to a sinusoidal (19) and an exponential (20) PDM distributions in terms of the
superstatistical partition function of the one-dimensional infinite potential well with constant
mass. From this characterization, we have obtained Dirac delta distributions for f (β) along
with the effective temperatures corresponding to each mass distribution. For the examples
studied, we have seen that the effect of a PDM in the one-dimensional infinite potential
well implies the standard partition function of the canonical ensemble (for a constant mass
particle) but with an effective temperature given in terms of the parameters of the variable
mass.

This work opens new perspectives to approach quantum processes with position-dependent
mass as well as to study the thermodynamics of their corresponding superstatistical canonical
ensemble. For example, once the partition functions are obtained through (36) and (37), one
would be able to study some other thermodynamical properties like the Helmholtz free energy,
the mean energy, the entropy, the specific heat, etc. [43]. Yet, non-Hermitian PT -symmetric
PDM-Hamiltonians (e.g., [44,45]) are feasible applications. It has been shown that the PT -
symmetry of the non-Hermitian Hamiltonians is a sufficient and necessary condition for the
existence of the unitary time evolution [45].

Finally, our proposal offers a simple and practical method to calculate analytical solutions
for PDM Schrödinger equation discussed in (5). As an example of implementation in future
researches, we mention that the formalism presented could be applied to study unbounded
potentials and Gaussian packet of wave function evolving in time.
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