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Abstract We use a recently found method to characterise all the invertible fourth-order dif-
ference equations linear in the extremal values based on the existence of a discrete Lagrangian.
We also give some result on the integrability properties of the obtained family and we put it in
relation with known classifications. Finally, we discuss the continuum limits of the integrable
cases.

1 Introduction

Discrete equations attracted the interest of many scientists during the past decades for several
reason, spanning from philosophical to practical. For instance, several modern theory of
physics led to hypothesis that the nature of space-time itself at very small scales, the so-
called Planck length and Planck time, is discrete. From this assumption, it follows that
discrete systems are actually at the very foundation of physical sciences [24]. On the other
hand, discrete systems often appear in applied sciences as tools to investigate numerically
equations whose closed-form solution is not available. In particular, discrete equations are
related to finite difference methods for solving ordinary and partial differential equations
[37]. These considerations greatly stimulated the theoretical study of discrete systems from
different points of view and perspective, see [10,25].

In this paper, we will deal fourth-order difference equations, that is, functional equations
for an unknown sequence {xn} where the xn+2 element is expressible in terms of the previous
xn+i , i = −2, . . . , 1. That is a fourth-order difference equation is a relation of the form:

xn+2 = F (xn+1, xn, xn−1, xn−2) . (1.1)

Such kind of functional equations are also called recurrence relations of order four. A fourth-
order difference equation is called invertible if it is possible to solve Eq. (1.1) in a unique
way with respect to xn−2.

xn−2 = ˜F (xn+2, xn+1, xn, xn−1) . (1.2)

To be specific, using the solution of the inverse problem of calculus of variations we gave
in [19], we will classify the variational additive fourth-order difference equations. We recall
that a difference equation of order 2k
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xn+k = F (xn+k−1, xn+k−2, . . . , xn−k) , k ≥ 1, (1.3)

is said to be variational if there exists a discrete Lagrangian:

Ln = Ln (xn+k, xn+k−1, . . . , xn) (1.4)

whose discrete Euler–Lagrange equation.

k
∑

l=0

∂Ln−l

∂xn
(xn+k−l , xn+k−1−l , . . . , xn−l) = 0 (1.5)

coincide with Eq. (1.3). For a complete discussion on the variational formulation of difference
equation, we refer to [2,19,28,34,40,41]. In the same way, we recall that a fourth-order
difference equation of the form:

xn+2 = f (xn+1, xn, xn−1) xn−2 + h (xn+1, xn, xn−1) , (1.6)

is said to be additive. Additive fourth-order difference equations are a natural generalisation
of this class of difference equations:

xn+1 + xn−1 = f (xn) , (1.7)

called the additive second-order difference equations. The class (1.7) is well-known since it
includes very famous examples of integrable difference equations, like the McMillan equation
[36] and the additive QRT maps [38,39]. Equation (1.7) is variational with the following
Lagrangian:

L = xn xn+1 −
∫ xn

f (ξ) d ξ. (1.8)

In the recent literature [21,22,29] appeared several examples of equations of the form
(1.6). In particular, in [22], following [19], it was proved that not all the considered equations
were variational, and that variational structure was intimately related to their integrability.
This gives us the motivation to study the conditions on the variational structure of the general
additive fourth-order difference equations.

Within this paper, we give a complete characterisation of the variational structure of the
additive fourth-order difference equations. Moreover, we classify up to linear transformation
an integrable subclass admitting an invariant multi-affine in xn+1 and xn−2. The latter gives
a variational interpretation of the result of [22].

The plan of the paper is following: in Sect. 2, we present our main result characterising
the variational fourth-order additive difference equations in Theorem 2. Then, we present an
algorithmic test to find the Lagrangian of an additive fourth-order different equation derived
from Theorem 2 and we discuss some examples. In Sect. 3, we present a subclass of variational
equations depending on seven parameters possessing two invariants. We discuss how to split
this general family to five canonical forms depending on three essential parameters each and
prove their Liouville integrability using the Lagrangian structure. Our results are summarised
in Theorem 4. Then in Sect. 4, we present the continuum limits of the Liouville integrable
canonical equations, their Lagrangian and invariants (first integrals). Finally in Sect. 5, we
give some conclusions and outlook.
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2 Classification results

In this section, we state and prove our main result on the structure of additive variational
fourth-order difference equations, and introduce an algorithmic procedure to test it. Finally,
we present some examples of the application of such procedure.

