
Eur. Phys. J. Plus (2020) 135:864
https://doi.org/10.1140/epjp/s13360-020-00873-z

Regular Art icle

Computational techniques for highly oscillatory and
chaotic wave problems with fractional-order operator

Kolade M. Owolabi1,2,a

1 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2 Department of Mathematical Sciences, Federal University of Technology, Akure PMB 704, Ondo State,

Nigeria

Received: 31 August 2020 / Accepted: 20 October 2020 / Published online: 28 October 2020
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract In this paper, we study the dynamic evolution of chaotic and oscillatory waves aris-
ing from dissipative dynamical systems of elliptic and parabolic types of partial differential
equations. In such a system, the classical second-order partial derivatives are modeled with the
Riesz fractional-order operator in one and two dimensions. We employ both finite difference
schemes and the Fourier spectral methods for the approximation of fractional derivatives. We
examined the accuracy of the schemes by reporting their convergence results. These numer-
ical techniques are applied to solve two practical problems that are of current and recurring
interests, namely the fractional multi-wing chaotic system and fractional Helmholtz equa-
tion in one and two spatial dimensions. In the computational experiments, it was observed
that under certain conditions, nonlinear dynamical system which depends on some variables
is able to produce the so-called chaotic patterns. The present example shows a sensitive
dependence on the choice of parameters and initial conditions. Some numerical results are
presented for different instances of fractional power.

1 Introduction

Nonlinear chaotic models are dynamical systems that are widely celebrated in the literature
due to their useful applications in many areas of applied sciences and engineering. Based on
chaotic system, an increasing number of research papers has been published over the years,
for instance, the chaotic circuit based on memristor [63], Chen and Ueta’s system [11],
Lorenz’s system [28], simple chaotic flows [52], Rössler’s system [47], memristive chaotic
model with bird- and heart-shaped attractors [5,62], CMOS transistor oscillators [43], digital
and circuit realization of chaotic systems [30], analog digital designs [44], chaotic mythical
bird system [5], butterfly wings and paradise bird map model [1].

Nowadays, oscillatory and complex chaotic processes have been used for theoretical, prac-
tical or experimental purposes in different application areas, which include the pathological
image encryption [26], chaotic communication [12], image watermarking [61], chaotic video
communication scheme via WAN remote transmission [25] autonomous mobile robots [58],
control and synchronization [45], audio and image encryption effects [27,32] and electrome-
chanical oscillators [10], among several others.

a e-mail: koladematthewowolabi@tdtu.edu.vn (corresponding author)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-020-00873-z&domain=pdf
http://orcid.org/0000-0001-9290-3458
mailto:koladematthewowolabi@tdtu.edu.vn


864 Page 2 of 23 Eur. Phys. J. Plus (2020) 135:864

Over the last few decades the concept of fractional calculus (which involves the extension
of standard differentiation and integration to fractional cases) has become a strong tool
for describing the dynamics of complex scenarios which appear most often in virtually all
application field of engineering and sciences. Fractional differentiation and their methods of
solution have a lot of applications in the areas of physics, electrochemistry, control theory,
finance and economics, electrical circuits, robotics, viscoelasticity, ecology, biology and other
physical systems [7,36,37,41]. Majority of the work reported on the dynamics of chaotic
systems which attract a great attention of researchers are either based on integer-order or
fractional-order ordinary differential equations.

Recently, the study of fractional differential equations such as the fractional wave and
diffusion equations [41], control systems [49], biological systems, ecological and chemical
systems, chaotic systems [36,39,40], subdiffusion and superdiffusion processes [35], finance,
electrical problems, viscoelasticity theory [49] and bioengineering [29] has been arisen in
many applications of the applied sciences, engineering and technology. Over the years, the
concept of fractional calculus which is the generalization of the classical integration and
differentiation to fractional-order derivatives and integrals has been applied and used to model
many physical and real-life phenomena in physics, biology, groundwater and economics [23].

In real sense, partial differential equations (PDEs) have been used to describe a wide variety
of phenomena such as diffusion, electrostatics, sound, fluid dynamics, heat, electrodynamics,
elasticity, gravitation and quantum mechanics. Most of these models that are governed by PDE
combine low-order nonlinear with higher-order linear terms. For instance, the time-dependent
models such as Allen–Cahn, Fisher–KPP, Gray–Scott, KdV, Navier–Stokes, Schroödinger,
Bugers, Burger–Huxley, Hodgkin–Huxley, Cahn–Hilliard, FitzHugh–Nagumo and nonlinear
KiSS equations, among several others. It is desirable to utilize higher-order approximations in
both time and space, in order to obtain accurate numerical results. Due to some computational
challenges imposed as by the combination of nonlinearity and stiffness which lead many
authors to restrict their computational to second-order schemes in time, we are motivated
in this work with the formulation of higher-order numerical schemes which are capable of
handling both elliptic and parabolic types of fractional partial differential equations (FPDEs).

In this work, we shall consider the solution of a time-dependent reaction–diffusion equa-
tion of the form

wt = Lαw + N (w, t), (1.1)

wherew is the species concentrations or densities,L is the linear or nonlinear (stiff) fractional
operator of order α ∈ (1, 2], which requires a fast solver to formulate into higher dimensions,
and N denotes nonlinear (nonstiff or mildly stiff) operator which accounts for all the local
kinetics in the equation. Equations of the form (1.1) have been solved using different numer-
ical methods, such as the implicit–explicit (IMEX) schemes [3,4,24,48], finite difference
methods [31,53,56], finite element [9,46] and spectral algorithms [8,38].

Here, in one dimension, we define the Riesz fractional derivative of order α ∈ (1, 2], as

Lαw = ∂αw(x, t)

∂xα
= −cα(0D

α
x + x D

α
L)w(x, t), (1.2)

where

cα = 1

2 cos
(

πα
2

) , α �= 1,

0D
α
xw(x, t) = 1

�(2 − α)

∂2

∂x2

∫ x

0

w(τ, t)

(x − τ)α−1 dτ,
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x D
α
Lw(x, t) = 1

�(2 − α)

∂2

∂x2

∫ L

x

w(τ, t)

(τ − x)α−1 dτ.

The terms 0Dα
x and x Dα

L are expressed as the left- and right-hand side of the Riemann–
Liouville fractional derivatives. The fractional reaction–diffusion model described in (1.1)
has a lot of physical meaning and applications; see [41,65] for details. The aim of the present
work is to explore the dynamic richness in chaotic and oscillatory fractional diffusive models
of either parabolic or elliptic type of PDEs, and to seek appropriate numerical techniques of
arriving at solution.

