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Abstract The present problem is concerned with the axi-symmetrical flow of viscous New-
tonian fluid over the membrane composed of spheroidal particles with impermeable core.
Here, we analyzed the hydrodynamic permeability of the membrane when the steady, axi-
symmetric, Newtonian fluid with uniform velocity Ũ is passing through the membrane along
z-axis. The Stokes flow takes place in the presence of transversely applied magnetic field B̃
of uniform strength. A method named as cell model technique is used to reduce the problem
of aggregates of particles into the problem of single particle. On the solid surface, no-slip
condition and on the fluid–porous interface, continuity of velocity components & normal
stress, discontinuity of shearing stress is employed. On the boundary of enveloping cell, we
have employed Happel’s model, Kuwabara’s model, Kvashnin’s model, and Mehta–Morse’s
model. The comparison of the hydrodynamic permeability and normalized mobility of the
particles obtained by all above four well-known boundary conditions at hypothetical cell is
shown graphically. In this work, we discussed about the various controlling parameters (fluid
parameters) which can be used to control the hydrodynamic permeability of the membrane.
Some previous results are also reviewed using the results of present problem and also shown
the important comparisons with the former problems.

1 Introduction

1.1 Porous medium and porous membrane

The fluid flow problem through the porous media is one of the important studies, as it
has numerous applications. Thousands of works have been done on the modeling of fluid
flow through porous media. Such discussed problem by researchers have attracted many
environmentalists, engineers, industrialists, doctors and also to the educationist from various
disciplines, such as earth sciences, bio- medical, geothermal, geological. It is to be observed
that almost all the existing materials are porous to some extent [1]. Concrete, chalks, rye
bread, sponge, adsorbents, filters, soil, mud, etc., all are examples of porous medium. Some
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of applications of fluid flow through porous media are blood flow through arteries, crude
oil refineries in oil reservoirs, filtration of underground water using filters, transport of food
to the plants, our skin, and tissues all of which are dealing with porosity. Every fluid flow
problem is governed by some equations and the equations governing the flow past a porous
media is given by Darcy [2] in 1856. He found experimentally that for fluid flow through
porous medium, the pressure drop is directly proportional to the flow velocity. Later on, it
was found that Darcy’s law is valid only for the laminar flow and for flow through porous
medium of low porosity. Brinkman [3] modified Darcy’s law and given the equation for the
flow through high-porosity material by adding diffusive term.

Porous membrane is built up by the swarm of particles, and fluid flow through such mem-
branes has lots of industrial applications such as in filtration processes, being used in a wide
range for solute separation from the solvent, the desalination of brackish, seawater and the
production of pure water, food juice, sugars from sugarcane, in the treatment of wastewa-
ter, etc. During the process of filtration, the termination of particles and the adhesion of the
chemical species on the surfaces of the solid particles take place. Both the aforementioned
processes result in the formation of porous shells in the membrane. The formation of porous
shell on the solid particles has direct effect on the hydrodynamics drag force experiences by
flowing fluid on the particles. Such type of membrane study is done in our present work.

1.2 Cell model technique

The fluid flow through membrane which is built up by swarm of particle has lots of appli-
cations. It is inconvenient to study the fluid flow through each and every particles of the
membrane. To avoid such complications, one has to adopt the method in which the whole
problem is confined to a single cell.

The cell model method [4] is one which gives answer concerning to the problems of porous
membranes. This method implies on the swarm of particles, which converts the analysis
of whole problem of flow through porous membrane into the single particle covered in a
hypothetical cell. The volume of the hypothetical cell is so chosen that the volume occupied
by the solid in cell must be equal to that of the volume occupied by solid in the random
assemblage of the porous particles. This method is generally applied to the problems which
involve clusters of particles such as grains in a defined space, filters, soils, etc. Based on
shape of enveloping cell many researchers studied the flow problems through membranes.

Uchida [5] proposed a cell model in which each particle is enveloped by the cubic cell.
Though the cubic structure fulfills the space but the difference in inner and outer structures led
to the three-dimensional flow. Keeping this disadvantage in mind, Happel [6] and Kuwabara
[7] proposed the model in which both the particles and the envelope have same shape. They
developed sphere-in-cell, cylinder-in-cell and spheroid-in-cell models. This formulation leads
to the axi-symmetrical flow which has simple analytical solutions. Kuwabara [7] assumed
that inner particle is solid and stationary and fluid flows around it with constant velocity,
whereas Happel [6] assumed that the enclosed particle is moving with constant velocity.
Kvashnin [8], and Mehta–Morse [9] along with Happel [6] and Kuwabara [7] also gave the
boundary conditions at the hypothetical cell surface. All above four boundary conditions gave
rise to four different cell models, respectively known as Happel’s, Kuwabara’s, Kvashnin’s,
and Mehta–Morse’s models.

Not every structure is perfect sphere many are somehow deviates from the sphere shape.
There are lots of applications and model discussed on the shape of particles, some are pre-
sented here. Epstein and Masliyah [10] generalized the sphere-in-cell model by particle-in-
cell method for the spheroids. They solved the problem numerically. They faced difficulty
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in getting solution of governing equation which was in terms of stream function E4ψ � 0.
Dassios et al. [11] later solved this problem by introducing the method of semi separation of
variables. In 1995, Dassios et al. [12] studied the Stokes flow problem through the swarms
of spheroidal particles. They made use of particle-in-cell method and applied Happel’s and
Kuwabara’s boundary conditions to the problem. They concluded graphically that the Hap-
pel’s model is superior to that of Kuwabara’s model. The study of momentum transfer at the
fluid-porous interface was done by Ochoa-Tapia and Whitaker [13]. They developed a new
boundary condition regarding the momentum transfer known as stress jump boundary con-
dition. Yadav et al. [14] solved the problem of fluid flow through spherical particles covered
with porous cells using the discontinuous momentum transfer condition at the interface of
fluid and porous region, respectively. All four models of cell technique were discussed and
compared. The drag force on the particles and the permeability of the membrane composed
of the spherical particles was also evaluated and verified by the previous work done. The
creeping motion of fluid passing through the swarm of porous spheroidal particles using
Kuwabara’s boundary conditions was discussed by Deo and Gupta [15]. They numerically
calculated the drag coefficient and seen the variation with solid volume fraction for differ-
ent values of the deformation parameter. Apart from spherical-in-cell and spheroidal-in-cell,
Yadav [16] worked on cylinder-in-cell model. He studied the fluid flow through the swarm
of cylindrical particles and analyzed the drag force on the particles and also evaluated the
permeability of the membrane.

The axis symmetrical Stokes flow passing a swarm of prolate spheroidal particles was
discussed by Zlatanovski [17] in 1999. He used Brinkman and Stokes equation for the porous
and medium-free fluid region, respectively, in the evaluation of the stream function. He
also calculated the Eigen values and Eigen functions for the porous region. Yadav and Deo
[18] studied about the viscous fluid flow through the deformed porous sphere placed in
another porous medium. They discussed the drag force on the particles and the results were
represented graphically. Rajasekhar and Amarnath [19] studied about the flow over porous
sphere with solid core. The fluid flow in porous region is governed by Darcy’s law and
Saffman boundary condition [20] for porous surface. Also evaluated drag force and torque
using Faxen’s law. Further Bhattacharya and Raja Sekhar [21] modified previous work by
using Brinkman equation for the porous region. They discussed the variation of different
flow parameters for different flows such as 2D irrotational flow, doublet in uniform flow,
rotlet and Stokeslet. Vasin and Filippov [22] calculated the permeability of the membrane
theoretically and numerically as well. They considered the membrane composed of spherical
particles with solid core. Yadav [23] discussed the creeping flow through a non-homogeneous
porous medium. In their work, they considered a membrane built up by non-homogeneous
porous cylindrical particle. Cell-model technique has been used to solve the problem of
fluid flow through swarm of non-homogeneous porous cylindrical particle and applied all
Happel’s, Kuwabara’s, Kvashnin’s, and Mehta–Morse’s boundary conditions. The results
obtained were displayed graphically and compared with each model. Deo [24] extended the
work of Datta and Deo [25] by making slight change in boundary conditions for the problem
of Stokes flow through porous circular cylindrical particles. Deo et al. gave very useful daily
life application in their paper [26]. They considered the model resembling with the colloid
particle covered with the porous layers during the process of dissolution and adsorption. They
evaluated the hydrodynamic permeability of the membrane composed of cylindrical porous
particle with solid core. Grosan et al. [27] discussed about the steady, viscous fluid flow
through the permeable sphere enclosed in another porous sphere. They concluded that the
non-dimensional value shear stress increases when each porous parameter increases. Saad
[28] presented analytical solution for an axi-symmetrical flow of fluid through the spheroidal
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particle-in-cell porous membrane by using Brinkman-Stokes governing equations. Madasu
and Bucha [29] have solved the problem of flow through porous membrane formed with
the permeable spheroidal cells using coupled Darcy–Stokes equation and the method of
cell technique. Recently, Daria [30] has considered the flow of non-Newtonian micropolar
fluid through the membrane composed of impermeable spherical cells; it aimed to solve
the problem through cell-model technique and validated the result experimentally. All above
work discussed is clearly representing the use of cell model technique in the filtration process
which involves the porous membrane.

1.3 Magneto-hydrodynamics flows

Magneto-hydrodynamics is the branch of science that deals with the hydrodynamics and
electromagnetism of a fluid together. Such flows are attracting due to lots of applications in
astrophysics planetary magnetic fields, MHD pumps, MHD generators, MHD flow meters,
metallurgy (induction furnace and casting of Al and Fe), dispersion (granulation) of metals,
MHD flow control (reduction of turbulent drag, free surface control, etc.), Magnetic filtration
and separation, etc. Also, the MHD flows through the porous media has lots of application in
medical sciences and in industries. Many researchers [31–34] studied the effect of magnetic
field on the flow rate and concluded that flow rate decreases with increase in magnetic
number, i.e., magnetic field strength. Such influence of uniform magnetic field on the flow
rate motivated many researchers to study the effect of magnetic field on the hydrodynamic
permeability of the porous medium. Tiwari et al. [35] got motivated by previous work on
magnetic field and studied the effect of applied transverse magnetic field on the permeability
of the membrane composed of cylindrical particles. All four cell models and the stress jump
condition have been employed to see the effect. Similar work has been done by Srivastava
et al. [36] and Yadav et al. [37]. They considered the spherical particles without solid core and
with solid core, respectively, and seen the effect on the membrane due to applied magnetic
field.

The present work is motivated by the application of MHD flows through the membranes
made up of particles of shape deviating from sphere. It is very important to see the porous
materials with different angles as complexity is rising due to the geometry of particles. The
membrane composing of deformed spherical particles with solid core is taken into study.
The slow, viscous, incompressible, electrically conducting fluid is allowed to flow through
the considered geometry in the presence of applied transverse magnetic field. The cell-
model technique is used to study the problem of magnetohydrodynamics through the porous
membrane composing of set of impermeable spheroidal particles. The effect of magnetic field,
stress jump coefficient, volume fraction, and deformation parameter on the permeability of the
membrane for the four well-known cell models is discussed graphically. The effect of various
fluid parameters on normalized mobility of the porous particles is also analyzed graphically.
The limiting case of the present problem is validated with the previously established results
done so far by the various researchers/scientist.