Our main result, Theorem 2, follows from the following result giving us a necessary and
sufficient condition for the existence of discrete Lagrangian in the case k = 2.

Theorem 1 (Gubbiotti [19]) Let us assume we are given an invertible fourth-order difference
equation represented by a pair of equations of the form (1.1) and (1.2). Then such pair of
equations is variational if and only if the following partial difference equations are satisfied:

∂

∂xn−2

{

(

∂ F

∂xn−2

)−1

A+
[

∂Ln−2

∂xn
(xn, xn−1, xn−2)

]

}

= 0, (2.1a)

∂

∂xn+2

{

(

∂ ˜F

∂xn+2

)−1

A−
[

∂Ln

∂xn
(xn+2, xn+1, xn)

]

}

= 0, (2.1b)

where:

A+ = ∂ F

∂xn−2

∂

∂xn−1
− ∂ F

∂xn−1

∂

∂xn−2
, (2.2a)

A− = ∂ ˜F

∂xn+2

∂

∂xn+1
− ∂ ˜F

∂xn+1

∂

∂xn+2
, (2.2b)

are two linear differential operators called forward annihilation operator and backward
annihilation operator, respectively.

Remark 1 The forward annihilation operator (2.2a) has this name because for every functions
of the form

G = G (F (xn+1, xn, xn−1, xn−2) , xn+1, xn) . (2.3)

we have A+ (G) ≡ 0. In the same way, the backward annihilation operator (2.2b) has this
name because for every functions of the form

˜G = ˜G
(

xn, xn−1, ˜F (xn+2, xn+1, xn, xn−1)
)

. (2.4)

we haveA− (G) ≡ 0. All the other differential operators with such properties are multiples of
A±. Moreover, the annihilation operators are the one-dimensional analog of the differential
operators used in the theory of generalised symmetries and Darboux integrability of quad-
equations, see [14,15,15,16,23,33].

2.1 General results

The variational structure of fourth-order difference equations is completely characterised by
the following result:

Theorem 2 Equation (1.6) is variational if and only it has the following form:

g (xn+1) xn+2 + λ2g (xn−1) xn−2 + λg′ (xn) xn+1xn−1

+ ∂V

∂xn
(xn+1, xn) + λ

∂V

∂xn
(xn, xn−1) = 0, (2.5)
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that is:

f (xn+1, xn, xn−1) = −λ2 g (xn−1)

g (xn+1)
(2.6a)

g (xn+1) h (xn+1, xn, xn−1) = −λg′ (xn) xn+1xn−1 − ∂V

∂xn
(xn+1, xn)

− λ
∂V

∂xn
(xn, xn−1) = 0. (2.6b)

In such case, the Lagrangian, up to total difference and multiplication by a constant, is given
by:

Ln = λ−n [

g (xn+1) xn xn+2 + V (xn+1, xn)
]

. (2.7)

The “only if” part of Theorem 2 is trivial. To prove the “if” part we use Theorem 1. Indeed,
since Eq. (1.6) is trivially invertible:

xn−2 = xn+2 − h (xn+1, xn, xn−1)

f (xn+1, xn, xn−1)
(2.8)

from Theorem 1 we have that a Lagrangian for (1.6) and its inverse (2.8) must satisfy Eqs.
(2.2a) and (2.2b). That is:

∂ f

∂xn−1
(xn+1, xn, xn−1)

∂2 Ln−2

∂xn−2∂xn
(xn, xn−1, xn−2) − f (xn+1, xn, xn−1)

× ∂3Ln−2

∂xn−1∂xn−2∂xn
(xn, xn−1, xn−2)

+
[

∂ f

∂xn−1
(xn+1, xn, xn−1) xn−2 + ∂h

∂xn−1
(xn+1, xn, xn−1)

]

× ∂3Ln−2

∂x2
n−2∂xn

(xn, xn−1, xn−2) = 0, (2.9a)

[

(xn+2 − f (xn+1, xn, xn−1))
∂ f

∂xn+1
(xn+1, xn, xn−1)

+ f (xn+1, xn, xn−1)
∂h

∂xn+1
(xn+1, xn, xn−1)

]

∂3Ln

∂x2
n+2∂xn

(xn+2, xn+1, xn)

+
(

∂3Ln

∂xn+2∂xn+1∂xn
(xn+2, xn+1, xn)

)

f (xn+1, xn, xn−1)