The remainder part of this paper is organized into sections as follows. In Sect. 2, we give
detailed definitions, theorems and some useful results for subdifussive and superdiffusive
cases of the fractional operator. In Sect. 3, we introduced some numerical schemes based
on the finite difference and spectral methods for the approximation of the Riesz fractional
derivatives. The accuracy, applicability and suitability of the proposed schemes are tested
on some practical problems taken from the literature in Sect. 4. We conclude with the last
section.

2 Preliminaries on Riesz fractional operator

We begin this section with a quick tour of some useful definitions and theorem used for
subdiffusion (0 < α ≤ 1) and superdiffusion (1 < α ≤ 2) cases in one component [35].

Definition 2.1 [41,51,64] The Riesz fractional derivative for α ∈ (n − 1, n] defined on
interval x ∈ (0, L] is given by

∂αw(x, t)

∂xα
= −cα(0D

α
x + x D

α
L)w(x, t),

where

cα = 1

2 cos
(

πα
2

) , α �= 1,

0D
α
x w(x, t) = 1

�(n − α)

∂n

∂xn

∫ x

0

w(τ, t)

(x − τ)α+1−n
dτ,

x D
α
Lw(x, t) = 1

�(n − α)

∂n

∂xn

∫ L

x

w(τ, t)

(τ − x)α+1−n
dτ.

Theorem 2.2 For a continuous function w(x) defined on −∞ < x < ∞, the following
inequality is satisfied.

Lαw(x) = ∂αu(x)

∂|x |α = −(−�)α/2w(x) = − 1

2 cos
(

πα
2

)
[
−∞Dα

x w(x) + x D
α∞w(x)

]
.

Proof By following [35,51], the fractional Laplacian operator is defined as

− (−�)α/2w(x) = −F−1|x |αFw(x), (2.3)

where F represents the Fourier transform, and F−1 denotes the inverse Fourier transform
of function w(x), so that

−(−�)α/2w(x) = − 1

2π

∫ ∞

−∞
eixτ |τ |α

∫ ∞

−∞
eiτξw(ξ)dξdτ.
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In the function, w(x) vanishes at x = ±∞, by applying integration by parts
∫ ∞

−∞
eiτξw(ξ)dξ = − 1

iτ

∫ ∞

−∞
eiτξw′(ξ)dξ,

which implies that

−(−�)α/2w(x) = − 1

2π

∫ ∞

−∞
w′(ξ)

(
i
∫ ∞

−∞
eiτ(ξ−x) |τ |α

τ
dτ

)
dξ.

For simplicity, we denote

G1 = i
∫ ∞

−∞
eiτ(ξ−x) |τ |α

τ
dτ,

so that

G1 = i

(∫ ∞

0
eiτ(ξ−x)τ α−1dτ −

∫ ∞

0
eiτ(x−ξ)τα−1dτ

)
.

Bear in mind that

L (tσ−1) =
∫ ∞

0
e−st tσ dt = �(σ)

sσ
, �(σ ) > 0,

and for case 0 < α < 1, we get

G1 = i

(
�(α)

[i(x − ξ)]α − �(α)

[i(ξ − x)]α
)

= sign(x − ξ)�(α)�(1 − α)

|x − ξ |α�(1 − α)

[
iα−1 + (−i)α−1] .

By applying the known result �(α)�(1−α) = π/ sin πα and iα−1 + (−i)α−1 = 2 sin
(

πα
2

)
,

we get

G1 = sign(x − ξ)π

2 cos
(

πα
2

) |x − ξ |α�(1 − α)
.

Therefore, for subdiffusion interval 0 < α < 1,

− (−�)α/2w(x) = − 1

2π

∫ ∞

−∞
w′(ξ)

sign(x − ξ)π

2 cos
(

πα
2

) |x − ξ |α�(1 − α)
dξ

= − 1

2 cos
(

πα
2

)
(

1

�(1 − α)

∫ x

−∞
w′(ξ)

(x − ξ)α
dξ − 1

�(1 − α)

∫ ∞

x

w′(ξ)

(ξ − x)α
dξ

)
.

(2.4)

According to Podlubny [41], the Grünwald–Letnikov fractional operator of order α ∈
(0, 1] in [a, x] is defined by

aD
α
x w(x) = w(a)(x − a)−α

�(1 − α)
+ 1

�(1 − α)

∫ x

a

w′(ξ)

(x − ξ)α
dξ.

If a → −∞, we have

−∞Dα
x w(x) = 1

�(1 − α)

∫ x

−∞
w′(ξ)

(x − ξ)α
dξ.

In the same manner, if u(x) → 0 for b → ∞, we obtain

x D
α
x w(x) = −1

�(1 − α)

∫ ∞

x

w′(ξ)

(ξ − x)α
dξ.
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Therefore, since w(x) is integrable and continuous for x ≥ a for all α ∈ (0, 1), then the
Riemann–Liouville fractional derivative is the same as the Grünwald–Letnikov fractional
operator. Hence, for all α ∈ (0, 1), we say

Lαw(x) = ∂αw(x)

∂|x |α = −(−�)α/2w(x) = − 1

2 cos
(

πα
2

)
[
−∞Dα

x w(x) + x D
α∞w(x)

]
,

where

−∞Dα
x w(x) = 1

�(1 − α)

∫ x

−∞
w′(ξ)

(x − ξ)α
dξ

x D
α
x w(x) = −1

�(1 − α)

∫ ∞

x

w′(ξ)

(ξ − x)α
dξ.

Again, we consider the superdiffusive case we follow a similar derivation in the interval
α ∈ (1, 2]. We assume that the function w(x) and its derivative w′(x) both vanish as x →
±∞. And by integration by parts, we have

∫ ∞

−∞
eiτξw(ξ)dξ = −τ−2

∫ ∞

−∞
eiτξw′′(ξ)dξ,

so that

− (−�)α/2w(x) = − 1

2π

∫ ∞

−∞
e−i xτ |τ |α

[
−τ−2

∫ ∞

−∞
eiτξw′′(ξ)dξ

]
dτ

= 1

2π

∫ ∞

−∞
w′′(ξ)

(∫ ∞

−∞
eiτ(ξ−x)|τ |α−2dτ

)
dξ. (2.5)

We assume

G2 =
∫ ∞

−∞
eiτ(ξ−x)|τ |α−2dτ,

then

G2 =
∫ ∞

0
eiτ(x−ξ)|τ |α−2dτ +

∫ ∞

0
eiτ(ξ−x)|τ |α−2dτ.