The novelty of this work lies in the analytical solution of the most complex geometry of
the pores in the presence of the magnetic field and reducing the present problem into the
several other solved problems. The present work aims at to signify the importance of a bio-
logical/synthetic material containing tiny pores (known to be porous membrane) of different
shapes. Porous membranes with different characteristics are useful for various types of fil-
tration and extraction process involving oil and gases separation. Some of the works [38–40]
signified the importance of membrane in gas separation using graphene-based nanoporous
membrane. We have focused on the membrane made up of impermeable spheroid particle
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cells. The importance and application on flow through membrane of different geometry par-
ticles can be easily understood from the work of Rasoulzadeh and Kuchuk [41]. Rasoulzadeh
and Kuchuk beautifully explained an application of spheroid particles in the process of for-
mation of vug and fractures. They solved the problem of effective permeability of a porous
medium and showed that how the spheroid shaped vug and fractures brings variation in the
flow behavior. Chen [42] solved analytically the problem of fluid extraction through prolate
spheroid porous setup. He investigated that the flow rate is higher in the case of spheroid-
shaped rather than in the cylinder-shaped porous medium, respectively.

2 Formulation and solution of the problem

2.1 Formulation of the problem

The model considered in the present work is the membrane composing of the impermeable
spheroidal particles covered with a porous layer.

The steady, viscous, incompressible, axi-symmetric, creeping motion of Newtonian fluid
is allowed to pass through the membrane (Fig. 1) with velocity Ũ uniformly in positive z-
direction. The flow takes place in the presence of transverse applied magnetic field B̃ with
uniform strength. For solution of the problem, the particle-in cell method has been used. So,
every impermeable spheroidal particle coated with porous layer is covered by a hypothetical
cell surface of same shape as shown in Fig. 2.

Let the surface of the spheroid SI which deviates little in a shape from that of sphere of
radius r̃ � ã be r̃ � ã (1 + δnGn(ς)). It is being assumed that δn is so small that its squares
and higher orders are neglected, i.e.,

(
r̃

ã

)m

� 1 + m δnGn(ς), (1)

where m is an integer. In given model, the surface of porous region SP and of hypothetical
cell SH is assumed as r̃ � b̃ (1 + δnGn(ς)) and r̃ � c̃ (1 + δnGn(ς)), respectively, where
ã < b̃ < c̃. The radius of hypothetical cell is so chosen that the volume occupied by the
impermeable spheroid coated with porous layer in the cell equals to that of volume occupied
by the impermeable spheroid coated with porous layer in the membrane.

Fig. 1 Physical model of the problem
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Fig. 2 Coordinate system of porous spheroid with solid core in a hypothetical cell

2.2 Governing equations

In this work, Stokes equation has been used to study the fluid behavior in the outer fluid
envelope while the Brinkman’s equation used for the fluid in the porous region. Porous
membranes are usually used for filtration process by separating undesirable particles. In
filtration process, the fluid that left out of porous are then again re-circulated to filter the fluid
more. During this process, the accumulation of fine particles on the pores of the membrane
results into the slow creeping flow of the fluid passing through the membrane. Therefore, the
process of filtration is fluid flowing at very low Reynolds number, i.e., the convective terms
or the inertial terms is completely omitted from the Navier–Stokes equations to model the
flow through the membrane. Stokes equation is obtained from the Navier–Stokes Equation
by omitting the inertial terms and therefore, it is also known to be creeping motion equation.
Stokes equation [4] is given as

ρ̃
∂q̃
∂t

� −∇̃ p̃ + μ̃ ∇̃2q̃ + ρ̃ F̃,

where ρ̃ and μ̃ are density and viscosity of flowing fluid with velocity vector q̃ under the
influence of force vector F̃.

The flow through the porous region can be governed by both the Darcy’s and Brinkman’s
equation where the latter is the modification of the former. Brinkman’s equation is widely
used for describing the flow in porous medium irrespective of values of permeability and
porosity of the porous medium. In 1947, Brinkman [3] had given the following equation for
the analysis of the fluid behavior in the porous region:

ρ̃
∂q̃
∂t

� −∇̃ p̃ + μ̃eff∇̃2q̃ − μ̃

k̃
q̃ + ρ̃ F̃

where μ̃eff is an effective viscosity and k̃ is the permeability of the porous medium.
It is difficult to get the general solution of the present problem without accepting any

physically consistent assumptions under which the closed form solution of the problem
can be obtained. The objective of the work is to find an analytical solution for the present
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model and deduce several previous results. For this, authors have considered the following
assumption:

1. An incompressible viscous Newtonian fluid flow is axi-symmetric passing through the
porous membrane.

2. Flow inside the porous region is governed by the Brinkman model.
3. No external electric field is present and the applied magnetic field is assumed to be so

small to produce the valuable induced current.

Because of assumption-3, an electric current density vector J̃ � σ̃ (q̃ × B̃, here σ̃ is an
electrical conductivity of the fluid. Therefore, the direction of the Lorentz force F̃ � J̃ × B̃
and the velocity q̃ of fluid is collinear and in opposite directions. We shall denote the regions
outside the porous region by superscript ‘o’ and within the porous region by ‘i’.

The governing equation together with continuity condition for the flow outside porous
medium is given by Stokes equation as described in the book of Happel and Brenner [4],
Jayalakshmamma et al. [43], Srivastava et al. [36]:

μ̃2
h σ̃ o(q̃o × B̃) × B̃ + μ̃o∇̃2q̃o � ∇̃ p̃o, ∇̃ · q̃o � 0. (2)

The governing equation together with continuity condition for the flow inside the porous
region is given by the Brinkman equation (Brinkman [3], Jayalakshmamma et al. [43], Sri-
vastava et al. [36]):

− μ̃o

k̃
q̃i + μ̃2

h σ̃ i (q̃i × B̃) × B̃ + μ̃i ∇̃2q̃i � ∇̃ p̃i , ∇̃ · q̃i � 0. (3)

where the symbol ~ denotes the dimensional quantities and q̃o, q̃i , p̃o, p̃i , μ̃o, μ̃i are
velocities, pressure and viscosity for outer and inner region of the porous spheroid, respec-
tively, σ̃ o and σ̃ i be the electrical conductivity of the fluid for outer and inner region, respec-
tively, k̃ is the permeability of the porous medium & μ̃h is magnetic permeability. Here μ̃o

and μ̃i are taken to be different, as according to Liu and Masliyah [44], their relationship
depends on the characteristics of the porous medium. The two viscosities μ̃o and μ̃i are equal
for the high porosity of the material [45]. The electrical conductivities for both the regions
are taken to be equal, i.e., σ̃ o � σ̃ i � σ̃ .

Taking all the assumptions into consideration, all the above equation reduces to:

μ̃2
h σ̃ (q̃o × B̃) × B̃ + μ̃o∇̃2q̃o � ∇̃ p̃o, (4)

− μ̃o

k̃
q̃i + μ̃2

h σ̃ (q̃i × B̃) × B̃ + μ̃i ∇̃2q̃i � ∇̃ p̃i , (5)

In this problem, the spherical polar coordinate (r̃ , θ̃ , φ̃) is taken where centre of the
spheroidal particle represents the origin of coordinate system. As the flow is axi-symmetric,
therefore all the fluid parameters will be independent of φ̃, i.e., ∂

∂φ̃
� 0 and so the component

of velocity q̃φ̃ is zero along φ̃-direction. Here, we assume that the local fluid velocity q̃ is not

perpendicular to magnetic induction vector B̃, and therefore “in an averaged on its direction,”
averaged Lorentz’s force (q̃ × B̃) × B̃ can be taken as −0.5 B̃2 q̃.

123



   27 Page 8 of 34 Eur. Phys. J. Plus          (2021) 136:27 

2.3 Solution of the problem

The governing Eqs. (4) and (5) for the flow of fluid outside and inside the impermeable
spheroid coated with porous layer can be reduced in non-dimensional form by using the
following dimensionless quantities

r � r̃

b̃
, ∇ � ∇̃ · b̃, 
 � 
̃ · b̃2, p � p̃

p̃o
,

p̃o � Ũ μ̃o

b̃
, q � q̃

Ũ
, λ2 � μ̃i

μ̃o
, k � k̃b̃2

and ψo.i � ψ̃

Ũ b̃2
, � � ã

b̃
,

1

℘
� c̄

b̄
(6)

Thus, the non-dimensional form of governing Eqs. (4) and (5) are:

−H2qo + ∇2qo � ∇ po, ∇ · qo � 0, (7)

−
(

1

k
+ H2

)
qi + λ2∇2qi � ∇ pi , ∇ · qi � 0, (8)

where H2 � μ̃2
h σ̃ B̃2

o b̃
2

2 μ̃o is the Hartmann number and k is specific permeability of the porous

media in dimensionless form and B̃0 � |B̃| is representing strength of the external magnetic
force applied in transverse direction of the flow.

Let us assume that the stream function for outer and inner region of porous media is
represented as ψo(r, θ ) and ψ i (r, θ ), respectively. Thus, the velocity components (qr , qθ , 0)
in spherical polar coordinates in terms of stream function will be as:

q0
r � r−2

sin θ

∂ψ0

∂θ
, q0

θ � − r−1

sin θ

∂ψ0

∂r
, (9)

qir � r−2

sin θ

∂ψ i

∂ θ
, qiθ � − r−1

sin θ

∂ψ i

∂ r
. (10)

Using the above expression of velocity’s components, the governing Eqs. (7) and (8) will
reduce to:

E2(E2ψ0 − H2ψ0) � o, (11)

E2(E2ψ i − L2ψ i ) � o, (12)

where L2 � 1
λ2 (H2 + 1

k ) is generalized porosity parameter Srivastava et al. [36] and E2 is
the dimensionless operator given as

E2 � ∂2

∂r2 + (1 − ς2)
∂2

∂ς2 , ς � cos θ.

The remaining quantities such as pressure, shearing stress and normal stress can be
obtained by following relations:

∂po

∂r
� − 1

r2 sin θ

∂

∂θ
(E2ψo) − H2qor ,

∂p0

∂θ
� 1

sin θ

∂

∂r
(E2 ψ0) − H2 q0

θ , (13)

∂pi

∂r
� −λ2 r−2

sin θ

∂

∂θ
(E2 ψ i ) − L2 qir , r−1 ∂pi

∂θ
� λ2 r−1

sin θ

∂

∂ r
(E2 ψ i ) − L2 qiθ ; (14)

σ o
rθ � −po + 2λ2 ∂qor

∂r
, σ i

rθ � −pi + 2λ2 ∂qir
∂r

(15)

123



Eur. Phys. J. Plus          (2021) 136:27 Page 9 of 34    27 

σ o
rr � −po + 2

∂qor
∂r

, σ i
rr � −pi + 2

∂qir
∂r

(16)

On solving Eqs. (11) and (12) using the method of separation of variables, the stream
functions for both the region can be evaluated (Zlatanovski [17]).

