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Abstract We study the reduced energy spectrum {E (n)
i }, which is constructed by picking

one level from every n levels of the original spectrum {Ei }, in a Gaussian ensemble of random
matrix with Dyson index β ∈ (0,∞). It is shown the joint probability distribution of {E (n)

i }
bears the same form as {Ei } with a rescaled parameter γ = n(n+1)

2 β + n − 1. Notably, the

nth-order level spacing and gap ratio in {Ei } become the lowest order ones in {E (n)
i }, which

explains their distributions found separately by recent studies in a consistent way. Our results
also establish the higher-order spacing distributions in random matrix ensembles beyond
GOE, GUE and GSE and reveal a hierarchy of structures hidden in the energy spectrum.

1 Introduction

Random matrix theory (RMT) is a powerful mathematical tool for studying complex quantum
systems; it describes the universal properties of random matrix that are determined only by
the system’s symmetry while independent of microscopic details. For this reason, RMT has
been applied to various fields ranging from disordered nuclei to isolated quantum many-body
systems [1–3].

Among various statistical quantities of RMT, the most widely used ones are the distribution
of nearest level spacings {si = Ei+1 − Ei } and gap ratios {ri = si+1/si }. It is well established
that in a chaotic system, the distribution of level spacing P (s) will follow a Wigner–Dyson
distribution [4,5] (see Eq. (3) in Sect. 3), which reveals the level repulsion in a direct way.
However, when accounting P (s), an unfolding procedure is required to erase the model-
dependent information about local density of states (DOS). In contrast, gap ratios distribution
P (r) is independent of DOS and requires no unfolding procedure [6,7] and has found various
applications especially in the context of many-body localization (MBL) [7–18] .

Both the nearest level spacing and gap ratio account for the short-range level correlations.
However, long-range correlations are also important, especially in the study of MBL transition
phenomena. Actually, there’re a number of RMT models accounting for the intermediate
level statistics between Wigner–Dyson and Poisson ensembles [19–24], and some of them
are suggested to describe the level statistics in MBL transition regime [25–29], all of which
more or less describe the short-range level correlations well, while their difference can only be
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revealed when long-range correlations are concerned. Commonly, the long-range correlation
in a random matrix ensemble is described by the number variance �2 or the Dyson–Mehta
�3 statistics [5]; however, both of them are very sensitive to the concrete unfolding strategy
which has already been a source of misleading signatures [30]. Instead, it’s more direct and
numerically easier to study the higher-order level spacings and gap ratios, as have been done
in a number of recent works [28,29,31–40] .

Formally, the nth-order level spacing and gap ratio are defined as
{
s(n)
i = Ei+n − Ei

}
and

{
r (n)
i = s(n)

i+n/s
(n)
i

}
, respectively. The higher-order gap ratios are first studied in Ref. [33],

where the authors provide strong numerical evidences that P
(
r (n)

)
in a random matrix

ensemble with Dyson index β bears the same form as P (r) with a rescaled parameter

γ = n(n + 1)

2
β + n − 1, (1)

where β = 1, 2, 4 correspond to the Gaussian orthogonal ensemble (GOE), Gaussian unitary
ensemble (GUE) and Gaussian symplectic ensemble (GSE), respectively. On the other hand,
it is later proved in Ref. [39] that P

(
s(n)

)
has the same form as Wigner–Dyson distribution

with a rescaled parameter γ that is identical to the one in Eq. (1) for β ∈ (0,∞). This strongly
hints a homogeneous relation between the higher-order level spacing and gap ratio, but an
explanation is still lacking, which gives the first motivation of this work.

The second motivation comes from the recent works that encounter physical systems that
go beyond the three standard ensembles with β = 1, 2, 4. For example, the β = 3 behavior
has been found in a 2D lattice with non-Hermitian disorder [41], and the ensembles with non-
integer β are suggested to describe the level statistics in the whole region along the MBL
transition in 1D random spin system [27], while their efficiency in describing long-range
spectral correlations is controversial [29]. Therefore, it’s beneficial to have an expression for
the higher-order spacing distributions in these ensembles, which will also be offered in this
study.