Also bear in mind that

L (tσ−2) =
∫ ∫

0
e−st tσ−2dt = �(σ − 1)

sσ−1 , �(σ ) > 1,

we obtain

G2 = �(α − 1)

[i(ξ − x)]α−1 + �(α − 1)

[i(x − ξ)]α−1 = �(α − 1)�(2 − α)

|x − ξ |α−1�(2 − α)

[
iα−1 + (−i)α−1] .

By applying �(α − 1)�(2 − α) = π/ sin π(α − 1) = −π/ sin(πα) and iα−1 + (−i)α−1 =
2 sin

(
πα
2

)
, we get

G1 = π

cos
(

πα
2

) |x − ξ |(α − 1)�(2 − α)
.
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Hence, for superdiffusion case 1 < α < 2,

− (−�)α/2w(x) = − 1

2π

∫ ∞

−∞
w′′(ξ)

π

cos
(

πα
2

) |x − ξ |α−1�(2 − α)
dξ

= − 1

2 cos
(

πα
2

)
(

1

�(2 − α)

∫ x

−∞
w′′(ξ)

(x − ξ)α−1 dξ + 1

�(2 − α)

∫ ∞

x

w′′(ξ)

(ξ − x)α−1 dξ

)
.

(2.6)

According to Podlubny [41], the Grünwald–Letnikov fractional operator for superdiffusive
order α ∈ (1, 2] in [a, x] is defined by

aD
α
x w(x) = w(a)(x − a)−α

�(1 − α)

w′(a)(x − a)1−α

�(2 − α)
+ 1

�(2 − α)

∫ x

a

w′′(ξ)

(x − ξ)α−1 dξ.

So, if w(x) and w′(x) both tend to zero as a → −∞, we have

−∞Dα
x w(x) = 1

�(2 − α)

∫ x

a

w′′(ξ)

(x − ξ)α−1 dξ.

Also, if w(x), w′(x) → 0 for b → ∞, we obtain

x D
α
x w(x) = 1

�(2 − α)

∫ ∞

x

w′′(ξ)

(ξ − x)α−1 dξ.

If both w(x) and w′(x) are integrable and continuous for x ≥ a, then Riemann–Liouville
fractional derivative coincides with the Grünwald–Letnikov operator. Hence, for superdiffu-
sive process we have

Lαw(x) = ∂αw(x)

∂|x |α = −(−�)α/2w(x) = − 1

2 cos
(

πα
2

)
[
−∞Dα

x w(x) + x D
α∞w(x)

]
,

where

−∞Dα
x w(x) = 1

�(2 − α)

∂2

∂x2

∫ x

−∞
w(ξ)

(x − ξ)α−1 dξ

x D
α
x w(x) = 1

�(2 − α)

∂2

∂x2

∫ ∞

x

w(ξ)

(ξ − x)α−1 dξ.

Finally, if n − 1 < α < n then

Lαw(x) = ∂αw(x)

∂|x |α = −(−�)α/2w(x) = − 1

2 cos
(

πα
2

)
[
−∞Dα

x w(x) + x D
α∞w(x)

]
,

where

−∞Dα
x w(x) = 1

�(n − α)

∂n

∂xn

∫ x

−∞
w(ξ)

(x − ξ)α+1−n
dξ,

x D
α
x w(x) = (−1)n

�(n − α)

∂n

∂xn

∫ ∞

x

w(ξ)

(ξ − x)α+1−n
dξ.
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3 Approximation techniques

In this segment, we use results of definition2.1 and Theorem 2.2 and give numerical approx-
imation to the following Riesz fractional diffusion equation [19,20,55,64,66]

∂w

∂t
= δ

∂αw(x, t)

∂xα
, 0 < x < L , 0 < t ≤ T, 1 < α ≤ 2 (3.7)

subject to initial and boundary conditions

w(x, 0) = β(x),

w(0, t) = 0, w(L , t) = 0,
(3.8)

where δ > 0 is the diffusion coefficient, and both functions w(x, t) are real-valued.
The Riesz fractional derivative of order 1 < α ≤ 2 is given by the left- and right-hand

Grünwald-Letnikov (GL) fractional operator on finite interval [0, L] as

0Dα
x w(x) = w(0)x−α

�(1 − α)
+ w′(0)x1−α

�(2 − α)
+ 1

�(2 − α)

∫ x

0

w(2)(τ )

(x − τ)α−1 dτ,

xDα
Lw(x) = w(L)(L − x)−α

�(1 − α)
+ w′(L)(L − x)1−α

�(2 − α)
+ 1

�(2 − α)

∫ L

x

w(2)(τ )

(τ − x)α−1 dτ.

(3.9)

It should be noted that the infinite space domain (−∞,∞) as discussed in the above section
is now truncated with the finite case [0, L]. The space L > 0 should be adjusted in the
computation to ensure that there is enough space for waves to propagate. By following
[19,41,64], the mesh is N equal intervals of h = L/N , xs = sh for 0 ≤ s ≤ N . Next we
approximate (3.9) term by term. Beginning with the right-hand side, we approximate the
second term by

w′(0)x1−α

�(2 − α)
≈ h−α

�(2 − α)tα−1 (w1 − w0). (3.10)

Also, we approximate the third term by

1

�(2 − α)

∫ x

0

w(2)(x − τ)

(τ )α−1 dτ = 1

�(2 − α)

∫ x

0

w(2)(τ )

(x − τ)α−1 dτ

= 1

�(2 − α)

s−1∑

i=0

∫ h(i+1)

ih

w(2)(τ )

(x − τ)α−1 dτ

≈ 1

�(2 − α)

s−1∑

i=0

w(x − h(i − 1)) − 2w(x − ih) + w(x − h(i + 1))

h2

×
∫ h(i+1)

ih

dτ

τα−1

= h−α

�(3 − α)

s−1∑

i=0

(ws−i+1 − 2ws−i + ws−i−1)

× {
(i + 1)2−α − i2−α

}
, for w(x − ih) = ws−i .

(3.11)

123
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By adding Eqs. (3.10) and (3.11), we obtain the numerical approximation for the left-hand
side of fractional operator in (3.9) as follows

0Dα
x w(xs) ≈ h−α

�(3 − α)

[
(1 − α)(2 − α)w0

sα
+ (2 − α)(w1 − w0)

sα−1

+
s−1∑

i=0

(ws−i+1 − 2ws−i + ws−i−1)
{
(i + 1)2−α − i2−α

}
]

.