ψo(r, θ ) �
∞∑

m�0

[{
Amr

m + Bmr
1−m + Cm

√
r Kυ (H r ) + Dm

√
r Iυ (H r )

}
Gm(ς)

+
{
A′
mr

m + B ′
mr

1−m + C ′
m

√
r Kυ (H r ) + D′

m

√
r Iυ (H r )

}
Hm(ς)

]
, (17)

ψ i (r, θ ) �
∞∑

m�0

[{
A∗
mr

m + B∗
mr

1−m + C∗
m

√
r Kυ (L r ) + D∗

m

√
r Iυ (L r )

}
Gm(ς)

+
{
A∗′
mr

m + B∗′
m r

1−m + C∗′
m

√
r Kυ (L r ) + D∗′

m

√
r Iυ (L r )

}
Hm(ς)

]
(18)

where Iν(H r ) & Iν(L r ) and Kν(H r ) & Kν(L r ) are modified Bessel functions of first and
second kind, respectively, ν � m − 1

2 , m is an integer and Gm(ς) and Hm(ς) is Gegenbauer
function of first and second kind, respectively, of order m and degree − 1

2 . According to
expression of Gegenbauer function of second kind, Hm(ς) is infinite along the axis ς � ±1.
Due to this singularity, all primed constants appearing in Eq. (17) and (18) vanishes for all
m. Further, in the expression of tangential velocity qθ in (9) and (10), for m � 0 and m � 1,

it becomes infinite at θ � 0 and θ � π. Therefore, after understanding the above facts the
final stream function regular solution of both Eqs. (11) and (12) on the axis of symmetry
(Zlatanovski [17]) is expressed as follows:

ψo � [a2r
2 + r−1b2 + K 3

2
(H r )r

1
2 c2 + I 3

2
(H r )r

1
2 d2] G2(ς)

+
∞∑
m

[rm Am + r1−m Bm+Cm
√
r Kν(Hr ) + Dm

√
r Iν(H r )]Gm(ς), (19)

ψ i � [a∗
2 r

2 + b∗
2 r

−1 + c∗
2
√
r K 3

2
(L r ) + d∗

2 I 3
2
(L r )]G2(ς)

+
∞∑
m

[ rm A∗
m + r1−mB∗

m + Kν(L r )r
1
2 C∗

m

+ Iν(L r )D∗
m]Gm(ς), (20)

The relation between Gm(ς) and Legendre function Pm(ς) of first kind is given as:

Gm(ς) � Pm−2(ς) − Pm(ς)

2m − 1
, m ≥ 2

In particular,

G2(ς) � 1

2
(1 − ς2), and G4(ς) � 1

8
(1 − ς2) (5ς2 − 1).

It is important to note that the coefficients a2, b2, c2, d2, a∗
2 , b∗

2, c∗
2 and d∗

2 contribute to
the flow through an impermeable sphere covered with porous layer in spherical shape (Yadav,
et al. [37]). This results that all other coefficients in (19) and (20) are of order δn . Thus, authors
will take surface as a sphere instead of either their exact forms where these coefficients will
appear.
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2.3.1 Boundary conditions

In order to obtain the solution of concerned problem, i.e., velocity and other physical quanti-
ties like pressure, permeability, etc., we need to find the arbitrary constants associated with the
stream functions in both the regions. To find these arbitrary constants, we need to define the
suitable boundary conditions on the surfaces of the considered model. It is important to note
that these boundary conditions should be realistic and valid physically and mathematically.

The appropriate boundary conditions taken for our present problem are discussed below
in brief:

1. No-Slip condition at the surface of impermeable spheroid are as:
Velocity components vanish at the surface of impermeable core, i.e.,

qir � 0, qiθ � 0 at r � �(1 + δnGn(ς)). (21)

2. Continuity of velocity components and normal stress at porous–fluid interface are as:

qor � qir , q
o
θ � qiθ , 2λ2 ∂qir

∂r
− pi � 2

∂q0
r

∂r
− p0 at r � (1 + δnGn(ς)) (22)

3. Stress jump boundary condition for shearing stress at r � (1 + δnGn(ς)) given by
Ochoa-Tapia and Whitaker [13] be as:

λ2

(
1

r

∂qir
∂θ

+
∂qiθ
∂r

− qiθ
r

)
−

(
1

r

∂qor
∂θ

+
∂qoθ
∂r

− qoθ
r

)
� β√

k
qiθ . (23)

4. Continuity of radial the components of flow velocity at hypothetical cell surface r �
℘−1(1 + δnGn(ς)) be as:

qor � cos θ. (24)

On combining all the above seven conditions with any one of the given bellow boundary
conditions for enveloping cell models, i.e., Happel’s, Kuwabara’s, Kvashnin’s, and Mehta—
Morse’s cell models will give the complete solution of the problem:

A. Happel’s Model: In this model, Happel [6] suggested that the shearing stress becomes
zero at the outer hypothetical cell surface r � ℘−1 (1 + δnGn(ς)), i.e.,

σ o
r θ (r, θ ) � 0 or

∂2ψo

∂ r2 − 2 r−1 ∂ψo

∂r
− (1 − ς2) r−2 ∂2ψo

∂ς2 � o (25)

B. Kuwabara’s Model: Kuwabara [7] suggest that the vorticity vanishes at hypothetical cell
surface r � ℘−1 (1 + δnGn(ς)), i.e.,

rot(q̃o) � 0 or
∂2 ψ0

∂ r2 + (1 − ς2) r−2 ∂2 ψ0

∂ ς2 � o (26)

C. Kvashnin’s Model: Kvashnin [8] suggest the symmetry condition on the hypothetical
cell surface r � ℘−1 (1 + δnGn(ς)), i.e.,

∂qoθ
∂r

� 0. (27)

D. Mehta–Morse’s Model: Mehta–Morse [9] introduced the homogeneity of the flow on
the hypothetical cell surface r � ℘−1 (1 + δnGn(ς)), i.e.,

qoθ � − sin θ. (28)
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2.3.2 Determination of arbitrary constants

Using the above boundary conditions to the solutions (19)–(20) of the problem along with
the following identities:

Gn(ς)G2(ς) � − (n2 − 5n + 6)

2(4n2 − 8n + 3)
Gn−2(ς) +

(n2 − n)

(4n2 − 4n − 3)
Gn(ς)

− (n2 + 3n + 2)

2(4n2 − 1)
Gn+2(ς),

P1(ς)Gn(ς)

� (n − 2)

(4n2 − 8n + 3)
Pn−3(ς) +

1

(4n2 − 4n − 3)
Pn−1(ς) − (n + 1)

(4n2 − 1)
Pn+1(ς),

we will have eight system of Eqs. (1)–(8) for all the models, which are given in “Appendix
A”.

As, we already discussed that the leading terms in Eqs. (19) and (20) are responsible for
the flow through the impermeable sphere covered with porous layer (Yadav et al. [37]). Hence
by solving the systems of Eqs. (9)–(16) given in “Appendix A” for all the models containing
only the leading terms, we can obtain the arbitrary constants a2, b2, c2, d2, a∗

2 , b∗
2, c∗

2 and
d∗

2 for all the models.
After getting the values of arbitrary constants a2, b2, c2, d2, a∗

2 , b∗
2, c∗

2 and d∗
2 for

all the models, we used the perturbation method to find all other non-vanishing coefficients
Am, Bm, Cm, Dm, A∗

m, B∗
m, C∗

m and D∗
m appearing in Eqs. (19) and (20) which cor-

responds to m � n − 2, n, n + 2 for all the models. Substituting the values of arbitrary
constants a2, b2, c2, d2, a∗

2 , b∗
2, c∗

2 and d∗
2 corresponding to each model in Eqs. (1)–(8) of

“Appendix A”, we will again obtain system of Eq. (17)–(24) which is placed in “Appendix
A”.

Thus, explicit expression of the stream functions for the flow through both the regions of
impermeable spheroid covered with porous layer will becomes as:

ψ0 � [r2 a2 + r−1 b2 + K 3
2
(H r ) c2 r

1
2 + I 3

2
(H r ) r

1
2 d2] G2(ς) + [ An−2 r

n−2 + Bn−2 r
−n+3

+ Cn−2
√
r Kn−(5/2)(H r ) + Dn−2

√
r In−(5/2)(H r )]Gn−2(ς)

+ [An r
n + r1−n Bn + Cn Kn− 1

2
(H r ) r

1
2

+ Dn In− 1
2
(H r ) r

1
2 ]Gn(ς) + [An+2 r

n+2 + Bn+2 r
−(1+n) + Cn+2 Kn+(3/2)(H r ) r

1
2

+ Dn+2 In+(3/2)(H r ) r
1
2 ]Gn+2(ς),

(29)

ψ i � [a∗
2 r

2 + b∗
2 r

−1 + K3/2(L r ) r
1
2 c∗

2 + I3/2(L r ) d∗
2 ]G2(ς)

+ [A∗
n−2r

n−2 + B∗
n−2 r

−n+3 + C∗
n−2

√
r Kn−(5/2)(L r ) + D∗

n−2 In−(5/2)(L r )]Gn−2(ς)

+ [A∗
nr

n + B∗
n r

−n+1 + C∗
n

√
r Kn−(1/2)(L r ) + D∗

n In−(1/2)(L r )]Gn(ς)

+ [A∗
n+2 r

n+2 + B∗
n+2 r−n−1 + C∗

n+2
√
r Kn+(3/2)(L r ) + In+(3/2)(L r )D∗

n+2]Gn+2(ς).
(30)
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3 Application to porous oblate spheroid under the influence of magnetic force

In this section, authors considered a membrane which is composed of impermeable oblate
spheroid covered with porous layer in oblate spheroidal shape as a particular case of the
preceding analysis.

Figure 3 shows the schematic representation of the considered physical model. The equa-
tion for the oblate spheroid is given as follows:

x2 + y2

d2 +
z2

d2(1 − ε)2 � 1. (31)

here d is an equatorial radius and ε is deformation parameter and it is so small that it’s higher
powers are neglected.

The polar form of Eq. (31) can be written as r̃ � b̃ (1 + 2ε G2(ς)), where b̃ � d̃ (1 − ε).
Here it is important to note that for ε > 0, the shape obtained will be of oblate spheroid and
for ε < 0, the shape will be of prolate spheroid. This particular case makes our problem a bit
easy to obtain the solution. On comparison with the general equation r̃ � b̃(1 + δnGn(ς)),
for the related model we get n � 2 and δn � 2 ε. For n � 2, the constants A0, B0, C0, D0,
A∗

0, B∗
0 , C∗

0 , D∗
0 will vanish and the stream functions for the fluid flow through the membrane

of oblate spheroids are given by:

ψo � [a2 r
2 + b2r

−1 + K3/2(H r ) r
1
2 c2 + I3/2(H r ) r

1
2 d2] G2(ζ )

+ [A2 r
2 + B2 r

−1 + K 3
2
(H r )r

1
2 C2 + I3/2(H r )r

1
2 D2]G2(ς)

+ [r4A4 + r−3B4 + K7/2(H r )r
1
2 C4 + I7/2(H r )r

1
2 D4]G4(ς), (32)

ψ i � [r2 a∗
2 + b∗

2 r
−1 + K 3

2
(L r ) r

1
2 c∗

2 + I 3
2
(L r ) d∗

2 ]G2(ς)

Fig. 3 Coordinate system of oblate spheroid with solid core in a hypothetical cell
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+ [A∗
2r

2 + B∗
2 r

−1 + K 3
2
(L r ) r

1
2 C∗

2 + I 3
2
(L r ) D∗

2 ]G2(ς)

+ [A∗
4r

4 + B∗
4 r−3 + K 7

2
(L r ) r

1
2 C∗

4 + I 7
2
(L r ) D∗

4 ]G4(ς). (33)

4 Evaluation of drag force, normalized particle mobility, and hydrodynamic
permeability of the membrane

The membrane filtration has many applications such as in ultra-filtration, nanofiltration,
reverse osmosis, and numerous industrial applications. In all aforementioned application, it
is very important to find out the hydrodynamic permeability of the porous membrane used.
The permeability of membrane depends on the shape of the particles (the membrane composed
of), the fluid properties and fluid flow conditions. We aimed in this work to obtain the dragging
force exerted on the particles due to the steady flow of incompressible, viscous fluid through
the membrane composing of the oblate spheroids and the hydrodynamic permeability of the
membrane.