In this work, we find that the key to link the higher-order level spacing and gap ratio is the
reduced energy spectrum

{
E (n)
i ≡ Ein

}
, i.e. the spectrum constructed by picking one level

from every n levels in the original spectrum {Ei }. By this construction, the nth-order level
spacing and gap ratio in

{
Ei

}
become the lowest order ones in

{
E (n)
i

}
. It will be verified that

the joint probability distribution of
{
E (n)
i

}
(to leading order) bears the same form as

{
Ei

}

with a rescaled parameter γ expressed in Eq. (1), which hence explains their distributions
by virtue of Wigner surmise. Furthermore, this rescaling relation holds for general β beyond
β = 1, 2, 4; therefore, the higher-order level spacing and gap ratio distributions in these
ensembles can be obtained accordingly, which is thus a natural extension of Ref. [33].

This paper is organized as follows. In Sect. 2 we summarize the formulas regarding the
higher-order level spacings and gap ratios, which motivates the construction of reduced
energy spectrum. In Sect. 3 we focus on the cases that

{
E (n)
i

}
has two and three levels and

provide compelling numerical evidence for the scaling of its joint probability distribution in
ensembles with general β. In Sect. 4 we provide numerical simulations for the distributions of
nearest level spacing and gap ratio in

{
E (n)
i

}
with a large number of levels and confirm their

coincidence with the higher-order ones in
{
Ei

}
. In Sect. 5 we briefly discuss the higher-order

reduced energy spectrums. Conclusion and discussion come in Sect. 6.
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2 Motivating the reduced energy spectrum

The starting point to study the spectral statistics in the Gaussian ensemble of random matrix
is the joint probability distribution (JPDT) of its energy levels, whose form is [4,5]

P (β, {Ei }) = C
∏

i< j

∣∣Ei − E j
∣∣β e−A

∑N
i=1 E2

i , (2)

where the Dyson index β ∈ (0,∞) is a continuous parameter, C and A are coefficients
correlated by the normalization condition

∫ ∏
i dEi P (β, {Ei }) = 1. It’s worth noting that

only the subset β = 1, 2, 4 are physically invariant ensembles, that is, each matrix element
is allowed to drawn from a Gaussian distribution provided the matrix being invariant under
orthogonal, unitary or symplectic transformations, while for other values of β, the JPDT
stems from a special tridiagonal random matrix (see Eq. (21) in Sect. 4).

From the JPDT in Eq. (2), we can in principle calculate any statistical quantity we want, in
particular the distribution of nearest level spacings and gap ratios. The general distributions
for them in large dimension N are complicated, while for most practical purpose it is sufficient
to adopt the so-called Wigner surmise that deals with smallest matrix that holds the quantity
of interest. For example, to study nearest level spacing it’s sufficient to consider a 2 × 2
matrix, which gives the celebrated Wigner–Dyson distribution [5]

P (β, s) = C (β) sβe−A(β)s2
, (3)

where the coefficients C (β) , A (β) are determined by the normalization conditions
∫ ∞

0
P (β, s) ds = 1,

∫ ∞

0
sP (β, s) ds = 1. (4)

It’s easy to see P (β, s → 0) ∼ sβ ; hence, β is the parameter that controls the strength of
level repulsion.

As for the nearest gap ratios {ri = si+1/si }, a Wigner-like surmise is applicable by studying
3 × 3 matrices [6], which gives

P (β, r) = 1

Zβ

(
r + r2

)β

(
1 + r + r2

)1+3β/2 (5)

where Zβ is the normalization factor determined by requiring
∫ ∞

0 P (β, r) dr = 1. It is
crucial to note that the derivations for Eqs. (3) and (5) are purely mathematical, that is,
applicable for arbitrary positive β.

For the higher-order level spacings
{
s(n)
i = Ei+n − Ei

}
, its distribution is studied in

Ref. [39] using a Wigner-like surmise that deals with (n + 1) × (n + 1) matrix, and the
result shows they follow a generalized Wigner–Dyson distribution that bears the same form
as Eq. (3) with the parameter β rescaled to γ as expressed in Eq. (1).