(3.12)

In a similar fashion, we formulate an approximation for the right-hand operator in (3.9) as

xDα
Lw(xs) ≈ h−α

�(3 − α)

[
(1 − α)(2 − α)wN

(N − s)α
+ (2 − α)(wN − wN−1)

(N − s)α−1

+
N−s−1∑

i=0

(ws+i−1 − 2ws+i + ws+i+1)
{
(i + 1)2−α − i2−α

}
]

. (3.13)

Finally, by using the GL definitions in (3.9) in conjunction with left- and right- approximations
(3.12) and (3.13), the time fractional-in-space diffusion Eq. (3.7) is transformed to system
of fractional ODEs

dws

dt
≈ − δh−α

2 cos
(

πα
2

)
�(3 − α)

[
(1 − α)(2 − α)w0

sα
+ (2 − α)(w1 − w0)

sα−1

+
s−1∑

i=0

(ws−i+1 − 2ws−i + ws−i−1)
{
(i + 1)2−α − i2−α

}

+ (1 − α)(2 − α)wN

(N − s)α
+ (2 − α)(wN − wN−1)

(N − s)α−1

+
N−s−1∑

i=0

(ws+i−1 − 2ws+i + ws+i+1)
{
(i + 1)2−α − i2−α

}
]

, s = 1, 2, . . . , N − 1.

(3.14)

We denote (3.14) as finite difference (FD) scheme.
The second method we utilize in this work is based on the Fourier spectral method.

According to Illć et al. [19,20], the power (−�)α/2 of the Laplacian operator (−�), in a
domain � with zero Neumann or Dirichlet boundary conditions, is defined via the spectral
decomposition of the eigenvalues of the original operator. Denote (ϕ j , λ j ) as respective
eigenfunctions and eigenvectors of operator (−�) in � with zero Neumann or Dirichlet
boundary conditions. It implies that (ϕ j , λ

α/2
j ) are the eigenfunctions and eigenvectors of

(−�)α/2, subject to the Neumann or Dirichlet boundary conditions.
Obviously, the fractional Laplacian operator (−�)α/2 is well defined in the space of

functions

Hα/2
0 (�) =

⎧
⎪⎨

⎪⎩
w =

∞∑

j=0

a jλ
α/2 ∈ L2(�) : ‖w‖

Hα/2
0 (�)

=
⎛

⎝
∞∑

j=0

a2
jλ

α/2

⎞

⎠

1/2

< ∞

⎫
⎪⎬

⎪⎭

(3.15)

where

‖w‖
Hα/2

0 (�)
= ‖(−�)α/4w‖L2(�). (3.16)

123
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Hence, for any w ∈ Hα/2
0 , the Laplacian (−�)α/2 is defined by

(−�)α/2w =
∞∑

i=0

a jλ
α/2
j ϕ j , (3.17)

where ϕ j and λ j depend on any boundary condition as specified.
The homogeneous Neumann and Dirichlet boundary condition are given as

(
ϕ j , λ j

) =
([

π j

b − a

]2

,

√
2

b − a
sin

[
(x − a)π j

b − a

])

, (3.18)

and

(
ϕ j , λ j

) =
([

( j + 1)π

b − a

]2

,

√
2

b − a
sin

[
(x − a)π( j + 1)

b − a

])

, (3.19)

respectively. The approach illustrated the above results in a full diagonal representation of
the fractional operator, and it achieves spectral convergence regardless of the chosen value
of fractional power α. Another advantage of the spectral method is that it is easy to adapt
and extend to high dimensions.

In practice, we use the MATLAB fast Fourier transform (fft) to transform the general
fractional-in-space reaction–diffusion equation of the form

wt = δ(�α/2)w + f (w, t), (3.20)

which leads to two-dimensional representation in the Fourier space as

Wt (ωx , ωy, t) = −δ
(
(ω2

x )
α/2 + (ω2

y)
α/2

)
W (ωx , ωy, t) + F[ f (w(x, y, t))], (3.21)

where W is the double Fourier transform of w(x, y, t), that is,

F[w(x, y, t)] = W (ωx , ωy, t) =
∫ ∞

0

∫ ∞

0
w(x, y, t)e−i(ωx x+ωy y)dxdy. (3.22)

We let

�α/2 =
(
(ω2

x )
α/2 + (ω2

y)
α/2

)
,

so as to explicitly remove the linear pieces of the transformed equations, and set

W = e−δ�α/2t W̄ ,

so that we now obtain

∂t W̄ = eδ�α/2tF[ f (w)]. (3.23)

At this junction, in practice, we have discretized the spatial domain, using the equispaced
points in the directions of x and y. Apply the discrete fft so that (3.23) becomes a system of
ODEs represented by the Fourier modes

∂t W̄i, j = eδ�
α/2
i, j tF[ f (wi, j )], (3.24)

where wi, j = w(xi , y j ) and �
α/2
i, j = (

χ2
x (i)

)α/2 +
(
χ2
y ( j)

)α/2
. In the computation, the

boundary conditions are now mounted at extremes of the domain. Since the PDE has been
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transformed to an ODEs, any explicit solver can be employed to integrate in time. Specifi-
cally here, we utilize the improved version of the fourth-order exponential time differencing
Runge–Kutta (ETD4RK) [22] given by

Wn+1 = eLhWn + h[4ζ3(Lh) − 3ζ2(Lh) + ζ1(Lh)]F(wn, tn)

+2h[ζ2(Lh) − 2ζ3(Lh)]F(χ2, tn + h/2)

+2h[ζ2(Lh) − 2ζ3(Lh)]F(χ3, tn + h/2)

+h[ζ3(Lh) − 2ζ2(Lh)]F(χ4, tn + h), (3.25)

with the stages χi given as

χ2 = eLh/2Wn + (Lh/2)ζ1(Lh/2)F(wn, tn)

χ3 = eLh/2Wn + (Lh/2)[ζ1(Lh/2) − 2ζ2(Lh/2)]F(wn, tn)

+ hζ2(Lh/2)F(χ2, tn + h/2)

χ4 = eLhWn + h[(ζ1(Lh) − 2ζ2(Lh)]F(wn, tn) + 2hζ2(Lh)F(χ3, tn + h),

(3.26)

with functions ζ1,2,3 defined as

ζ1(z) = ez − 1

z
, ζ2 = ez − 1 − z

z2 , ζ3 = ez − 1 − z − z2/2

z3

which coincide with the terms in the Munthe-Kaas [34] Lie group methods; see [22] for
details.

In what follows, we demonstrate the applicability and accuracy of the numerical schemes
by considering the one-dimensional fractional-in-space diffusion Eq. (3.7) on 0 < x < π

subject to initial and boundary conditions w(x, 0) = β(x) = x2(π − x) and w(0, t) =
w(π, t) = 0, respectively. Talking of the classical case, when α = 2, δ = 0.25 and 0Dα

x =
−(−�)α/2, the exact solution is calculated as

w(x, t) =
∞∑

n=1

[
8(−1)n+1 − 4

n3

]
sin(nx) exp(−n2δt).