The most important term hydrodynamic permeability of the membrane which is denoted

as L̃11 is defined as the ratio of the flow rate Ũ to the cell gradient pressure, i.e., F̃
Ṽ

.Thus,

L̃11 � Ũ

F̃/Ṽ
, (34)

where Ṽ � 4
3π d2

2 c̃ is the volume of the hypothetical cell.
The drag force experienced by each and every particle in presence of magnetic field is

given by the formula [3]:

F̃ � π μ̃oŨ b̃

π∫
0

[{
� 3 ∂

∂r

(
E2ψo

� 2

)}
r

]
r�1

dθ. (35)

Here � � r sin θ and

E2ψo �
{
K 3

2
(H r )H2 r

1
2 [c2 + C2] + I 3

2
(H r ) r

1
2 H2 [d2 + D2]

}
G2(ς)

+
{
K 7

2
(H r )r

1
2 H2C4 + I 7

2
(H r )r

1
2 D4H

2
}
G4(ς), (36)

Using (36) in (35) and on integration, we obtain the drag force which is given below:

F̃ � π U μ̃ob̃ X, (37)

where

X �
⎛
⎝

8

15
{H4 I3/2(H )d2 + (H3 + H4)c2K1/2(H )}ε +

2

3
{(H3 I1/2(H ) − 3H2 I3/2(H ))(d2 + D2)

+ (−3H − 3H2 − H3)(c2 + C2)K1/2(H )}

⎞
⎠.

(38)

It can be noticed from the expression (37) that only the constants c2, d2, C2 and D2

contribute to the drag force. Therefore, for each model we can get these constants and hence
the drag force on the particles for all four cell models.
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From the expression (34) and (37), the hydrodynamic permeability of the membrane can
be evaluated. The expression for hydrodynamic permeability of the membrane L̃11 is given
as:

L̃11 � L11
d2

2

μ̃o
, (39)

where L11 is dimensionless hydrodynamic permeability of the considered membrane and it
is expressed as:

L11 � 4

3℘3 X
, (40)

where X is given in Eq. (38).
On substitution of values of constants c2, d2, C2 and D2 in Eq. (40), we achieved our aim

for the concerned problem, i.e., we obtained the hydrodynamic permeability of membrane
for all four cell models.

In cell model technique, the setup is done in a manner that the disturbance caused by the
neighboring clusters must be confined within the enveloping cell. To analyze this effect, i.e.,
the hydrodynamic interaction between the inner particle and the surface of the enveloping cell,
it is important to discuss about the term “normalized mobility of the particles”. Normalized
particle mobility (Saad [28], Keh and Cheng [46]) is a dimensionless parameter defined as
the ratio between the drag force experienced by the particle in an unbounded medium and the
drag force experience under the confinement of the unit cell or enclosure. Mathematically,
this term is given as

M̃ � F̃unbouded medium

F̃bouded medium
.

The drag force in an unbounded medium can be evaluated by taking the limit of X given
in Eq. (38) as c̃ → ∞, i.e.,℘ → 0 and hence the normalized particle mobility. Clearly, when
particle volume fraction ℘ → 0 the value of mobility is unity and for 0 < ℘ ≤ 1, we have
0 ≤ M̃ < 1. The dependence of normalized mobility of particles on the permeability, volume
fraction and on the other flow parameters plays an important role in discussing the various
practical applications of the porous membranes in colloidal suspension, flow of blood cells,
sedimentation, electrophoresis, agglomeration, etc.

The ratio of drag force F̃ given by (37) and Stokes force F̃S � 6πd μ̃oŨ is denoted by
� and is expressed as:

Ω � (1 − ε)

6
X. (41)

5 Result and discussion

On substitution of constants in Eq. (40) for each discussed model, it is observed that the non-
dimensional quantity of hydrodynamic permeability, i.e.,L11 is the function of ℘, β, k, H , λ
and ε. Thus, the variation of hydrodynamic permeability of membrane is seen with all above
parameters graphically. The dependence of fluid flow on the controlling parameters has a
significant effect on the analysis of this study. In order to attain the objective of this problem,
the numerical values of these controlling parameters which have been used to produce the
results are taken from the previously published work, which are discussed below.
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Fig. 4 Variation of ln(L11) of membrane with respect to the volume fraction ℘

The volume fraction parameter ℘ � b̃/c̃, which is (volume fraction of particles)1/3 and is
same as the (volume fraction in the real membrane)1/3 ranges between 0 and 1, discussed in
the work of Vasin et al. [47]. The stress jump coefficient β takes the value from − 1 to 1 which
is experimentally proven by Ochoa-Tapia and Whitaker [13, 48] and Kuznetsov [49, 50]. The
parameter Hartmann number H always takes the values greater than zero as discussed by
the Hartmann and Lazarus [51], Gold [31], Jayalakshmamma [43] and Srivastava et al. [36].
Also, we have considered the values for deformation parameter as 0 < ε < 1 and the value
of viscosity ratio λ greater than zero.

The effect of particle volume fraction ℘ on the non-dimensional hydrodynamic perme-
ability of the membrane is shown in Fig. 4. It is clear from this figure that, as the volume
fraction increases the permeability decreases for all the four cell models when other param-
eters have the values as H � 3.0, β � 0.3, k � 0.2, λ � 2.0, � � 0.5 and ε � 0.3.
This figure illustrates that hydrodynamic permeability of the membrane is maximum when
℘ → 0 because under this situation volume of solid phase tends to zero and the model will
comprise of no porous shell, therefore the flow will occur with no restrictions. Also, it is
noted that flow of all four models is almost coinciding for lower values of ℘. This variation
of hydrodynamic permeability with the volume fraction is also observed in the works [37,
52, 53] for the membrane built up by spherical particles.

Figure 5 shows the variation of hydrodynamic permeability of membrane with the stress
jump coefficient when all other parameters has same values as in previous case and ℘ � 0.8.
While studying the flow through porous media and clear region which involves Brinkman and
Stokes equation in the respective regions, one has to consider the Ochoa-Tapia momentum
condition because of its significant impact on the physics of the problem [54].

It is seen from Fig. 5 that, as β increases from − 1 to 1 the value of hydrodynamic
permeability of membrane for all the four cell models increases with it. At β � 0, the
fluid flow through membrane satisfies the continuity of shearing stress. Figure 5 is complete
illustration of the hydrodynamic permeability of the membrane for continuous and discon-
tinuous shearing stress at the porous-fluid interface. The increasing order of the hydrody-
namic permeability of membrane is as Mehta–Morse→Kuwabara→Kvashnin→Happel,
i.e., the hydrodynamic permeability of the membrane is maximum for Happel’s cell model
and minimum for Mehta–Morse’s cell model. Also, it is observed that for positive values β,
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Fig. 5 Variation of ln(L11) of membrane with respect to the stress- jump coefficient β

Fig. 6 Variation of ln(L11) of membrane with respect to the specific permeability k

Mehta–Morse’s model has much lower value as compare to that of the other’s three models.
Stress jump coefficient is characteristic of the porous region, it has a direct impact on the
hydrodynamic permeability of the membrane and hence cannot be ignored. A similar kind
of observation was investigated by Srivastava et al. [36] and Yadav et al. [37] for the problem
of hydrodynamic permeability of a membrane built up by porous spherical Particles.

The variation of dimensionless hydrodynamic permeability of the membrane with the
specific permeability k of porous region is analyzed by Fig. 6. It can be depicted from
the graph that with increase in values of the specific permeability k of porous region, the
value of dimensionless hydrodynamic permeability increases for all the four cell models.
Similar variation in the natural logarithmic value of hydrodynamic permeability of the porous
membrane with the specific permeability of the porous region was observed in the work of
Yadav et al. [37]. Permeability defines the characteristic of the porous medium by measuring
the ease with which a fluid may pass through the medium (Joseph and Tao [55]) and so it has
significant impact on the total permeability of the membrane.

123



Eur. Phys. J. Plus          (2021) 136:27 Page 17 of 34    27 

Fig. 7 Variation of ln(L11) of membrane with respect to the Hartmann number H

During the analysis of the result, it is also noticed that the dimensionless hydrodynamic
permeability of the membrane increases with increase in values of the specific permeability k
till k < 0.2 but the nature in variation of hydrodynamic permeability of the membrane with k
is reverse when k > 0.2. The effect of Hartmann numberH on hydrodynamic permeability of
the membrane is analyzed by Fig. 7 whenβ � 0.3, k � 0.2, λ � 2.0, ε � 0.3, ℘ � 0.8,

and � � 0.5. Hartmann number is defined for determining the intensity of an external mag-
netic field. When an electrically conducting fluid passes through the membrane in presence of
uniform magnetic field, then a resistive force named as Lorentz force is induced. This Lorentz
force is responsible for the variation in the hydrodynamic permeability of a membrane com-
posed by impermeable spheroid coated with porous layer with applied magnetic field.

It can be noticed from Fig. 7 that for all three models; Happel, Kuwabara, Kvashnin,
the hydrodynamic permeability of the membrane decreases rapidly with increase in mag-
netic number H when H < 3.5 and H > 11. But for Mehta–Morse’s model, hydrodynamic
permeability of the membrane decreases rapidly with increase in magnetic number H when
H < 2.5 & H > 11. The hydrodynamic permeability of the membrane for Mehta–Morse’s
and others three models is in increasing nature with magnetic numberH when 2.5 < H < 11
and 3.5 < H < 11, respectively. For lower values of H the permeability has higher values
in which Happel’s model has greater value then other. For H > 5, Happel, Kuwabara and
Kvashnin’s models seem to be closer but Mehta–Morse’s shows different characteristics. It
achieves values greater than other’s model for 4 ≤ H ≤ 11.

The dependency of hydrodynamic permeability of the membrane on the viscosity ratio
λ is discussed through Fig. 8. This figure shows that with increase in viscosity ratio λ,
hydrodynamic permeability decreases for all four models. As λ is ratio of viscosity of fluid
in porous region to the clear region. Therefore, increase in λ meant increase in viscosity of
porous region which decreases the hydrodynamic permeability of the membrane, as expected
and also investigated in the work of Vasin et al. [22]. The rate of decrease in hydrodynamic
permeability of the membrane when λ < 6 is faster as compared to the rate of decrease in
hydrodynamic permeability of the membrane when λ > 6. From this figure, we also concluded
that the Mehta–Morse’s model shows much deviation from the other’s three models.

Figure 9 shows the variation of hydrodynamic permeability of the membrane with the
deformation parameter ε when H � 3.0, β � 0.3, k � 0.2, λ � 2.0, ℘ � 0.5, and
� � 0.5. It is clear from the graph that as ε increases, the hydrodynamic permeability of
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Fig. 8 Variation of ln(L11) of membrane with respect to the viscosity ratio λ

Fig. 9 Variation of ln(L11) of membrane with respect to the deformation parameter ε

the membrane decreases for all four cell models, which validates our result with the work
of Yadav et al. [56]. It can be seen from Fig. 9 that for ε < 0.2, Mehta–Morse’s model has
low value of hydrodynamic permeability as compared to that of other’s three cell models.
But, for ε > 0.2, Kvashnin’s cell model has low values of hydrodynamic permeability as
compared to that of other’s three cell models.