On the other hand, higher-order gap ratios come in two different ways, i.e. the “overlap-
ping” way [31] and “non-overlapping” way [33]. In the former case, we are dealing with

r̃ (n)
i = Ei+n+1 − Ei+1

Ei+n − Ei
= si+n + si+n−1 + · · · + si+1

si+n−1 + si+n−2 + · · · + si
, (6)

which is termed “overlapping” gap ratio since there are shared spacings between the numer-
ator and denominator, while the nth-order “non-overlapping” gap ratio is defined as

r (n)
i = Ei+2n − Ei+n

Ei+n − Ei
= si+2n−1 + si+2n−2 + · · · + si+n

si+n−1 + si+n−2 + · · · + si
. (7)
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Both these two generalizations reduce to the nearest gap ratio when n = 1, but they are very
different when studying their distributions using Wigner surmise: for non-overlapping ratio
r (n), the smallest matrix dimension is (2n + 1) × (2n + 1), while it is (n + 2) × (n + 2)

for overlapping ratios. Naively, it’s expected that P
(
r̃ (n)

)
is more complicated due to the

overlapping spacings. Indeed, the analytical form of P
(
r̃ (2)

)
was worked out in Ref. [31] and

the result is quite involving. For the non-overlapping ratios, Ref. [33] provides compelling
numerical evidence that in cases with β = 1, 2, 4, P

(
r (n)

)
bears the same form as P (r) with

the same rescaling parameter as higher-order level spacing, that is, Eq. (1).
In summary, we have

P
(
β, s(n)

)
= P (γ, s) , (8)

P
(
β, r (n)

)
= P (γ, r) , (9)

where γ is expressed in Eq. (1). For the rest of this paper, “gap ratio” will always refer to the
non-overlapping one.

The identical rescaling behavior for higher level spacing and gap ratio hints they may be
attributed to one single reason, which is found to be the reduced energy spectrum

{
E (n)
i

}
.

Formally, a reduced energy spectrum
{
E (n)
i

}
is constructed by picking one level from every n

levels in the original spectrum
{
Ei

}
, which is mathematically achieved by tracing out every

n−1 levels in between. This construction is very similar to that of the reduced density matrix
there we trace out the degrees of freedom in a subsystem; hence,

{
E (n)
i

}
is named “reduced

energy spectrum”. By this construction, the nth-order level spacing and gap ratio in
{
Ei

}
are

mapped to the lowest order counterparts in
{
E (n)
i

}
. It’s then natural to conjecture that

{
Ei

}

and
{
E (n)
i

}
(to leading order) bear the same form for their probability distributions, with the

Dyson index β for the former rescaled to γ for the latter according to Eq. (1). Therefore, by
applying Wigner surmise to

{
E (n)
i

}
, the scaling behaviors in Eqs. (8) and (9) can be explained

simultaneously. This is the main task of current work.
Before proceeding, we want to mention the relatively trivial case of Poisson ensemble.

The reduced energy spectrum in Poisson ensemble has been studied in Ref. [42] (which is
named “Daisy model” by the authors), where nth-order level spacing is shown to follow the
generalized semi-Poisson distribution

P
(
s(n) = s

)
= nn

(n − 1)! s
n−1e−ns, (10)

which reduces to the conventional Poisson distribution P (s) = exp (−s) when n = 1. For
the nth-order gap ratios, we can derive their distribution from the results in Ref. [42], that is

P
(
r (n) = r

)
= rn−1

(1 + r)2n , (11)

which reduces to the one given in Ref. [6] when n = 1. The formulas in Eqs. (8), (9), (10 )
and (11) will be used for later numerical simulations.
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3 Scaling of P
({

E(n)
i

})

By the construction of reduced energy spectrum
{
E (n)
i

}
, its formal joint probability distribu-

tion is

P
({

E (n)
i

})
=

∏

i

∫ E(i+1)n

Ein

(i+1)n−1∏

j=in+1

dE j P (β, {Ei }) . (12)

For reasons described in the previous section, we conjecture P
({

E (n)
i

})
(to leading order)

bear the same form as P ({Ei }) with the rescaled parameter γ as in Eq. (1), that is,

P
({

E (n)
i

})
∼

∏

i< j

∣∣∣E (n)
i − E (n)

j

∣∣∣
γ

e
−A′ ∑N/n

i=1

(
E (n)
i

)2

. (13)

An analytical derivation from Eqs. (12) to (13 ) for arbitrary matrix dimension N is math-
ematically challenging, only the special case with β = 2/k (k being positive integer) has
been proven rigorously in Ref. [43]. It is not our purpose to give a general proof; instead, to
explain the behaviors of the P