With α �= 2, the exact equation is given as

w(x, t) =
∞∑

n=1

[
8(−1)n+1 − 4

n3

]
sin(nx) exp(−(n2)α/2δt).

It should be mentioned that we obtain the classical result when α = 2. We illustrate the
convergence of the schemes as shown in Figs. 1 and 2 for some instances of α. It is obvious
that the spectral method has better accuracy.

4 Applications to models in physics and engineering

The methods we described above are capable of solving higher-dimensional problems and
further coupled reaction–diffusion systems; however, we shall restrict our study to consider
one and two space dimensions of two different PDEs that abound in mathematical physics,
biology, chemistry and ecology, and many intriguing mathematical phenomena and patterns
that may naturally arise.
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Fig. 1 Numerical solution of (3.7) showing the convergence of the finite difference scheme for different α at
t = 1.00

Fig. 2 Numerical solution of (3.7) showing the convergence of the spectral method for some instances of α

and δ. The upper and lower rows correspond to δ = (0.25, 0.50) at t = 1.00

4.1 Fractional chaotic model

Chaos theory is an aspect of mathematics that focuses on the study of chaos states of dynam-
ical problems which have some irregular behaviors that are highly sensitive to initial condi-
tions. Chaotic phenomena occurs in many natural and physical systems, such as fluid flow,
weather and climate, heartbeat irregularities, road traffic and stock market, among several
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others [21,28,50]. Chaotic behavior can be studied via the analysis of a chaotic mathematical
model. Chaos theory has many applications in various disciplines, like physics, engineering,
meteorology, sociology, anthropology, environmental science, computer science, economics
and finance, biology, pandemic crisis management, medicine, ecology and security in com-
munication technology.

Over the years, a reasonable number of research work has been published based on the
study and application of chaotic systems, for instance, the Lorenz system [28], Rössler system
[47], Chen and Ueta system [11], and other applications such as simple chaotic flows [52],
MOS transistor-based oscillators, heart-shaped memristive and memristor chaotic attractors
[62,63], digital realization of chaotic system, transition to turbulence in incompressible fluid
flows [14,15] and electromechanical oscillator [68]. Complexity of chaotic systems has been
applied in different engineering applications ranging from asymmetric color pathological
image encryption [26], to control and synchronization [45] and so many others that are
classified in [6].

Standing on the success and useful applications of chaotic processes as widely reported,
we consider a three-species chaotic fractional-in-space system

∂u

∂t
= δ1�

αu + f1(u, v, w), (x, y) ∈ �, 0 < t ≤ T,

∂v

∂t
= δ2�

αv + f2(u, v, w), (x, y) ∈ �, 0 < t ≤ T,

∂w

∂t
= δ3�

αw + f3(u, v, w), (x, y) ∈ �, 0 < t ≤ T,

(4.27)

subject to initial and boundary conditions

u(x, y, 0) = ρ1(x, y), v(x, y, 0) = ρ2(x, y), v(x, y, 0) = ρ2(x, y), 0 ≤ x, y ≤ L ,

∂u

∂n

∣∣∣∣
∂�

= ∂v

∂n

∣∣∣∣
∂�

= ∂w

∂n

∣∣∣∣
∂�

= 0, (x, y) ∈ ∂�,
(4.28)

where u, v, wRn represent a group of physical or biological species, δi ∈ Rn×n, i = 1, 2, 3
is the diffusion coefficient matrix, �α is the fractional Laplacian operator of order α ∈ (1, 2]
associated with the diffusion of the species u, v and w, � = {0 < x ≤ L , 0 < y ≤ L} for
L � 0, and n is the outward unit normal of vector of the boundary ∂�. Then, fi (u, v, w) for
i = 1, 2, 3 are nonlinear functions of u, v and w which describe the chemical or biological
reactions, given here as

f1(u, v, w) = φ1u + ϕ1vw,

f2(u, v, w) = φ2u + ϕ2v − uw,

f3(u, v, w) = ψ1uv + ψ2w.

(4.29)

The system of ordinary differential equations (ODEs), that is, the spatially homogeneous
form of system (4.27) with kinetic (4.29), has been investigated [59,60]. The corresponding
ODE system is sometimes referred to as the three-dimensional four-wing chaotic model

u′(t) = f1(u, v, w) = φ1u(t) + ϕ1v(t)w(t),

v′(t) = f2(u, v, w) = φ2u(t) + ϕ2v(t) − u(t)w(t),

w′(t) = f3(u, v, w) = ψ1u(t)v(t) + ψ2w(t),

(4.30)

where u(t), v(t) and w(t) are state variables given as functions of time only, φ1, φ2, ϕ2 and
ψ2 ∈ R, ϕ1 > 0 and ψ1 < 0 are real all real numbers. If model (4.30) is dissipative, then
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the sum
(

∂u′
u + ∂v′

v
+ ∂w′

w
= φ1 + ϕ2 + ψ2 = V

)
< 0. This means that V0 which represent

the volume element is contracted into V0 exp(φ1 + ϕ2 + ψ2) by the flow at time t . In what
follows, we give a quick tour of the local dynamics of the reaction–diffusion system. This
gives conditions on the choice of parameters necessary for the solution to have physically or
biologically meaningful equilibria, and it will also help in making the choice of parameters
when numerically dealing with the solutions of the full fractional reaction–diffusion model.

To derive the equilibrium points of the autonomous model (4.30), we require to set
fi (u, v, w) = 0, which implies that u′(t) = 0, v′(t) = 0 and w′(t) = 0. The points
E0 = (0, 0, 0) is trivial which corresponds to the washout of the species. We are only
interested in the coexistence of the three components.

With conditions φ1ψ2
ϕ1ψ1

> 0, the discriminant φ2
2ϕ2

1 − 4φ1ϕ1ϕ2 > 0 and ϕ1 �= 0, we obtain
the following nontrivial states

E∗
1 =

(
−

(
ϕ1

φ1

)
vew

a
e , ve, w

a
e

)
,

E∗
2 =

((
ϕ1

φ1

)
vew

a
e ,−ve, w

a
e

)

E∗
3 =

(
−

(
ϕ1

φ1

)
vew

b
e , ve, w

b
e

)
,

E∗
4 =

((
ϕ1

φ1

)
vew

b
e ,−ve, w

b
e

)

(4.31)

where

ue =
√

φ1ψ2

ϕ1ψ1
,

wa
e =

φ2 + sign(φ1)

√
φ2

2ϕ2
1 − 4φ1ϕ1ϕ2

2ϕ1
,

wb
e =

φ2 − sign(φ1)

√
φ2

2ϕ2
1 − 4φ1ϕ1ϕ2

2ϕ1
,

(4.32)

where sign(·) denotes a sign function. So, by linearizing (4.30) at point E0, we have the
Jacobian

A(E0) =
⎛

⎝
φ1 0 0
φ2 ϕ2 0
0 0 ψ2

⎞

⎠ . (4.33)

Obviously, the eigenvalues of matrix A(E0) correspond to

λa = φ1, λb = ϕ2, λc = ψ2.