6 Particular cases

6.1 Stokes flow through a membrane composed by porous spheroid enclosing
an impermeable core without magnetic field

When H → 0, then the above discussed model will reduce to the Stokes flow through
a membrane composed by porous spheroid enclosing an impermeable core in absence of
magnetic field. In this case, the governing Eqs. (2) and (3), respectively, will reduces as

μ̃o∇̃2q̃o � ∇̃ p̃o, ∇̃ · q̃o � 0, (42)

− μ̃o

k̃
q̃i + μ̃i ∇̃2q̃i � ∇̃ p̃i , ∇̃ · q̃i � 0. (43)
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Fig. 10 Comparison in ln(L11) of membrane in presence and absence of magnetic field when H � 3.0,

β � 0.3, ℘ � 0.5, λ � 2.0, ε � 0.05, and � � 0.5

The solution of the above equations in terms of stream function will come as:

ψo(r, θ ) � [a1r
2 +

a2

r
+ a3r + a4r

4]G2(ς)

+ [a5r
2 +

1

r
a6 + r a7 + r4 a8]G2(ς)

+ [r4 a9 + r−3 a10 +
1

r
a11 + r6 a12 ] G4(ς), (44)

ψ i (r, θ ) � [ r2 b1 + r−1 b2 + K 3
2
(η r ) r

1
2 b3 + I 3

2
(η r ) b4]G2(ς)

+ [b5r
2 +

1

r
b6 + K 3

2
(η r ) r

1
2 b7 + I 3

2
(η r )b8 ]G2(ς)

+ [b9r
4 + b10 r−3 + b11

√
r K 7

2
(η r ) + b12 I 7

2
(η r )]G4(ς), (45)

where η2 � μ̃o

μ̃i k
and ai , b j , i, j � 1, 2, 3, . . . , 12 are arbitrary constants and these con-

stants can be obtained by using the boundary conditions (21)–(28) and perturbation method
approach.

In this case, the hydrodynamic permeability of the membrane in absence of magnetic field
comes out as:

L11 � 1

3 ℘3

(1 − ε)

{(1 − ε) a3 + a7} . (46)

The result obtained in this case agrees with the result of Yadav et al. [53].
Figures 10 and 11 show the comparison of dimensionless hydrodynamic permeability

of the membrane composed by impermeable spheroid covered with porous layer in oblate
spheroidal shape in presence and absence of uniform magnetic field.

Dotted lines and solid lines are used to show the hydrodynamic permeability of mem-
brane in presence and absence of uniform magnetic force, respectively. The models Happle,
Kuwabara, Kvashnin’s, and Mehta–Morse’s are distinguished by red, blue, green and black
color, respectively. From Figs. 10 and 11, we concluded that Magnetic field suppressed the
hydrodynamic permeability of the membrane when k < 0.02 and ε < 0.85 and enhanced
the hydrodynamic permeability of the membrane when k > 0.02 for all three model except
Happel’s [Fig. 10]. It enhanced the hydrodynamic permeability of the membrane for Happel’s
model when k > 0.05.
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Fig. 11 Comparison in ln(L11) of membrane in presence and absence of magnetic field when H � 3.0, β �
0.3, ℘ � 0.5, λ � 2.0, k � 0.02, and � � 0.5

When c̃ → ∞, i.e.,℘ → 0, the considered physical model reduces to the impermeable
spheroid coated with porous layer in an unbounded medium. In this case, the expressions of
non-dimensional form of hydrodynamic drag force is given as

F̃ � 4 π μ̃o d Ũ [(1 − ε ) a3 + a7], (47)

and the drag force ratio Ω , will comes as:

Ω � 2

3
[(1 − ε) a3 + a7]. (48)

6.2 Stokes flow through a membrane composed by porous oblate spheroid in presence
of uniform magnetic field

Under the limiting case � → 0, the considered model will reduce to the Stokes flow through
a membrane which is composed by porous oblate spheroid in presence of magnetic field. In
this case the stream function solution of the governing Eqs. (11) and (12) will be:

ψo � [a2 r
2 + r−1b2 + K 3

2
(H r ) c2 r

1
2 + I 3

2
(H r ) d2 r

1
2 ]G2(ς)

+ [A2 r
2 +

1

r
B2 + C2 K 3

2
(H r ) r

1
2 + I 3

2
(H r ) D2 r

1
2 ]G2(ς)

+ [A4 r
4 + B4 r

−3 + K 7
2
(H r )C4 r

1
2 + I 7

2
(H r ) D4 r

1
2 ]G4(ς), (49)

ψ i � [ r2 a∗
2 + I 3

2
(L r ) d∗

2 ]G2(ς) + [ r2 A∗
2 + I 3

2
(L r ) D∗

2 ]G2(ς)

+ [r4 A∗
4 + I 7

2
(L r ) D∗

4 ]G4(ς). (50)

The hydrodynamic permeability of this kind of membrane is also evaluated by using the
formula (34), which comes out as

L11 � 4

3γ 3 Y
, (51)

Y �

⎛
⎜⎜⎜⎜⎝

8

15
{H4 I3/2(H )d2 + (H3 + H4)c2K1/2(H )}ε

+
2

3
{(H3 I1/2(H ) − 3H2 I3/2(H ))(d2 + D2)

+(−3H − 3H2 − H3)(c2 + C2)K1/2(H )}

⎞
⎟⎟⎟⎟⎠, (52)
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Fig. 12 Comparison in ln(L11) of the membrane composed by porous spheroid and impermeable spheroid
covered with porous layer in presence of magnetic field when H � 3.0, β � 0.3,℘ � 0.5, λ � 2.0, ε � 0.05,

and � � 0.5

where the arbitrary constants c2, d2, C2 & D2 can be obtained by using the suitable bound-
ary conditions (22)–(24) together with one of the cell model boundary condition (25)–(28).
This result agrees with the result established by Yadav [52].

The expression for non-dimensional form of hydrodynamic drag force exerted on porous
oblate spheroid by an electrically conducting fluid under the condition of external magnetic
field in an unbounded medium is given as:

F̃ � 2

15
π U μ̃o d[{((30H2 + 4H4)I3/2(H ) − 5H3 I1/2(H ))d2

− K1/2(H ) (15H + 15H2 + 3H3 − 2H4)c2}ε
+ 5{(H3 I1/2(H ) − 3H2 I3/2(H ))(d2 + D2)

+ K1/2(H )(−3H − 3H2 − H3)(c2 + C2)}]. (53)

The comparative values of hydrodynamic permeability of the membrane composed by porous
spheroid and impermeable spheroid covered with porous layer in presence of magnetic field
are analyzed through Figs. 12 and 13. The nature of variation in the dimensionless form
of hydrodynamic permeability of the membrane composed by porous spheroid under the
influence of uniform magnetic field with permeability k and jump coefficient β agrees with
the results reported by Yadav [52].

6.3 Stokes flow through a membrane composed by porous oblate spheroid in absence
of uniform magnetic field

On taking the limit as H → 0 in the model discussed in Sect. 6.2, the model will reduce to
the Stokes flow past a membrane composed by porous oblate spheroid in absence of uniform
magnetic field. In this case, the governing equations and its stream function solution and
hence the drag force experienced by the membrane and hydrodynamic permeability of the
membrane will be as:

μ̃o∇̃2q̃o � ∇̃ p̃o, ∇̃.q̃o � 0, (54)

− μ̃o

k̃
q̃i + μ̃i ∇̃2q̃i � ∇̃ p̃i , ∇̃.q̃i � 0, (55)
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Fig. 13 Comparison in ln(L11) of the membrane composed by porous spheroid and impermeable spheroid
covered with porous layer in presence of magnetic field when H � 3.0, k � 0.2,℘ � 0.8 λ � 2, ε � 0.05,

and � � 0.5

ψo(r, θ ) � [
a1r

2 + r−1 a2 + a3r + a4r
4]G2(ς)

+
[
a5r

2 + r−1a6 + r a7 + r4 a8
]
G2(ς)

+
[
r4 a9 + r−3 a10 + r−1 a11 + r6 a12

]
G4(ς), (56)

ψ i (r, θ ) �
[
r2 b1 + I 3

2
(η r ) b2

]
G2(ς)

+
[
b3r

2 + I 3
2
(η r )b4

]
G2(ς)

+
[
b5r

4 + b6 I 7
2
(η r )

]
G4(ς), (57)

F̃ � 4 π μ̃o d Ũ [(1 − ε ) a3 + a7], (58)

L11 � 1

3γ 3

(1 − ε)

{(1 − ε)a3 + a7} , (59)

where η2 � μ̃o

μ̃i k
and ai , b j , i � 1, 2, 3, . . . , 12, j � 1, 2, . . . , 6 are arbitrary constants and

these constants can be obtained by using the boundary conditions (22)–(24) together with
one of the cell model boundary condition (25)–(28).

Under the limiting case H → 0 and β → 0, the considered physical problem reduces
into the Stokes flow through a membrane composed by porous oblate spheroid in absence
of uniform magnetic field and without stress jump condition. The nature of variation in non-
dimensional form of hydrodynamic permeability of membrane with different parameters
agrees with the work of Yadav et al. [56].

Figures 14 and 15 are presented to show the variation in hydrodynamic permeability of
membrane composed by porous spheroid in absence of magnetic field and impermeable
spheroid covered with porous layer in presence of magnetic field with permeability k and
deformation parameter ε. The nature of variation in the non-dimensional form of hydrody-
namic permeability of the membrane composed by porous oblate spheroid with permeability
k and deformation parameter ε under the effect of stress jump condition agrees with the
variation reported by Yadav [53] which validate our results.

When c̃ → ∞, i.e., ℘ → 0 in Eq. (58) then authors obtained the drag force experi-
enced by the porous spheroid in an unbounded medium and hence, for this particular case
of the present work, we have also calculated the normalized particle mobility for all four
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Fig. 14 Comparison in ln(L11) of the membrane composed by porous spheroid in absence of magnetic field
and impermeable spheroid covered with porous layer in presence of magnetic field when H � 3.0, β �
0.3,℘ � 0.5, λ � 2.0, ε � 0.05, and � � 0.5

Fig. 15 Comparison in ln(L11) of the membrane composed by porous spheroid in absence of magnetic field
and impermeable spheroid covered with porous layer in presence of magnetic field when H � 3.0, β �
0.3,℘ � 0.5, λ � 2.0, k � 0.02, and � � 0.5

well-known cell models Happel’s, Kuwabara’s, Kvashnin’s, and Mehta–Morse’s and have
discussed its dependency on various fluid parameters such as particle volume fraction, perme-
ability parameter and stress jump coefficient graphically. Here, we have taken λ � 1 which
yields η to be permeability parameter. Figure 16 reflects the dependence of normalized parti-
cle mobility on the permeability parameter η and volume fraction ℘ for all four models when
λ � 1, ε � 0.1, β � 0.1. From this figure, it is observed that there is continuous decrease
in the mobility of the particles with the increase in the volume fraction of the particles and
permeability parameter. For each value of η, mobility is highest for the Happel’s model and
lowest for the Mehta–Morse’s model while other two models are lying in between them.

The nature of variation in the mobility of particle with particle volume fraction ℘ and
permeability parameter η shown in Fig. 16 agrees with the nature of variation in the mobility
of particle with the above parameters in the works carried out by Saad [28], Keh and Cheng
[46]. Figure 17 shows the effect of stress jump coefficient β on the particle mobility when
λ � 1, ε � 0.1, ℘ � 0.8, η � 10. From Fig. 17, we concluded that the particle mobility
can be enhanced/supressed by increasing/decreasing the stress jump coefficient β.
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Fig. 16 Variation of mobility of particle M with respect to the particle volume fraction ℘ and permeability
parameter η

Fig. 17 Variation of mobility of particle M with respect to the stress jump coefficient β

Similar to the previous plot, the mobility of the particles is highest for the Happel’s
model and lowest for the Mehta–Morse’s model. This result clearly shows the importance
of discontinuity condition in shearing stress (Stress jump boundary condition) at the fluid
porous interface which authors have considered in the present problem. This result has not
been discussed in any of the previous aforementioned works.