(
s(n)

)
and P

(
r (n)

)
in Eqs. (8) and (9), we only need to verify

Eq. (13) in the sense of Wigner surmise, that is, in the cases that
{
E (n)
i

}
has only two and

three levels, for which we will provide strong numerical evidence in the following.
First of all, the constant A′ is not important since it is only a decay rate parameter, whose

value can be tuned by global rescaling of the energy levels without affecting the distribution
of level spacing or gap ratio. Therefore, we will focus on the parameter γ that controls the
strength of level repulsion.

The ensembles with general positive β can be divided into four typical categories: (i)
β = 1, 2, 4, corresponding to the three standard Gaussian ensembles, which are of most
physical interest; (ii) β is an integer that goes beyond the three standard ensembles, for
which we choose β = 3; (iii) β is a fraction, for which we choose β = 1/3; (iv) β is an

irrational value, for which we choose β =
(√

5 − 1
)

/2 (the golden ratio). We will verify

the rescaling relation Eq. (13) in these cases.
We start with the case that

{
E (n)
i

}
has only two levels, where the rescaling in Eq. (13)

becomes

I (E0, En) =
∫ En

E0

n−1∏

i=1

dEi P (β, {Ei })

∼ |E0 − En |γ e−A′(E2
0+E2

n
)
. (14)

Denote E0 = R cos θ and En = R sin θ , and keeping R constant, we reach to

log I (θ) = γ log |cos θ − sin θ | + const. (15)

Without loss of generality, we take A = 1 and R = 1 and randomly generate 200 sets of
θ in the range [0, 2π). We then numerically calculate log I (θ) and log |cos θ − sin θ |, and
collect the results for n = 2, 3, 4, which are presented in Fig. 1. As can be seen, the log I (θ)

and log |cos θ − sin θ | shows a perfect linear dependence in all cases, with the fitted values
of γ quite close to the expected ones in Eq. (1), as summarized in Table 1.
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(b) (c)(a)

(e) (f)(d)

Fig. 1 The fitting of Eq. (15) for β = 1, 2, 3, 4, 1
3 ,

√
5−1
2 with n = 2, 3, 4. The fitted slopes are shown in the

figure legends, where the numbers in the bracket are the expected values according to Eq. (1)

Table 1 The values of γ with different β and order n, where γe is the expected value according to Eq. (1).

γ
(1)
num. and γ

(2)
num. are the values fitted from Eqs. (15) to (18); their relative errors with respect to γe are denoted

by error(1) and error(2), respectively

β n γe γ
(1)
num. Error(1) (%) γ

(2)
num. Error(2) (%)

1 2 4 4.10 2.50 4.03 0.75

3 8 8.25 3.13 8.27 3.38

4 13 13.41 3.15 13.49 3.77

2 2 7 7.14 2.00 7.20 2.86

3 14 14.29 2.07 15.10 7.86

4 23 23.37 1.61 24.75 7.29

4 2 13 13.19 1.46 13.42 3.23

3 26 26.23 0.88 27.66 6.38

4 43 43.36 0.84 46.48 8.09

3 2 10 10.16 1.60 10.42 4.20

3 20 20.24 1.20 21.35 6.75

4 33 33.39 1.18 35.46 7.45

1/3 2 2 2.11 5.5 1.91 −4.5

3 4 4.20 5.0 3.90 −2.5

4 19/3 6.71 6.0 6.25 −1.3
√

5−1
2 2 3

√
5−1
2 2.98 4.4 2.82 −1.2

3 3
√

5 − 1 5.88 3.0 5.75 0.7

4 5
√

5 − 2 9.51 3.6 9.43 2.7

Next, we consider the case that
{
E (n)
i

}
has three levels; now the rescaling in Eq. (13)

becomes

Q (E0, En, E2n)
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(b) (c)(a)

(e) (f)(d)

Fig. 2 The fitting of Eq. (18) for β = 1, 2, 3, 4, 1
3 ,

√
5−1
2 with n = 2, 3, 4. The fitted γ values are shown in

the figure legends, with the expected values according to Eq. (1) in the brackets