With these findings, we can remark that since φ1, ϕ2, ψ2 are all real numbers, then there is
no imaginary eigenvalue arising from matrix A(E0), and near the state E0 = (0, 0, 0), there
is no Hopf bifurcation. It is important to note that the states E∗

1 and E∗
2 are symmetric in

nature with respect to the w direction and same is applicable to the points E∗
3 and E∗

4 . The
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corresponding Jacobian at points E∗
i , i = 1, . . . , 4, as

A(E∗
1 ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ1 ϕ1w
a
e ϕ1ve

φ2 − wa
e ϕ2

ϕ1vew
a
e

φ1

ψ1ve −ψ1ϕ1vew
a
e

φ1
ψ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, A(E∗
2 ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ1 ϕ1w
a
e −ϕ1ve

φ2 − wa
e ϕ2 −ϕ1vew

a
e

φ1

−ψ1ve
ψ1ϕ1vew

a
e

φ1
ψ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(4.34)

and

A(E∗
3 ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ1 ϕ1w
b
e ϕ1ve

φ2 − wb
e ϕ2

ϕ1vew
b
e

φ1

ψ1ve −ψ1ϕ1vew
b
e

φ1
ψ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, A(E∗
4 ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ1 ϕ1w
b
e −ϕ1ve

φ2 − wb
e ϕ2 −ϕ1vew

b
e

φ1

−ψ1ve
ψ1ϕ1vew

b
e

φ1
ψ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.35)

Since the pairs of matrices are symmetric, and from the Jacobian matrices in (4.34) and
(4.35), we have the transformation B, in such that

B−1A(E∗
1 )B = A(E∗

2 ),B−1A(E∗
3 )B = A(E∗

4 ), (4.36)

where B = diag(−1,−1, 1) and B represents the orthogonal matrix for B−1 = BT = B. If
we set Zi = [zi1, zi2, zi3] be matrix which consists the eigenvectors of E∗

i , for i = 1, 2, 3, 4,
we obtain

B−1Z1B = Z2, B−1Z3B = Z4.

Therefore, it is obvious that E∗
1 , E∗

2 and E∗
3 , E∗

4 are two distinct states, and each pair of the
equilibrium state is locally stable, unstable and center manifolds. When φ1 = 0.2, φ2 =
−0.01, ϕ1 = 1, ϕ2 = −0.4, ψ1 = −1 and ψ2 = −1. The equilibrium states are calculated
as E1 = (−0.62, 0.45, 0.28), E2 = (0.62,−0.45, 0.28), E3 = (0.64, 0.45,−0.29) and
E4 = (0.62,−0.45,−0.29).

Since the sum ∂u′
u + ∂v′

v
+ ∂w′

w
= φ1 +ϕ2 +ψ2 = −1.2 < 0, it implies that system (4.30)

is dissipative. To examine the stability of the equilibrium states E0, E1, . . . , E4, we require
to consider the Jacobian matrix at all the equilibrium points and find all their eigenvalues.
These results are calculated as

E1
0 = (λ1, λ2, λ3) = (−0.40, 0.20,−1.00)

E1
1 = (λ1, λ2, λ3) = (−1.357, 0.082 + 0.467i, 0.082 − 0.467i)

E1
2 = (λ1, λ2, λ3) = (−1.357, 0.082 + 0.467i, 0.082 − 0.467i)

E1
3 = (λ1, λ2, λ3) = (−1.379, 0.089 + 0.48i, 0.089 − 0.48i)

E1
4 = (λ1, λ2, λ3) = (−1.379, 0.089 + 0.48i, 0.089 − 0.48i).

(4.37)

We can deduce based on the above eigenvalues that the equilibria of model (4.30) are saddle
and unstable.

The Lyapunov exponent measures the degree of sensitivity to initial conditions that is,
local instability in a state space. Such local instability can evolve for a variety of reasons in
different types of systems [17]. Lyapunov exponents have proved useful in various contexts.
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For instance, within the dynamical system, it gives a detailed characterization of chaotic
dynamics and can assist to achieve various forms of synchronization. With parameters φ1 =
0.25, φ2 = 0.05, ϕ1 = 1.2, ϕ2 = −0.2, ψ1 = −1, ψ2 = −1 and (u0, v0, w0) = (2, 1, 2),
the Lyapunov exponents (LEs) for different time levels are calculated as

Time LE1 LE2 LE3
t=100.0000 -0.123939 -0.305661 -1.020400
t=200.0000 -0.111328 -0.300430 -1.038242
t=300.0000 -0.123502 -0.294251 -1.032247
t=400.0000 -0.117343 -0.295683 -1.036974
t=500.0000 -0.116717 -0.300568 -1.032715

and the corresponding graphical representation of the Lyapunov exponents for t = 200 and t = 1000
is shown in Fig. 3. Since the sum of the Lyapunov exponents at any time t here is negative, it implies
that system (4.30) is dissipative, and the fractional dimension for t = 200 is 2.05, which leads the
dynamical system with attractors as shown in Figs. 4 and 5. Figure 6 shows time series results for
different instances of φ1 as given in the figure caption. With φ2 = 0, it should be noted that model
(4.30) cannot leads to a desired chaotic attractor, causing the number of scroll wings to reduce from
four to two. Also, if at any point we have at least two of the Lyapunov exponents to be positive
maybe due to the perturbation of the initial data, then the system is hyper-chaotic.