When c̃ → ∞, i.e., ℘ → 0 and β → 0 in Eq. (58), then the model will reduces in the
model discussed by Saad [28]. In this case, the drag force experienced by the porous spheroid
in an unbounded medium comes out as:

F̃ � 12 π μ̃o d Ũ η2λ2[2 η2{−5(108 + 18(−12 + η2) λ2 + (108 − 42 η2 − 5 η4)

+ 4 η2(6 + η2)λ6) + ε(−108 + 18 (12 + 5 η2)λ2 − 3(36 + 38 η2 + 3 η4)λ4

+ 4 η2(6 + η2) λ6)}(η coshη − sinh η)sinh η + 4 η4(5(−1 + λ2) (−9 − 3(−3 + η2) λ2

+ 2 η2λ4) + ε (9 − 3(6 + η2)λ2 + (9 + 5 η2 + 2 η4) λ4 − 2 η2λ6)) (sinh η)2

+ (5 (324 − 648 λ2 − 3 (−108 + 24 η2 + 7 η4)λ4 + 2 η2(6 + η2)2λ6)
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− ε(−324 + 216(3 + 2 η2)λ2 + (−324 − 504 η2 − 27 η4 + 8 η6)λ4

+ 2 η2(6 + η2)2λ6))(−η cosh η + sinh η)2)]/5[(54 + 9(−6 + η2) λ2

− 2 η2(6 + η2)λ4) (η cosh η − sinh η) + 2 η2(−9 − 3(−3 + η2)λ2 + 2 η2λ4)sinh η]2

It is seen from above expression that when η → 0 (i.e., k → ∞) then the mobility of
particle is becomes zero because the drag force experienced by the porous spheroid in an
unbounded medium becomes zero. This validates our result from the work of the Saad [28].

The porous oblate spheroid becomes solid, when k → ∞. Thus, on taking the limit as
k → ∞, in Eq. (59), the non-dimensional form of hydrodynamic permeability of a membrane
L11H, L11K,L11KV, and L11M composed by solid spheroid in cell for all Happel, Kuwabara,
Kvashnin, and Mehta–Morse cell models, respectively, which has been discussed by Yadav
et al. [56] are comes as:

L11H � − 5 (ε − 1) (1 + 2 ℘ + ℘2) (2 + ℘ + 2℘2)2 (℘ − 1)4

3℘3(3 + 2℘5)(10 + 5 ℘ − 5 ℘3 − 10 ℘4 + (−2 + 5 ℘ + 12℘2 + 9 ℘3 + 6 ℘4)ε)
,

(60)

L11K� − 2 (ε − 1) (5 + 6 ℘ + 3 ℘2 + ℘3)2 (℘ − 1)4

9℘3((5 + 6 ℘ + 3 ℘2 + ℘3) (5 − 5℘) + (−5 + 8 ℘ + 21 ℘2 + 14 ℘3 + 7℘4)ε)
,

(61)

L11KV� − 5 (−1 + ε) (16 + ℘(21 + ℘(15 + 8℘)))2 (℘ − 1)4

18℘3(4 + ℘5)(−5℘(−5 + ℘(6 + ℘(7 + 8℘))) − 16(−5 + ε) + ℘(31 + ℘(78 + ℘(55 + 32γ )))ε)
,

(62)

L11M� − 5(−1 + ℘)3(4 + ℘(7 + 4℘))(−1 + ε)

18℘3(1 + ℘ + ℘2 + ℘3 + ℘4)(−5 + ε)
. (63)

The expression for non-dimensional form of hydrodynamic permeability given in
Eq. (60)–(63) agrees with the result of Yadav et al. [56].

When H → 0, � → 0, k → ∞ and c̃ → ∞, i.e., ℘ → 0, then the physical model will
reduces in solid oblate spheroid in an unbounded medium. Here, the hydrodynamics drag
force F̃ exerted on solid oblate spheroid due to flow of non-electrically conducting fluid and
drag force ratio Ω are comes out as:

F̃ � 6π
(

1 − ε

5

)
μ̃o Ũ d, (64)

Ω � 1 − ε

5
. (65)

The expression (64) for the drag force acting on solid oblate spheroid agrees with the result of
Palanappan [57], Ramkissoon [54] and Datta and Deo [25] for the flow past a rigid spheroid
in an unbounded clear fluid.

6.4 Stokes flow through a membrane composed by porous Sphere with an impermeable
core in presence of magnetic field

On taking the limit as ε → 0, the considered membrane will reduce to the membrane
composed by porous sphere enclosing an impermeable sphere.

The hydrodynamic permeability of the membrane built up by porous sphere enclosing an
impermeable spherical core will comes as:

L11 � 4

2℘3 [{H3 I1/2(H ) − 3H2 I3/2(H )}d2 + K1/2(H ){−3H − 3H2 − H3}c2]
, (66)
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where c2 & d2 are arbitrary constants which is evaluated in Sect. 2.3.2 by solving
Eqs. (9)–(15) together with one of the cell model boundary condition (16a)–(16d) given
in “Appendix A”. The result obtained in this case agrees with the result of Yadav et al. [37].

If H → 0, then the model will reduces to Stokes flow through a membrane of impermeable
spherical particle coated with porous layer in spherical shape in absence of magnetic field
and this model already has been analyzed by Yadav et al. [14].

6.5 Stokes flow through a membrane composed by porous spherical particle in presence
of magnetic field

If � → 0, then the model achieved in Sect. 6.4 will reduces in the slow viscous flow of an
electrically conducting fluid through the membrane composed by porous spherical particle in
presence of uniform magnetic field. In this case, the stream function solution of the concern
governing equation will be:

ψo � [a2 r
2 +

b2

r
+ c2

√
r K3/2(H r ) + d2

√
r I3/2(H r )]G2(ς), (67)

ψ i � [a∗
2 r

2 + d∗
2 I3/2(L r )]G2(ζ ). (68)

The expression for hydrodynamic permeability of the membrane built up by porous spheri-
cal particle which agrees with the expression of hydrodynamic permeability of the membrane
given by Yadav [52] comes as

L11 � 4

3℘3 Y
, (69)

Y � 2

3
[(H3 I1/2(H ) − 3H2 I3/2(H ))d2

+ (−3H − 3H2 − H3) c2 K1/2(H )]. (70)

On taking the limit as H → 0, we can find an analytical expression for hydrodynamic
permeability of the membrane built up by porous spherical particle in absence of uniform
magnetic field when non electrically conducting fluid passing through it.

When, k → ∞, then the membrane will be of solid sphere and the expression for non
dimensional form of hydrodynamic permeability of the membrane L11H, L11K, L11KV, and
L11M for all models, Happel, Kuwabara, Kvashnin, and Mehta–Morse, respectively, are as:

L11H � 2 − 3 ℘ + 3 ℘5 − 2 ℘6

6 ℘8 + 9 ℘3 , (71)

L11K � −5 + 9 ℘ − 5 ℘3 − 2 ℘6

45 ℘3 , (72)

L11KV � (1 − ℘)3(16 + 21 ℘ + 15 ℘2 + 8 ℘3)

72 ℘3 + 18 ℘8 , (73)

L11M � (1 − ℘)3 (4 + 7 ℘ + 4 ℘2)

18 (1 + ℘ + ℘2 + ℘3 + ℘4) ℘3 . (74)

The expression (71), (72), (73) and (74) agrees with the expression in given Happel [6],
Kuwabara [7], Kvashnin [8], and Mehta–Morse [9], respectively.

On taking the limit as ℘ → 0, the problem will become Stokes flow through the solid
sphere in an unbounded medium. In this case, the drag force F̃ acting on solid sphere in an
unbounded medium when fluid flow takes place through it is:

F̃ � 6 π μ̃o b̃ Ũ . (75)
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This is a well-known result for the drag force established by Stokes [58] for flow past a solid
sphere in an unbounded medium.

7 Conclusions

In present problem, an investigation of hydrodynamic permeability of the porous membrane
built up by the spheroidal shaped particles in the presence of transversally applied external
magnetic field has been done. An analytical solution of the problem has been discussed in
detail through the method of cell model technique. This method introduces four different cell
models depending on the boundary conditions taken at the hypothetical enveloping cell of a
particle of a porous membrane. All four models have been discussed and compared with each
other in the result and discussion section of the manuscript. At the porous–liquid interface,
the continuity for normal stresses and continuity of velocity have been used. In addition
of the above continuity condition, authors also used a well-known discontinuity condition
in the tangential stress at the porous–liquid interface proposed and experimentally verified
by Ochoa-Tapia and Whitaker [13, 48] to find the complete solution of the problem. From
the above discussion, authors concluded that the discontinuity parameter (jump coefficient)
play an important role in controlling of drag force, normalized particle mobility and mem-
brane’s hydrodynamic permeability. Hence, the consideration of stress jump coefficient, i.e.,
discontinuity in shear stress at the fluid-porous interface cannot be ignored.

The variation in the hydrodynamic permeability with the parameters namely, volume
fraction, specific permeability, magnetic number, viscosity ratio, deformation parameter and
stress jump coefficient are observed in accordance to the physics of the present problem.
The nature of variation in the hydrodynamic permeability of the membrane with the afore-
mentioned parameters validated with the previous published work on the hydrodynamic
permeability of the porous membrane. The most important feature of present problem is that
it is reducible to the solutions of almost all previous problems on the hydrodynamic per-
meability of the porous membrane built up by the spherical or deformed spherical particles,
which has been represented in the Sect. 6 of the manuscript. Flow through a membrane built
up by porous particles of different shapes are important in natural and technological pro-
cesses such as the flows through sand beds, petroleum reservoir rocks, in aloxite materials,
sedimentation. The result of the present problem provides different ideas for the structuring
and modeling of the porous membrane mathematically as well as physically. The analysis
made in the present problem has important implications in the filtration processes undergoes
in the chemical industries, oil factories, etc.
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Appendix A

[a∗
2 + �−3b∗

2 + �−3/2 K 3
2
(L �) c∗

2 + �−3/2 I 3
2

(L �)d∗
2 ] P1(ς)

− [3�−3 b∗
2 + �− 3

2 (L � K1/2(L �) + 3K 3
2
(L �)) c∗

2

− (S � I 1
2
(L �) − 3I 3

2
(L �)) �− 3

2 d∗
2 ] δn Gn(ς) P1(ς)
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+
∞∑
m

[�m−2A∗
m + �−m−1B∗

m + �−3/2 Kν(L �)C∗
m

+ �−3/2 Iν(L �)D∗
m]Pm−1(ς) � 0, (1)

[2a∗
2 − �−3b∗

2 − (L �− 3
2 K 1

2
(L �) + �− 3

2 K 3
2

(L �))c∗
2 + (L �− 1

2 I 1
2

(L �) − �− 3
2 I 3

2
(L �))d∗

2 ]G2(ς)

+ [3 b∗
2 �−3 + {K 1

2
(L �) (L �−1/2 + L2�1/2) + (�− 1

2 L K 1
2

(L �) + 3 �− 3
2 K 3

2
(L �))}c∗

2

+ {L2�
1
2 I 3

2
(L �) − �− 3

2 (L � I 3
2

(L �) − 3I 3
2

(L �))}d∗
2 ]δnGn(ς)G2(ς)