+ ∂ f

∂xn+1
(xn+1, xn, xn−1)

∂2 Ln

∂xn+2∂xn
(xn+2, xn+1, xn) = 0. (2.9b)

Equation (2.9) is a functional differential equations where there are three different
unknowns, f , h and Ln depending on various points of the Z lattice. These points are inde-
pendent, so they are different variables. A way to solve such functional differential equation
is to convert it to a standard partial differential equation. For instance, consider Eq. (2.9a). We
have that f and h depend on xn+1, xn, xn−1 while Ln−2 = Ln−2 (xn, xn−1, xn−2). We can
eliminate Ln−2 solving with respect to its derivatives and then differentiating with respect to
xn+1. To completely eliminate it, we need to repeat this process three times, one for derivative
appearing in (2.9a). The intermediate derivative steps can be used as compatibility conditions.
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So, the proof of the if part follows the application of the above reasoning until Eq. (2.9)
are identically satisfied. Then, the Euler–Lagrange equations are used as final compatibility
conditions. This shows that the form of the functions f , h, and Ln is given by formulas
(2.6) and (2.7), respectively. The details of the proof are rather cumbersome, so for sake of
exposition the interested reader will find them in Appendix A.

An immediate corollary of Theorem 2 is the following:

Corollary 1 Equation (1.6) admits an autonomous Lagrangian if and only it has the follow-
ing form:

g (xn+1) xn+2 + g (xn−1) xn−2 + g′ (xn) xn+1xn−1

+ ∂V

∂xn
(xn+1, xn) + ∂V

∂xn
(xn, xn−1) = 0. (2.10)

In such case, the Lagrangian, up to total difference and multiplication by a constant, is given
by:

L = g (xn+1) xn xn+2 + V (xn+1, xn) . (2.11)

Proof Trivially follows from Theorem 2 substituting λ = 1 in formulae (2.5) and (2.7). ��
Corollary 1 will be used in Sect. 3 while discussing the integrability properties of a subclass

of variational additive fourth-order difference equations with autonomous Lagrangian.
We note that additive difference equation and their discrete Lagrangians are form invariant

under the action of linear transformations, which is the content of the following lemma:

Lemma 1 Equation (1.6) is form invariant under linear point transformation

xn = aXn + b. (2.12)

That is an additive difference equation under the transformation (2.12) is transformed into
another additive difference equation with transformed functions:

˜f (Xn+1, Xn, Xn−1) = f (aXn+1 + b, aXn + b, aXn−1 + b) , (2.13a)

˜h (Xn+1, Xn, Xn−1) = b

a

[

˜f (Xn+1, Xn, Xn−1) − 1
] + 1

a
h(aXn+1 + b,

aXn + b, aXn−1 + b). (2.13b)

Moreover, the Lagrangian (2.7) is also form invariant under the linear point transformation
(2.12) with transformed functions:

g (Xn) = a2g (aXn+1 + b) , (2.14a)

V (Xn+1, Xn) = ab
[

g (aXn+1 + b) Xn + λg (aXn + b) Xn+1
]

+ b2g (aXn+1 + b) + V (aXn+1 + b, aXn + b) . (2.14b)

Proof Trivially follows by applying the transformation (2.12) to Eq. (1.6) and the discrete
Lagrangian (2.7). ��
Remark 2 The property of form invariance tells us that the classification result of Theorem 2
is preserved up to linear transformations. Moreover, form invariance will be used in Sect. 3
when enumerating the possible forms of integrable additive fourth-order difference equations.
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Theorem 2 gives also a practical test to establish whether or not a given additive fourth-
order Eq. (1.6) is variational without having to apply the full algorithm of [19]. That is, given
an additive fourth-order difference equation the test runs as follows:

1. Write the equation clearing the denominators:

A (xn+1, xn, xn−1) xn+2 + B (xn+1, xn, xn−1) xn−2 + C (xn+1, xn, xn−1) = 0. (2.15)

2. In order to be in the form (2.5), the functions A and B need to be of the following form:

A (xn+1, xn, xn−1) = K (xn) g (xn+1) , B (xn+1, xn, xn−1) = λ2 K (xn) g (xn−1) ,

(2.16)

for some function K = K (η) and g = g (ξ) and constant λ.
3. Using Eq. (2.16), we divide Eq. (2.15) by K = K (xn) and using the definition of g we

rewrite Eq. (2.15) as:

g (xn+1) xn+2+λ2g (xn−1) xn−2+λg′ (xn) xn+1xn−1+R (xn+1, xn, xn−1) = 0. (2.17)

with a new function R = R (ξ, η, ζ ).1

4. To be in the form (2.5), we need to check that:

∂ R

∂xn+1, xn−1
(xn+1, xn, xn−1) ≡ 0. (2.18)