≡
∫ En

E0

n−1∏

i=1

dEi

∫ E2n

En

2n−1∏

j=n+1

dE j P (β, {Ei })

∼ |E0 − En |γ |En − E2n |γ |E0 − E2n |γ e−A′(E2
0+E2

n+E2
2n

)
. (16)

With the transformation to spherical coordinates

E0 = R sin θ cos ϕ, En = R sin θ sin ϕ, E2n = R cos θ (17)

and keeping R constant, we can reach to

log Q (R, θ, ϕ) = γ logG (θ, ϕ) + const. (18)

where

G (θ, ϕ) = | (sin θ cos ϕ − sin θ sin ϕ)

× (sin θ cos ϕ − cos θ)

× (sin θ sin ϕ − cos θ) |. (19)

We then perform numerical checks, where we fix R = 1 and A = 1 as before. We randomly
generate 200 pairs of (θ, ϕ) and numerically determine log Q (θ, ϕ) ≡ log Q (1, θ, ϕ) and
logG (θ, ϕ); the results are displayed in Fig. 2. As can be seen, the linear dependence between
log Q (θ, ϕ) and logG (θ, ϕ) is still perfect in all cases, and the fitted values of γ are close
to the expected ones in Eq. (1).

For convenience, we collected the theoretical and numerical values of γ in Table 1, where
γe refers to the expected value according to Eq. (1), γ (1)

num. and γ
(2)
num. are the numerical values

fitted from Eqs. (15) and (18), and error(1) and error(2) are their relative deviations from γe

respectively. In general, the numerical errors increase with larger β, but they’re controlled
within a satisfactory level in all cases.

Up to now, we have verified the scaling behavior for the probability distribution of
{
E (n)
i

}

with two and three levels, the cases with more levels can be verified with the same method,
but it will become more and more tedious when the number of integrals increases. Never-
theless, the present results are sufficient to justify the scaling behaviors of higher-order level
spacing/gap ratio by applying Wigner surmise to

{
E (n)
i

}
. More importantly, we have verified

123



   81 Page 8 of 12 Eur. Phys. J. Plus          (2021) 136:81 

(b) (c)(a)

(e) (f)(d)

Fig. 3 Distribution of nearest level spacing and gap ratio in the reduced energy spectrum
{
E(n)
i

}
of model

Eq. ( 20) in a L = 12 chain with n = 2 a and d, n = 3 b and e and n = 4 c and f. The data from
h = 1 in the orthogonal (unitary) model represent GOE (GUE), and those from h = 5 in orthogonal model
represent Poisson, respectively. The reference curves correspond to the higher-order spacing distributions in
{Ei } according to Eqs. (8), (9) for GOE and GUE, and Eqs. (10), (11) for Poisson; the parameter γ for the
former is calculated by Eq. (1). The perfect fittings in all cases confirm the coincidence between higher-order

spacing distributions in {Ei } and the lowest order counterparts in
{
E(n)
i

}

the scaling behavior to hold for general βs that go beyond GOE, GUE and GSE (β = 1, 2, 4),
even when β is non-integer or irrational. This indicates the distribution for higher order level
spacing and gap ratio in Eqs. (8) and (9) also hold for general β ensembles, for which we
will present numerical evidences in the next section.

4 Numerical simulations

In this section, we numerically check the distribution of nearest level spacing/gap ratio in{
E (n)
i

}
with many levels, and show they indeed coincide with the nth-order counterparts in{

Ei
}
. Before that, a technical issue needs to be pointed out, that is, the nearest level spacings

in
{
E (n)
i

}
is actually

{
E (n)
i+1 − E (n)

i = E(i+1)n − Ein
}
, whose total number is

[ N
n

] − 1, while
the nth-order level spacing in original energy spectrum

{
Ei

}
are

{
Ei+n − Ei

}
with total

number N − n; therefore, the mapping does not strictly hold, and the same thing happens to
gap ratios. However, since the distribution is extracted from a large number of level spacings
(gap ratios), it’s natural to suspect the difference is negligible when the number of samples
and matrix dimension are large, which we will soon justify.