In one dimension, we experiment fractional model (4.27) with kinetics (4.29) using the zero-flux
boundary conditions and random initial data emanating from small perturbation of the steady state,
which we compute as

u0=.7*(ones(N,1));
v0=1*(ones(N,1));
w0=.2*(ones(N,1));

for N = 200, The parameters are taken as

φ1 = 0.25, φ2 = 0.1, ϕ1 = 1.20, ϕ2 = −0.2, ψ1 = −1.2, ψ2 = −1. (4.38)

Figures 7 and 8 show one-dimensional chaotic oscillations for α = 1.55 and α = 1.92, respectively.
In two dimensions, we solve system (4.27) using the zero-flux boundary conditions with two

different initial functions. We employ both the MATLAB random data

u0=randn(N,N)*0.07; v0=randn(N,N)*0.05; w0=randn(N,N)*0.01;

Fig. 3 Dynamics of the Lyapunov exponents of system (4.30) computed for t = 200 (left) and t = 1000
(right). Initial condition and parameters are chosen as: (u0, v0, w0) = (2, 1, 2), φ1 = 1/4, φ2 = 0.01, ϕ1 =
1.2, ϕ2 = −0.2, ψ1 = −1 and ψ2 = −1
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Fig. 4 3-D and 2-D chaotic attractors of system (4.30) for φ1 = 1/4, φ2 = 0.01, ϕ1 = 1.2, ϕ2 = −0.2, ψ1 =
−1.2, ψ2 = −1, with initial conditions (u0, v0, w0) = (2, 1, 2) at t = 1000

and smooth initial functions

u(x, y, 0) = 1 − u∗ sin(π(x − ν)/(2ν))γ sin(π(y − ν)/(2ν))γ ,

v(x, y, 0) = v∗ sin(π(x − ν)/(2ν))γ sin(π(y − ν)/(2ν))γ

w(x, y, 0) = 1.5 − w∗ sin(π(x − ν)/(2ν))γ sin(π(y − ν)/(2ν))γ

(4.39)

where (u∗, v∗, w∗) = (0.5, 0.25, 0.25), γ = 0.8 and ν = 0.05 to obtain the distributions in Figs. 9
and 10, respectively. The effect of initial functions is justified here for some α.

4.2 Fractional Helmholtz equation

Helmholtz equation is known to be the variation of the Poisson equation. Helmholtz equation or
reduced wave equation belongs to a family of an elliptic type of partial differential equation with
broad utility in mechanical engineering and theoretical physics, whose derivation can be drawn
directly from the known wave equation. It arises, for instance, to describe the potential field caused
by a given charge or mass density distribution; with the potential field known, one can then calculate
gravitational or electrostatic field. It is a generalization of Laplace’s equation, which is also frequently
seen in physics.

In this work, we consider on Cartesian coordinate the two- or three-dimensional nonhomogeneous
isotropic medium whose wave speed is denoted by c. The corresponding wave solution to harmonic
source f (x, y) is u(x, y), vibrating at frequency ω > 0 satisfying the scalar fractional Helmholtz
equation defined on region R by
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Fig. 5 3-D and 2-D chaotic attractors of system (4.30) for φ1 = 1/4, φ2 = 0.05, ϕ1 = 1.2, ϕ2 = −0.2, ψ1 =
−1.0, ψ2 = −1, with initial conditions (u0, v0, w0) = (2, 1, 2) at t = 1000

Fig. 6 Time series solution system (4.30) showing chaotic distribution of species different instances of (a)
φ1 = 1/2 and (b) (a) φ1 = 1/4 at t = 1000, other parameters are given in Fig. 4

�αu + κ2u = f (x, y) u = u0,
∂u

∂n
, � ∈ R

d , d = 2, 3 (4.40)

where u is a sufficiently differentiable function on the boundary ∂�, n is the outward unit normal to
the boundary, κ > 0 is a wave number, and

√
κ = ω/c denotes the wave number with wavelength
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Fig. 7 One-dimensional solution of system (4.27) with kinetics (4.29) showing chaotic behaviors for α = 1.55
at t = 200. Other parameters are given in (4.38)

2π/
√

κ . �α is usual fractional Laplacian operator of order 1 < α ≤ 2 in two �αu =
(

∂αu
∂xα + ∂αu

∂yα

)

or three dimensions �αu =
(

∂αu
∂xα + ∂αu

∂yα + ∂αu
∂zα

)
.

Helmholtz equation has application in Physics problem-solving concepts like seismology, acous-
tics and electromagnetic radiation. Seismology: The scientific study of earthquake and its propagat-
ing elastic waves is known as seismology, electrodynamics, most especially in optics and acoustics
involving time harmonic wave distribution. Other study areas are the volcanic eruptions due to seis-
mic source and tsunamis as a result of environmental effects. If the plus (+) sign before the term κ is
changed to minus (−) sign, then the Helmholtz equation can be used to describe the mass transfer
processes with volume chemical reactions of first order [42]. It should be mentioned that whenever
the wave number κ � 1, the solution of (4.40) becomes highly oscillatory which makes it very
challenging to design an effective numerical algorithm to solve the Helmholtz equation in higher
dimensions. A lot of numerical methods based on the finite difference approximations [13,67], Ado-
mian decomposition method [16], reduced differential transform method [2], homotopy perturbation
method [18] and finite elements and Galerkin methods [33,57] have been reported in the literature.

To experiment (4.40) in two dimensions, we set f (x, y) = exp(−10(y − 1)2 + (x − 0.5)2) and
utilize a square domain size x, y ∈ [−L , L] × [−L , L] for L = 1. The wave evolution showing
chaotic oscillations is displayed in Figs. 11 and 12 for different values of fractional-order α ∈ (1, 2]
and κ � 1. It should be noted that when κ = 0, the Helmholtz equation (4.40) reduces to the
Poisson. When κ < 4, we get a stationary (pattern) solution.
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Fig. 8 One-dimensional solution of system (4.27) with kinetics (4.29) showing chaotic behaviors for α = 1.92
at t = 200. Other parameters are given in (4.38)

Fig. 9 Two-dimensional evolution of system (4.27) with kinetics (4.29) showing chaotic oscillations for
α = 1.75 at t = 200. Other parameters are given in (4.38)
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Fig. 10 Two-dimensional evolution of system (4.27) with kinetics (4.29) showing spatiotemporal oscillations
for α = 1.88 at t = 200. Other parameters are given in (4.38)

Fig. 11 Two-dimensional solution of the Helmholtz Eq. (4.27) with κ = 6 for different values of α
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Fig. 12 Two-dimensional solution of the Helmholtz Eq. (4.27) with κ = 9 for different values of α

5 Conclusion

Numerical solution of fractional-in-space advection or reaction equations in two and higher dimen-
sions has been the major setback some researchers are facing, most simulations that are based on
conventional ideas are time consuming. As a result, the majority of work reported is restricted to
one-dimensional case problems of PDEs. The aim of the present work is to report a good, clear, work-
ing versatile technique based on both finite difference and spectral methods to explore the dynamic
richness of chaotic and oscillatory waves models. We realized that the spectral scheme avoids the
issue of stiffness, and they can be applied and built upon by other scientists and engineers. This
technique is used to explore the dynamic richness of chaotic systems and the Helmholtz equation
in one and two dimensions. The methods reported in this work can be extended higher dimensions
and more coupled practical problems in physics and engineering.
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20. M. Ilić, F. Liu, I. Turner, V. Anh, Fract. Calc. Appl. Anal. 9, 333–349 (2006)
21. V.G. Ivancevic, T.I. Tijana, Complex Nonlinearity: Chaos, Phase Transitions, Topology Change, and Path