5. If the function R in Eq. (2.17) satisfies condition (2.18), it implies that we can write:

g (xn+1) xn+2 + λ2g (xn−1) xn−2 + λg′ (xn) xn+1xn−1 + M (xn+1, xn)

+ N (xn, xn−1) = 0. (2.19)

6. Comparing again with Eq. (2.5), we have that the two functions M = M (ξ, η) and
N = N (ξ, η) need to satisfy the following closure relation:

λ
∂ M

∂ξ
(ξ, η) = ∂ N

∂η
(ξ, η) . (2.20)

7. If the closure relation (2.20) is satisfied, then Eq. (2.15) is in the form (2.5); therefore, it
is variational. The function V can be computed using from the following integral:

V (xn+1, xn) =
∫

�

M (xn+1, xn) d xn + λ−1 N (xn+1, xn) d xn+1, (2.21)

on a properly chosen path � ⊂ R
2.

Remark 3 In the above discussion, we tacitly assumed that the functions M = M (ξ, η) and
N = N (ξ, η) were defined on some simply-connected domain D ⊂ R

2, e.g. a star-shaped
domain. In practice, we need to check this assumption in order to carry out the last step of this
test. If this hypothesis is not satisfied we cannot use formula (2.21), but we need to directly
solve the overdetermined system of partial differential equations:

∂V

∂xn
= M(xn+1, xn), λ

∂V

∂xn+1
= N (xn+1, xn). (2.22)

1 In this section and in the next ones, we will indicate various placeholder variables with Greek letters ξ ,
η, ζ…. We will use these placeholders variables when making statements on functions which might have
different arguments, e.g. the function g = g (ξ) in Eq. (2.5).
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A simple example of this occurrence is given by the following additive fourth-order difference
equation:

xn+1xn+2 + xn−1xn+1 + xn−1xn−2 − xn+1

x2
n + x2

n+1

+ xn−1

x2
n + x2

n−1

= 0. (2.23)

In this case, it is easy to see, as the denominator are already cleared, that g (ξ) = ξ , λ2 = 1
and:

R (xn+1, xn, xn−1) = − xn+1

x2
n + x2

n+1

+ xn−1

x2
n + x2

n−1

. (2.24)

The condition (2.18) is satisfied, and we are left with:

M (ξ, η) = − ξ

ξ2 + η2 , N (ξ, η) = η

ξ2 + η2 . (2.25)

The closure condition gives λ = 1. However, since the functions M and N are defined in the
multiply-connected domain D = R

2 \ {0}, it is not enough. Indeed, it is known that it is not
possible to construct the function V using formula (2.21) as the line integral depends on the
path [9]. However, the function

V (xn+1, xn) = arctan

(

xn+1

xn

)

, (2.26)

satisfies Eq. (2.22). Therefore, Eq. (2.23) is variational with the following Lagrangian:

L = xn xn+1xn+2 + arctan

(

xn+1

xn

)

. (2.27)

2.2 Examples

We now discuss three explicit examples of the usage of the test we presented. In particular,
in Examples 2 and 3 we show how the test derived from Theorem 2 can be used to filter out
Lagrangian examples out of parametric families of equations.

Example 1 Consider the following fourth-order difference equation:

xn+2

x3
n−1

+ xn−2

x3
n+1

+ 1

x2
n−1x2

n+1

[

3x2
n − μ

(x2
n − 1)xn−1xn+1

]

= 0. (2.28)

Taking the numerator, we find:

A = (x2
n − 1)x3

n+1, B = (x2
n − 1)x3

n−1 (2.29)

therefore K = x2
n − 1, g = ξ3 and λ2 = 1. With this definition, we can rewrite Eq. (2.28) as:

x3
n+1xn+2 + x3

n−1xn−2 + 3λx2
n xn+1xn−1 = R (xn+1, xn, xn−1) , (2.30)

with:
R (xn+1, xn, xn−1) = − μ

x2
n − 1

− 3xn−1xn+1(λ − 1)x2
n . (2.31)