+
∞∑
m

[m �m−2A∗
m + �−(m+1)(−m + 1)B∗

m + {−�−1/2L Kν−1(�L ) + (−m + 1)�−3/2Kν (�L)}C∗
m

+ {�−1/2L Iν−1(L �) + (1 − m)�−3/2 Iν (L �)}D∗
m ]Gm (ς) � 0, (2)

P1(ς) [a2 + b2 + K 3
2
(H ) c2 + I 3

2
(H ) d2 − a∗

2 − b∗
2 − K 3

2
(L) c∗

2 − I 3
2
(L) d∗

2 ]

+ [−3 b2 − c2{3 K3/2(H ) + H K 1
2
(H )} + d2{H I 1

2
(H ) − 3I 3

2
(H )}

+ 3 b∗
2 + c∗

2{L K 1
2
(L) + 3K 3

2
(L)} − d∗

2 {L I 1
2
(L) − 3I 3

2
(L)}]δnGn(ς)P1(ς)

+
∞∑
m

[Am + Bm + CmKν(H ) + Dm Iν(H ) − A∗
m − B∗

m − C∗
mKv(L)

− D∗
m Iv(L)]Pm−1(ς) � 0, (3)

[2a2 − b2 + c2{−H K 1
2

(H ) − K 3
2

(H )} + d2{H I 1
2

(H ) − I 3
2

(H )} − 2a∗
2 + b∗

2]

+ c∗
2{L K 1

2
(L) + K 3

2
(L)} − d∗

2 {L I 1
2

(L) − I 3
2

(L)}]G2(ς)

+ [3 b2 + c2{H (H + 2)K 1
2

(H ) + 3K 3
2

(H )} + d2{(H2 + 3)I 3
2

(H ) − H I 1
2

(H )}
− 3b∗

2 − c∗
2{L(L + 2)K 1

2
(L) + 3K 3

2
(L)} − d∗

2 {(L2 + 3)I 3
2

(L) − L I 1
2

(L)}] δnGn(ς)G2(ς)

+
∑
m

m Am + (1 − m)Bm + Cm{−H Kv−1(H ) + (1 − m)Kv(H )}

+ Dm{H Iv−1(H ) − (1 − m)Iv(H )} − m A∗
m − (1 − m)B∗

m − C∗
m{L Kv−1(L) + (1 − m)Kv(L)}

−D∗
m{L Iv−1(L) + (1 − m)Iv(L)}]Gm (ς) � 0 (4)

[−2H2a2 + (H2 + 12)b2 + c2{12K 3
2

(H ) + 4H K 1
2

(H )} + d2{12I 3
2

(H ) − 4H I 1
2

(H )} + 2λ2L2a∗
2

− λ2(L2 + 12)b∗
2 − c∗

2 λ2{12K 3
2

(L) + 4L K 1
2

(L)} − d∗
2 λ2{12I 3

2
(L) − 4L I 1

2
(L)}]P1(ς)

+ [−2H2a2 + (−2H2 − 48)b2 + 4 c2{12K 3
2

(H ) − (5H + H2)K 1
2

(H )} + 4 d2{−(H2 + 12) I 3
2

(H )

+ 4H I 1
2

(H )} + 2λ2 L2a∗
2 + λ2(2L2 + 48)b∗

2 + 4 c∗
2λ2{12K 3

2
(L) + (5L + L2)K 1

2
(L)}

+ 4 d∗
2 λ2{(L2 + 12) I 3

2
(L) − 4L I 1

2
(L)}]δnGn(ς)P1(ς) +

∞∑
m

[−{m H2 + 2m(m2 − 3m + 2)}Am

+ {H2(−1 + m) + 2(m3 − m)}Bm + 2{m(m2 − 1)Kv(H ) + m(m − 1)H Kv−1(H )}Cm

+ 2{m(m2 − 1)Iv(H ) − m(m − 1)H Iv−1(H )}Dm + λ2{mL2 + 2m(m2 − 3m + 2)}A∗
m

− λ2{(m − 1)L2 + 2m(m2 − 1)}B∗
m − 2λ2C∗

m{m(m2 − 1)Kv(L) + m(m − 1)L Kv−1(L)}
− 2λ2D∗

m (m(m2 − 1)Iv(L) − m(m − 1)L Iv−1(L))]Pm−1(ς) � 0, (5)
[
−6 b2 − c2{(H2 + 6)K 3

2
(H ) + 2H K 1

2
(H )} − d2{(H2 + 6)I 3

2
(H ) − 2H I 1

2
(H )} − 2

β√
k
a∗

2
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+

(
6 +

β√
k

)
b∗

2 + c∗
2

{
λ2(L2 + 6) K 3

2
(L) + 2λ2L K 1

2
(L) +

β√
k

(L K 1
2

(L) + K 3
2

(L))

}

+d∗
2

{
(L2 + 6)λ2 I 3

2
(L) − 2λ2L I 1

2
(L) − β√

k
(L I 1

2
(L) − I 3

2
(L))

}]
G2(ς )

− [−24 b2 − {(2H2 + 24)K 3
2

(H ) + (H3 + 2 H2 + 10H ) K 1
2

(H )} c2

− {(4H2 + 24) I 3
2

(H ) − (H3 + 8H ) I 1
2

(H )} d2 +

(
24λ2 + 3

β√
k

)
b∗

2

·
{
λ2(2 L2 + 24)K 3

2
(L) + λ2(L3 + 2 L2 + 10 L)K 1

2
(L) +

β√
k

(3K 3
2

(L) + (L2 + 2L)K 1
2

(L))

}
c∗

2

+ {λ2(4 L2 + 24)I 3
2

(L) − λ2(L3 + 8L)I 1
2

(L) +
β√
k

((L2 + 3)I 3
2

(L) − L I 1
2

(L))}d∗
2 ] δnGn(ς )G2(ς )

+
∞∑
m

[−2m(m − 2)Am − 2(m2 − 1)Bm − {(H2 + 2(m2 − 1))Kv(H ) + 2H Kv−1(H )}Cm

− {(H2 + 2(m2 − 1))Iv(H ) − 2H Iv−1(H )}Dm +

{
2m(m − 2)λ2 − β√

k
m

}
A∗
m

+

{
2(m2 − 1)λ2 − β√

k
(1 − m)

}
B∗
m + {(L2 + 2(m2 − 1))λ2Kv(L) − 2Lλ2Kv−1(L) − β√

k
(−L Kv−1(L)

+ (1 − m)Iv(L))}C∗
m + {(L2 + 2(m2 − 1))λ2 Iv(L) − 2Lλ2 Iv−1(L) − β√

k
(L Iv−1(L)

+ (1 − m)Iv(L))}D∗
m ]Gm (ς ) � 0, (6)

[−a2 − b2 ℘3 − c2 K 3
2

(H/℘) ℘
3
2 − d2 I 3

2
(H/℘) ℘

3
2 + 1]P1(ς) + [3b2 ℘3 + c2 {H℘−1K 1

2
(H/℘)

+ 3K 3
2

(H/℘)} ℘
3
2 − d2 ℘

3
2 {H℘−1 I 1

2
(H/℘) + 3I 3

2
(H/℘)}] δnGn(ς)P1(ς)

+
∞∑
m

[Am ℘2−m + Bm ℘m+1 + Cm℘
3
2 Kv(H/℘) + Dm ℘

3
2 Iv(H/℘)]Pm−1(ς) � 0. (7)

Happel’s boundary condition:

[6℘4b2 + {(H2℘1/2 + 6℘5/2)K3/2(H/℘) + 2H℘3/2K1/2(H/℘)}c2 + {(H2℘1/2 + 6℘5/2)I3/2(H/℘)

− 2H℘3/2 I1/2(H/℘)}d2]G2(ς ) + [−24℘4b2 − {(H3℘−1/2 + 2H2℘1/2 + 10H℘3/2)K1/2(H/℘)

+ (2H2℘1/2 + 24H℘5/2)K3/2(H/℘)}c2 − {(4H2℘1/2 + 24H℘5/2)I3/2(H/℘) − (H3℘−1/2

+ 8H℘3/2)I1/2(H/℘)}d2] δnGn (ς )G2(ς ) +
∞∑
m

[2m(m − 2)℘3−n Am + 2(m2 − 1)℘m+2Bm

+ {(H2℘1/2 + 2(m2 − 1)℘5/2)Kv(H/℘) + 2H℘3/2Kv−1(H/℘)}Cm

+ {(H2℘1/2 + 2(m2 − 1)℘5/2)Iv(H/℘) − 2H ℘3/2 Iv−1(H/℘)}Dm ]Gm (ς ) � 0. (8a)

Kuwabara’s boundary condition:

[K3/2(H/℘)c2 + I3/2(H/℘)d2]G2(ς) + [−{(H/℘)K1/2(H/℘) + K3/2(H/℘)}c2

+ {(H/℘)I1/2(H/℘) − I3/2(H/℘)}d2℘
3/2]δnGn(ς)G2(ς)

+
∞∑
m

[CmKv(H/℘) + Dm Iv(H/℘)]Gm(ς) � 0. (8b)

Kvashnin’s boundary condition:

[3℘3b2 − {(3℘5/2 + ℘1/2 H2) + (3℘7/2H−1 + 2 ℘3/2H )}K1/2(H/℘)c2

+ {(3℘5/2 + H2℘1/2)I3/2(H/℘) − H I1/2(H/℘)℘3/2}d2]G2(ς) + [−12℘4b2

− {3H2℘1/2 + 7H℘3/2 + 12H−1℘7/2 + 12℘5/2 + H3℘−1/2}K1/2(H/℘)c2
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+ {(4H℘3/2 + H3℘−1/2)I1/2(H/℘) − (3H2℘1/2 + 12℘5/2)}d2] δn

Gn(ς)G2(ς) +
∞∑
m

[m(m − 2)℘3−m Am + (m2 − 1)℘m+2Bm

+ {℘5/2(m2 − H2℘−2)Kv−2(H/℘) + (m − 1)H−1℘7/2(2m2

− m − 3 + 2H2℘−2)Kv−1(H/℘)}Cm + {℘5/2(m2

− H2℘−2)Iv−2(H/℘) + (m − 1)H−1℘7/2(2m2 − m − 3

+ 2H2℘−2)Iv−1(H/℘)}Dm]Gm(ς) � 0. (8c)

Mehta–Morse’s boundary condition:

[2a2 − ℘3b2 − {H K 1
2
(H/℘) + K 3

2
(H/℘) ℘}℘ 1

2 c2 + {H I 1
2
(H/℘)

− I 3
2
(H/℘) ℘}℘ 1

2 d2 + 1]G2(ς) + [3℘3b2 + {(H (H℘−1 + 1)K 1
2
(H/℘) ℘

1
2

+ (H℘−1K 1
2
(H/℘) + 3K 3

2
(H/℘)) ℘

3
2 }c2 − {H2 I 3

2
(H/℘) ℘− 1

2

− (H℘−1 I 1
2
(H/℘) − 3I 3

2
(H/℘)) ℘

3
2 }d2] δnGn(ς)G2(ς)

+
∞∑
m

[m ℘2−m Am + (1 − m)℘m+1Bm + {−H℘
1
2 Kv−1(H/℘)

+ (1 − m) Kv(H/℘)
3
2 }Cn + {H Iv−1(H/℘) ℘

1
2

+ (1 − m) Iv(H/℘) ℘
3
2 }Dm]Gm(ς) � o. (8d)

a∗
2 + �−3b∗

2 + �− 3
2 K 3

2
(L � )c∗

2 + �− 3
2 I 3

2
(L � )d∗

2 � 0, (9)