For GOE, GUE and Poisson ensemble, we perform simulations from a real physical
system, that is, the 1D Heisenberg chain with random external fields, which is the canonical
model to study many-body localization [44]. The Hamiltonian reads

H = J
L∑

i=1

Si · Si+1 +
L∑

i=1

∑

α=x,y,z

hαεα
i S

α
i , (20)

where Si is spin-1/2 operator. The anti-ferromagnetic coupling strength J is set to be unity,
and εα

i s are random numbers within range [−1, 1]. The hα is referred as randomness strength.
We consider two sets of hα: (i) hx = hz = h 	= 0 and hy = 0, the model is orthogonal
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and belongs to GOE; (ii) hx = hy = hz = h 	= 0, and the model is unitary and belongs
to GUE. This model undergoes a thermal-MBL transition at roughly hc 
 3 (2.5) in the
orthogonal (unitary) case, where the level spacing distribution evolves from GOE (GUE) to
Poisson [9,10].

We choose a L = 12 system to perform simulations and prepare 500 samples of energy
spectrum at h = 1 in both the orthogonal and unitary model, representing GOE and GUE,
respectively. We also prepare 500 samples at h = 5 in the orthogonal model to represent
Poisson ensemble. For each sample of energy spectrum, we manually construct the reduced
energy spectrum

{
E (n)
i

}
with n = 2, 3, 4 and count the corresponding nearest level spacing

and gap ratio distributions and compare them to the formulas in Eqs. (8)–(11); the results are
displayed in Fig. 3. As can be seen, the fittings are quite good, confirming the correspondence
between nearest level spacing/gap ratio in

{
E (n)
i

}
with the nth-order counterparts in

{
Ei

}
.

For ensembles with general β, we perform numerical simulations from modeling random
matrices. It was proven in Ref. [45] that the eigenvalues of the following tridiagonal matrix
ensemble

Mβ = 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1 y1

y1 x2 y2

.

.

.

.

.

.

.

.

.

yN−2 xN−1 yN−1

yN−1 xN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(21)

will follow the distribution in Eq. (2) with continuous parameter β ∈ (0,∞) provided the
diagonals xi (i = 1, 2, . . . , N ) follow the normal distribution N (0, 2), that is

P (xi ) = 1

2
√

2π
e−x2

i /8, i = 1, 2, . . . , N , (22)

and yk (k = 1, 2, . . . , N − 1) follows the χ distribution with parameter (N − k) β, that is

P (yk) =
{

2
2(N−k)β�((N−k)β/2)

y(N−k)β−1
k e−y2

k /2, yk ≥ 0

0, yk < 0
. (23)

By virtue this remarkable construction, we can efficiently generate energy spectrums with
any β we want [46].

In accordance with Sect. 3, we choose to simulate the cases with β = 3, 1
3 ,

√
5−1
2 . For each

β, we generate 500 samples of energy spectrums by using Eq. (21), with the number of energy
levels in the original spectrum

{
Ei

}
kept to be 600. Then, we construct the corresponding

reduced energy spectrums
{
E (n)
i

}
with n = 2, 3, 4 and determine the distributions of nearest

level spacings/gap ratios in them; the results are shown in Fig. 4. As can be seen, the fittings
are quite satisfactory in all cases.

Up to now, we have verified the coincidence between nearest level spacing/gap ratio in{
E (n)
i

}
with the n-th-order ones in {Ei } for general Gaussian β ensembles. As a result, we

have generalized the scaling behavior for P
(
s(n)

)
and P

(
r (n)

)
in Eqs. (8) and (9) to cases

beyond GOE, GUE and GSE. The Gaussian ensemble with non-integer β has been used to
describe the spacing distributions along the thermal-MBL transition [27], while its efficiency
in describing long-range level correlations is under debate [28]. Our results thus provide a
numerical criteria for such studies.
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(b) (c)(a)

(e) (f)(d)

Fig. 4 Distribution of nearest level spacing and gap ratio in the reduced energy spectrum
{
E(n)
i

}
with n =

2, 3, 4 from ensembles with β = 3 a, d, 1
3 b, e and

√
5−1
2 c,f, and the reference curves with index γ

correspond to the ones in Eqs. (8 ) and (9) for level spacing and gap ratio, respectively. These fittings confirm
the higher-order spacing distributions in general β ensembles

5 Higher-order reduced energy spectrums

Results in Sect. 3 verified the scaling of
{
E (n)
i

}
in cases with two/three levels, which is

sufficient for applying Wigner surmise to
{
E (n)
i

}
regarding level spacing/gap ratio, and the

numerical simulations in Sect. 4 provide strong support for the cases where
{
E (n)
i

}
has more

levels. Actually, we can continue to construct the 2nd-order reduced energy spectrums, i.e.
the “reduced energy spectrum of reduced energy spectrum”, whose nearest level spacing/gap
ratio will correspond to the higher-order ones in

{
E (n)
i

}
, and will rescale in a similar manner.