The compatibility condition (2.18) gives λ = 1, and implies:

M (ξ, η) = −1

2

μ

η2 − 1
, N (ξ, η) = −1

2

μ

ξ2 − 1
. (2.32)
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We can think of the functions M and N as defined on the star-shaped domain D = (−1, 1)×
(−1, 1) and compute the function V with formula (2.21):

V (xn+1, xn) = μ

2

[

arctanh (xn) + arctanh (xn+1)
]

. (2.33)

Then, the Lagrangian for Eq. (2.28) is given by:

L = x3
n+1xn xn+2 + μ

2

[

arctanh (xn) + arctanh (xn+1)
]

. (2.34)

Example 2 Consider the family of fourth-order difference equations:

x2
n−1xn−2 + x2

n+1xn+2 + 1

1 − xn
+ xn(a02x2

n−1 + a11xn−1xn+1 + a20x2
n+1) = 0, (2.35)

depending parametrically on the three parameters ai j , i + j = 2. We will find the value of
the parameters such that Eq. (2.35) is variational.

First of all, we notice that Eq. (2.35) has already the numerators cleared and that A = x2
n+1,

B = x2
n−1. It follows that K = 1, g = ξ2 and λ2 = 1. We can then write down Eq. (2.35) as:

x2
n−1xn−2 + x2

n+1xn+2 + 2λxn xn+1xn−1 + R (xn+1, xn, xn−1) = 0, (2.36)

where the function R is given by:

R = 1

1 − xn
+ xn

[

a02x2
n−1 + (a11 − 2λ) xn−1xn+1 + a20x2

n+1

]

, (2.37)

Imposing the compatibility condition (2.18), we obtain a11 = 2λ. Using this definition, we
have the following expressions for the functions M and N :

M (ξ, η) = 1

2

1

1 − η
+ a20ηξ2, N (ξ, η) = 1

2

1

1 − ξ
+ a02ξη2. (2.38)

The closure relation (2.20) is then:

λ
∂ M

∂ξ
(ξ, η) − ∂ N

∂η
(ξ, η) = 2ξη (λa20 − a02) ≡ 0. (2.39)

This implies that Eq. (2.35) with a11 = 2λ is not variational unless a02 = λa20 = λμ. As M
and N are defined on the star-shaped domain D = (1,∞) × (1,∞), we obtain:

V (xn+1, xn) = 1

2

[

μx2
n+1x2

n − log(xn − 1) − 1

λ
log(xn+1 − 1)

]

. (2.40)

Finally, we obtained that the one-parameter family of additive fourth-order difference
equations:

x2
n−1xn−2 + x2

n+1xn+2 + 1

1 − xn
+ xn

[

μ
(

λx2
n−1 + x2

n+1

) + 2λxn−1xn+1
] = 0,

λ2 = 1, (2.41)

can be derived by the following Lagrangian:

Ln = λ−n
{

x2
n+1xn xn+2

1

2

[

μx2
n+1x2

n − log(xn − 1) − 1

λ
log(xn+1 − 1)

]}

,

λ2 = 1. (2.42)
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Example 3 In this example, we classify the most general variational fourth-order linear dif-
ference equation:

xn+2 + c1xn+1 + c0xn + c−1xn−1 + c−2xn−2 + b = 0. (2.43)

We normalised the equation with respect to the coefficient of xn+2, which must be different
from zero. Then we notice that also c−2 	= 0 in order to have a proper fourth-order equation.

First, we notice that Eq. (2.43) is denominator free. Then A = 1, B = c−2. Therefore, it
follows that K = 1, g = 1 and λ2 = c−2. We can then write down Eq. (2.43) as:

xn+2 + c−2xn−2 + R (xn+1, xn, xn−1) = 0, (2.44)

where the function R is given by:

R = c−1xn−1 + c0xn + c1xn+1 + b. (2.45)

The compatibility condition (2.18) is identically satisfied. Using this definition, we have the
following expressions for the functions M and N :

M (ξ, η) = c1ξ + c0

2
η + b

2
, N (ξ, η) = c−1η + c0

2
ξ + b

2
. (2.46)

The closure relation (2.20) is then:

c1/2
−2

∂ M

∂ξ
(ξ, η) − ∂ N

∂η
(ξ, η) = c1/2

−2 c1 − c−1 ≡ 0. (2.47)