Integrals (Springer, Berlin, 2008)
22. A.K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214–1233 (2005)
23. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations

(Elsevier, Amsterdam, 2006)
24. D. Li, C. Zhang, W. Wang, Y. Zhang, Appl. Math. Model. 35, 2711–2722 (2011)
25. Z. Lin, S. Yu, C. Li, J. Lu, Q. Wang, Design and smartphone-based implementation of a chaotic video

communication scheme via WAN remote transmission. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26, 1650158
(2016)

26. H. Liu, A. Kadir, Y. Li, Optik 127, 5812–5819 (2016)
27. H. Liu, A. Kadir, Y. Li, Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic

system and one-time keys. Optik 127, 7431–7438 (2016)
28. E.N. Lorenz, Int. J. Atmos. Sci. 20, 130–141 (1963)
29. R.L. Magin, Fractional Calculus in Bioengineering (Begell House Publisher Inc, Connecticut, 2006)
30. A.S. Mansingka, M. Affan Zidan, M.L. Barakat, A.G. Radwan, K.N. Salama, Fully digital jerk-based

chaotic oscillators for high throughput pseudo-random number generators up to 8.77 Gbits/s. Microelec-
tron. J. 44, 744–752 (2013)

31. M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80–90 (2006)
32. L. Min, X. Yang, G. Chen, D. Wang, Some polynomial chaotic maps without equilibria and an application

to image encryption with avalanche effects. Int. J. Bifurc. Chaos 25, 1550124 (2015)

123



Eur. Phys. J. Plus (2020) 135:864 Page 23 of 23 864

33. L. Mu, J. Wang, X. Ye, IMA J. Numer. Anal. 35, 1228–1255 (2015)
34. H. Munthe-Kaas, Appl. Numer. Math. 29, 115–127 (1999)
35. K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)
36. K.M. Owolabi, A. Atangana, Chaos Solitons Fract. 115, 362–370 (2018)
37. K.M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation (Springer, Singapore,

2019)
38. K.M. Owolabi, Chaos Solitons Fract. 34, 109723 (2020)
39. K.M. Owolabi, Numerical approach to chaotic pattern formation in diffusive predator–prey system with

Caputo fractional operator 1–21 (2020). https://doi.org/10.1002/num.22522
40. K.M. Owolabi, J.F. Gómez-Aguilar, G. Fernández-Anaya, J.E. Lavín-Delgado, E. Hernández-Castillo,

Modelling of Chaotic processes with Caputo fractional order derivative. Entropy 22, 1027 (2020)
41. I. Podlubny, Fractional Differential Equations (Academic press, New York, 1999)
42. A.D. Polyanin, V.E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and

Scientists (CRC Press, Boca Raton, 2015)
43. A.G. Radwan, A.M. Soliman, A.-L. El-Sedeek, An inductorless CMOS realization of Chua’s circuit.

Chaos Solitons Fract. 18, 149–158 (2003)
44. A.G. Radwan, A.M. Soliman, A.S. Elwakil, 1-D digitally controlled multiscroll chaos generator. Int. J.

Bifurc. Chaos 17, 227–242 (2007)
45. A.G. Radwan, K. Moaddy, K.N. Salama, S. Momani, I. Hashim, J. Adv. Res. 5, 125–132 (2014)
46. J. Roop, J. Comput, Appl. Math. 193, 243–268 (2005)
47. O. Rössler, Phys. Lett. A 57, 397–398 (1976)
48. S. Ruuth, J. Math. Biol. 34, 148–176 (1995)
49. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments

and Applications in Physics and Engineering (Springer, Netherlands, 2007)
50. L.A. Safonov, E. Tomer, V.V. Strygin, Y. Ashkenazy, S. Havlin, Chaos 12, 1006–1014 (2002)
51. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications

(Gordon and Breach, Amsterdam, 1993)
52. J.C. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)
53. J.C. Strikwerda, Partial Difference Schemes and Partial Differential Equations (SIAM, Philadelphia,

2004)
54. S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Chemistry and Engineering

(Perseus Books, Massachusetts, USA, 1994)
55. V.E. Tarasov, Nonlinear Dyn. 86, 1745–1759 (2016)
56. J.W. Thomas, Numerical Partial Differential Equations Numerical Partial Differential Equations—Finite

Difference Methods (Springer, New York, 1995)
57. L.L. Thompson, P.M. Pinsky, Int. J. Numer. Methods Eng. 38, 371–397 (1995)
58. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, A chaotic path planning generator for autonomous mobile

Robots. Robot Auton. Syst. 60, 651–656 (2012)
59. Z. Wang, Y. Sun, B.J. van Wyk, G. Qi, M.A. van Wyk, Braz. J. Phys. 39, 547–553 (2009)
60. Z. Wang, G. Qi, Y. Sun, B.J. van Wyk, M.A. van Wyk, Nonlinear Dyn. 60, 443–457 (2010)
61. B. Wang, S. Zhou, X. Zheng et al., Image watermarking using chaotic map and DNA coding. Optik Int.

J. Light Electron. Opt. 126, 4846–4851 (2015)
62. J. Wu, L. Wang, G. Chen, S. Duan, Chaos Solitons Fract. 92, 20–29 (2016)
63. R. Wu, C. Wang, Int. J. Bifurc. Chaos 26(1650145), 1–11 (2016)
64. Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200–218 (2010)
65. G.M. Zaslavsky, Phys. Rep. 371, 461–580 (2002)
66. F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, SIAM J. Numer. Anal. 52, 2599–2622 (2014)
67. W. Zhang, Y. Dai, JAMP 1, 18–24 (2013)
68. M.A. Zidan, A.G. Radwan, K.N. Salama, Int. J. Bifurc. Chaos 22, 1250143 (2012)

123

https://doi.org/10.1002/num.22522

	Computational techniques for highly oscillatory and chaotic wave problems with fractional-order operator
	Abstract
	1 Introduction
	2 Preliminaries on Riesz fractional operator
	3 Approximation techniques
	4 Applications to models in physics and engineering
	4.1 Fractional chaotic model
	4.2 Fractional Helmholtz equation

	5 Conclusion
	Acknowledgements
	References