Denote the mth-order level spacing and gap ratio in
{
E (n)
i

}
as s(n,m)

i and r (n,m)
i , that is,

s(n,m)
i = E (n)

i+m − E (n)
i , r (n,m)

i = E (n)
i+2m − E (n)

i+m

E (n)
i+m − E (n)

i

, (24)

it’s straightforward to write down their expected probability distributions

P
(
β, s(n,m)

)
= P (δ, s) , P

(
β, r (n,m)

)
= P (δ, r)

δ = m(m + 1)

2
γ + m − 1, γ = n(n + 1)

2
β + n − 1. (25)

The same procedure can continue for higher-order reduced energy spectrums.
Of course, such a construction is artificial; meanwhile, it reveals a hierarchy of energy

spectrums can emerge from single spectrum, which (to lowest order) bear the same form
of probability distributions. Moreover, by taking a closer look at the scaling expression
γ = n(n+1)

2 β + n − 1, we immediately recognize an infinite number of coincident relations

between
{
E (n)
i

}
from different ensembles. For example,

{
E (2)
i

}
in β = 1 (GOE) has the

same structure as
{
Ei

}
in β = 4 (GSE)—a result known before [43,47], and both of them

coincide with
{
E (3)
i

}
in β = 1

3 . Actually, it’s easy to verify that for γ ∈ (k, k+1] there exists
k different sets of (β, n) that have equal γ , and their lower-order level statistics are expected
to be identical.
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6 Conclusion and discussion

We studied the reduced energy spectrum
{
E (n)
i

}
, constructed by picking one level from every

n levels in original spectrum
{
Ei

}
. It is verified the distribution of

{
E (n)
i

}
(to leading order)

bears the same form as {Ei }, with the Dyson index rescaled from β to γ = n(n+1)
2 β + n − 1.

It’s then demonstrated the nearest level spacing and gap ratio in
{
E (n)
i

}
corresponds to the

nth-order ones in {Ei }, which explains the distributions of the latter found recently in Ref. [39]
and Ref. [33] simultaneously.

Moreover, we find the rescaling of reduced energy spectrum holds for Gaussian ensem-
bles that go beyond the standard GOE, GUE and GSE and establish the distributions of
higher-order level spacings and gap ratios in these ensembles. We also confirmed such corre-
spondences in the Poisson ensemble and discovered the distribution of nth-order gap ratios,
as expressed in Eq. (11).

It’s noted the reduced energy spectrum has been studied for the Poisson ensemble [42] and
some Gaussian ensembles, that is, the special ones with β = 2/k (k being positive integer)

[43], which contains the well-known coincidence between
{
E (2)
i

}
in GOE and {Ei } in GSE.

Our work is thus a natural extension of these studies.
The significance of our work is three-folded. First, we explained the distributions of

higher-order level spacings and gap ratios—both of which are widely used in the study of
MBL and whose distributions are found separately in recent studies—-by a single common
mechanism: the reduced energy spectrum. Second, we generalized the higher-order spacing
distributions in Eqs. (8) and (9) to general β ensembles, which may be beneficial for studying
systems that go beyond the standard Gaussian ensembles [27,41,48–50]. Third, our results
reveal a rich set of structures hidden in the energy spectrum, by constructing the reduced
energy spectrums.

Last but not least, in our numerical simulations in Sect. 4, we were employing the modelling
matrix of general β ensemble as expressed in Eq. (21). It’s thus natural and interesting to ask
whether this “parent matrix” corresponds to a real quantum system, and what’s the property of
such a system if it does. Given the physically relevant GOE, GUE and GSE are incorporated
in Eq. (21), we conjecture such a “parent Hamiltonian” does exist, whose construction is left
for a future study.
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