2 a∗
2 − �−3b∗

2 − (L �− 1
2 K 1

2
(L �) + �− 3

2 K 3
2
(L �))c∗

2 + (L �− 1
2 I 1

2
(L �) − �− 3

2 I 3
2
(L �))d∗

2 � 0,

(10)

a2 + b2 + K 3
2
(H ) c2 + I 3

2
(H ) d2 − a∗

2 − b∗
2 − K 3

2
(L) c∗

2 − I 3
2
(L) d∗

2 � 0, (11)

2a2 − b2 + c2{−H K 1
2
(H ) − K 3

2
(H )} + d2{H I 1

2
(H ) − I 3

2
(H )}

− 2 a∗
2 + b∗

2 + c∗
2{L K 1

2
(L) + K 3

2
(L)} − d∗

2 {L I 1
2
(L) − I 3

2
(L)} � 0, (12)

− 2H2a2 + (H2 + 12) b2 + {12K 3
2
(H ) + 4H K 1

2
(H )} c2

+ {12I 3
2
(H ) − 4H I 1

2
(H )} d2 + 2L2 λ2 a∗

2 − (L2 + 12) λ2 b∗
2

− {12K 3
2
(L) + 4L K 1

2
(L)} λ2 c∗

2 − λ2{12I 3
2
(L) − 4L I 1

2
(L)} d∗

2 � 0, (13)

− 6 b2 − {(H2 + 6)K 3
2
(H ) + 2H K 1

2
(H )} c2 − d2{(H2 + 6)I 3

2
(H )

− 2H I 1
2
(H )} − 2

β√
k
a∗

2 +

(
6 +

β√
k

)
b∗

2 + {(L2 + 6) λ2 K 3
2
(L)

+ 2λ2L K 1
2
(L) +

β√
k

(L K 1
2
(L) + K 3

2
(L))} c∗

2 + {λ2(L2 + 6) I 3
2
(L)

− 2λ2L I 1
2
(L) − β√

k
(L I 1

2
(L) − I 3

2
(L))} d∗

2 � 0, (14)

−a2 − b2 ℘3 − c2 K 3
2
(H/℘) ℘

3
2 − ℘

3
2 I 3

2
(H/℘) d2 + 1 � 0. (15)
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Happel’s boundary condition

6 ℘4b2 + {(H2 ℘
1
2 + 6 ℘

5
2 )K 3

2
(H/℘) + 2H ℘

3
2 K 1

2
(H/℘)} c2

+ {(H2 ℘
1
2 + 6 ℘

5
2 )I 3

2
(H/℘) − 2 H ℘

3
2 I 1

2
(H/℘)} d2 � 0. (16a)

Kuwabara’s boundary condition:

K 3
2
(H/℘)c2 + I 3

2
(H/℘) d2 � 0. (16b)

Kvashnin’s boundary condition:

3℘3b2 − {℘5/2(3 + H2℘−2) + ℘7/2H−1(3 + 2H2℘−2)}K1/2(H/℘)c2

+ {(3℘5/2 + H2℘1/2)I3/2(H/℘) − H℘3/2 I1/2(H/℘)}d2 � 0. (16c)

Mehta–Morse’s boundary condition:

2a2 − ℘3b2 − {℘1/2 H K 1
2
(H/℘) + ℘

3
2 K 3

2
(H/℘) }c2 + {H ℘1/2 I1/2(H/℘) −

℘3/2 I3/2(H/℘) }d2 + 1 � 0. (16d)
∞∑
m

[�m−2A∗
m + �−m−1B∗

m + �−3/2 Kν(L � )C∗
m + �−3/2 Iν(L � )D∗

m]Pm−1(ς) � 0, (17)

∞∑
m

[m �m−2A∗
m + (1 − m)�−m−1B∗

m + {−L �−1/2Kν−1(L �) + (1 − m)�−3/2Kν(L �)}C∗
m

+ {L �−1/2 Iν−1(L �) + (1 − m)�−3/2 Iν(L �)}D∗
m]Gm(ς)

� p2 δn [En−2 Gn−2(ς) + En Gn(ς) + En+2 Gn+2(ς)], (18)
∞∑
m

[Am + Bm + CmKν (H ) + Dm Iν (H ) − A∗
m − B∗

m − C∗
mKv(L) − D∗

m Iv(L)]Pm−1(ς ) � 0,

(19)∑
m

[m Am + (1 − m)Bm + Cm{−H Kv−1(H ) + (1 − m)Kv(H )} + Dm{H Iv−1(H ) − (1 − m)Iv(H )}

− m A∗
m − (1 − m)B∗

m − C∗
m{L Kv−1(L) + (−m + 1)Kv(L)} − D∗

m{L Iv−1(L)

+ (−m + 1) Iv(L)}]Gm (ς) � q2 δn [En−2 Gn−2(ς) + En Gn(ς) + En+2 Gn+2(ς)], (20)
∞∑
m

[−{m H2 + 2 (m3 − 3m2 + 2m)}Am + {(m − 1)H2 + 2(m3 − m)}Bm + 2{(m3 − m)Kv(H )

+ (m2 − m)H Kv−1(H )}Cm + 2{ (m3 − m)Iv(H ) − H (m2 − m) Iv−1(H )}Dm + λ2{m L2

+ 2(m3 − 3m2 + 2m)}A∗
m − λ2{(m − 1)L2 + 2m(m2 − 1)}B∗

m − 2λ2C∗
m{m(m2 − 1)Kv(L)

+ (m2 − m)L Kv−1(L)} − 2 λ2D∗
m (m(m2 − 1)Iv(L) − m(m − 1)L Iv−1(L))]Pm−1(ς )

� s2 δn [Tn−2 Pn−3(ς ) + Tn Pn−1(ς ) + Tn+2 Pn+1(ς )], (21)
∞∑
m

[−2m(m − 2)Am − 2(m2 − 1)Bm − {(H2 + 2(m2 − 1))Kv(H ) + 2H Kv−1(H )}Cm

− {(H2 + 2(m2 − 1)) Iv(H ) − 2H Iv−1(H )}Dm +

{
2m(m − 2)λ2 − β√

k
m

}
A∗
m

+ {2(m2 − 1)λ2 − β√
k

(1 − m)}B∗
m + {(L2 + 2(m2 − 1))λ2Kv(L) − 2 Lλ2Kv−1(L)

− β√
k

(−L Kv−1(L) + (1 − m) Iv(L))}C∗
m + {(L2 + 2(m2 − 1))λ2 Iv(L) − 2Lλ2 Iv−1(L)
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− β√
k

(L Iv−1(L) + (1 − m)Iv(L))} D∗
m ] Gm (ς ) � t2 δn [En−2 Gn−2(ς ) + En Gn (ς ) + En+2 Gn+2(ς )],

(22)∞∑
m

[℘−m+2Am + ℘1+mBm + Cm℘3/2Kv(H/℘) + Dm ℘3/2 Iv(H/℘)]Pm−1(ς)

� u2 δn [Tn−2 Pn−3(ς) + Tn Pn−1(ς) + Tn+2 Pn+1(ς)]. (23)

Happel’s boundary condition:
∞∑
m

[2m(m − 2)℘3−m Am + 2(m2 − 1)℘m+2Bm + {(H2℘1/2 + 2(m2 − 1)℘5/2)Kv(H/℘)

+ 2H℘3/2Kv−1(H/℘)}Cm + {(H2℘1/2 + 2(m2 − 1)℘5/2)Iv(H/℘)

− 2H℘3/2 Iv−1(H/℘)}Dm]Gm(ς) � w21 δn [En−2Gn−2(ς) + EnGn(ς)

+ En+2 Gn+2(ς)]. (24a)

Kuwabara’s boundary condition:
∞∑
m

[CmKv(H/℘) + Dm Iv(H/℘)]Gm (ς) � w22 δn [En−2 Gn−2(ς) + En Gn(ς) + En+2 Gn+2(ς)].

(24b)

Kvashnin’s boundary condition:
∞∑
m

[m(m − 2)℘3−m Am + (m2 − 1)℘m+2Bm + {℘5/2(m2 − H2℘−2)Kv−2(H/℘)

+ (m − 1)H−1℘7/2(2m2 − m − 3 + 2H2℘−2)Kv−1(H/℘)}Cm

+ {℘5/2(m2 − H2℘−2)Iv−2(H/℘) + (m − 1)H−1℘7/2(2m2 − m − 3

+ 2H2℘−2)Iv−1(H/℘)}Dm]Gm(ς) � w23 δn [En−2 Gn−2(ς)

+ En Gn(ς) + En+2Gn+2(ς)]. (24c)

Mehta–Morse’s boundary condition:
∞∑
m

[m℘2−m Am + (1 − m)℘m+1Bm + {−H℘1/2Kv−1(H/℘)

+ (1 − m)℘3/2Kv(H/℘)}Cm + {H℘1/2 Iv−1(H/℘)

+ (1 − m)℘3/2 Iv(H/℘)}Dm]Gm(ς) � w24 δn [En−2 Gn−2(ς)

+ En Gn(ς) + En+2 Gn+2(ς)]. (24d)

where

p2 � −L �−1/2(L � + 1)K1/2(L �) c∗
2 − L2�1/2 I3/2(L �)d∗

2 ,

q2 � −(H2 + H )K1/2(H ) c2 − H2 I3/2(H ) d2 + (L2 + L) K1/2(L) c∗
2 − L2 I3/2(L) d∗

2 ,

s2 � [(3H2 + 60)b2 + 4 c2{15K3/2(H ) + (60 + H2)K1/2(H )} + 4 d2{−(H2 + 15) I3/2(H )

+ 5H I1/2(H )} − λ2(3L2 + 60)b∗
2 − 4 c∗

2λ2{15K3/2(L) + (60 + L2)K1/2(L)}
− 4 d∗

2 λ2{−(L2 + 15)I3/2(L) + 5 L I1/2(L)}],
t2 � 8β√

k
a∗

2 − β√
k
b∗

2 + c∗
2{L3λ2K1/2(L) +

β√
k

((L2 − 2L) K1/2(L) − K3/2(L))}
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+ d∗
2 {−λ2L3 I1/2(L) +

β√
k

(3 L I1/2(L) + (L2 − 1)I3/2(L))} − H3K1/2(H ) c2

+ H3 I1/2(H ) d2,

u2 � −3a2 + H ℘1/2K1/2(H/℘) c2 − H℘1/2 I1/2(H/℘) d2 − 3,

w21 � H3 ℘−1/2K1/2(H/℘) c2 − H3℘−1/2 I1/2(H/℘) d2,

w22 � H℘−1 K1/2(H/℘) c2 − H℘−1 I1/2(H/℘) d2,

w23 � {H3 ℘−1/2 − H2 ℘1/2 − H ℘3/2}K1/2(H/℘) c2

− {H2℘1/2 I3/2(H/℘) + H3 ℘−1/2 I1/2(H/℘)} d2,

w24 � 3 a2 − H ℘1/2(2 + H/℘)K1/2(H/℘) c2

− {H2℘−1/2 I3/2(H/℘) − H ℘1/2 I1/2(H/℘)} d2,

En−2 � −n − 3

2
Tn−2, En � n(n − 1)Tn, En+2 � n + 2

2
Tn+2

Tn−2 � n − 2

(4n2 − 8n + 3)
, Tn � 1

(4n2 − 4n − 3)
, Tn+2 � − 1 + n

(4n2 − 1)
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