This implies that Eq. (2.43) is variational if and only if c−2 = (c−1/c1)
2. As M and N are

defined on the whole R
2 we obtain:

V (xn+1, xn) = c0

4

(

c1x2
n+1

c−1
+ x2

n

)

+ b

2

(

xn + c1xn+1

c−1

)

+ c1xn xn+1 (2.48)

We obtained that the most general linear variational fourth-order difference equation has
the following from:

xn+2 + c1xn+1 + c0xn + c−1xn−1 +
(

c−1

c1

)2

xn−2 + b = 0. (2.49)

and the following Lagrangian:

Ln =
(

c1

c−1

)n
[

xn xn+2 + c0

4

(

c1x2
n+1

c−1
+ x2

n

)

+ b

2

(

xn + c1xn+1

c−1

)

+ c1xn xn+1

]

.

(2.50)

Notice that the above Lagrangian becomes independent of n if and only if c1 = c−1.

3 Integrability results

In this section, we address to the problem of finding some Liouville integrable examples out of
the general family of additive fourth-order equations possessing an autonomous Lagrangian,
as characterised by Corollary 1.

We recall that a difference equation of order 2k is said to be Liouville integrable if it
possesses k invariants and preserves a Poisson structure of order k [2,6,35,41]. Variational
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difference equations preserve a rank k Poisson structure built with the discrete Ostrogradsky
transformation, see [2,40].

We search for Liouville integrable cases of fourth-order additive difference equations with
autonomous Lagrangian since Liouville integrability is defined for autonomous symplectic
structures with autonomous invariants. We make an ansatz on the form of the invariant which
will allow us to compare our results with the recent paper [22]. In particular, we will show
that within the Lagrangian framework we are able to produce integrable equations imposing
only one invariant, as the second one will be admitted naturally by equation. Finally, we
divide the integrable cases in five form invariant canonical forms, in the sense of Lemma 1.

3.1 Additive equations with an invariant multi-affine in xn+1 and xn−2

In [22] were classified fourth-order difference equations using the following assumptions:

A. The equation possesses two symmetric polynomial invariant that is, two invariants I =
I (xn+1, xn, xn−1, xn−2), which are polynomial functions and such that:

I (xn−2, xn−1, xn, xn+1) = I (xn+1, xn, xn−1, xn−2) . (3.1)

B. One invariant, called Ilow, is such that:

degxn+1
Ilow = degxn−2

Ilow = 1, degxn
Ilow = degxn−1

Ilow = 3, (3.2)

and its coefficients interpolates the form of the lowest-order invariant of the autonomous
dP(2)

I and dP(2)
II equations (see [22,29] for details).

C. One invariant, called Ihigh, is such that:

degxn+1
Ihigh = degxn−2

Ihigh = 2, degxn
Ihigh = degxn−1

Ihigh = 4. (3.3)

Remark 4 The invariant Ilow is affine in the variables xn+1 and xn−2. So, it is called a multi-
affine function with respect to the variables xn+1 and xn−2.

Within this framework, six different equations were derived. Some were integrable, some
were non-integrable according the algebraic entropy criterion [1,11,42]. It was proved, fol-
lowing [19], that the integrable cases were either variational or admitted one additional
invariant, being then integrable in the naïve sense [20]. So, variational structures were the
key feature in understanding the integrability of these examples.

Now we will discuss the Liouville integrability of variational fourth-order equations. Our
final result is stated at the end of this section in Theorem 4. This result unifies the result
obtained in [22] and shows the power of the variational approach. Our starting point is the
existence of a single invariant multi-affine with respect to the variables xn+1 and xn−2,
characterised by the following theorem:

Theorem 3 Equation (2.5) admits a multi-affine invariant with respect to the variables xn+1

and xn−2 of the following form:

I (xn+1, xn, xn−1, xn−2) = xn+1 P1 (xn, xn−1) + xn−2 P2 (xn, xn−1)

+ xn+1xn−2 P3 (xn, xn−1) + P4 (xn, xn−1) , (3.4)

where Pi = Pi (xn, xn−1) are a priori arbitrary functions if and only if the following condi-
tions hold true:

– The function g = g (ξ) is a second-order polynomial in its variable:

g (ξ) = A1ξ
2 + A2ξ + A3. (3.5)
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– The function V = V (ξ, η) has the following form:

V = W (η) + A1

2
ξ2η2 + A2ξ

2η + A2ξη2 + A7ξη, (3.6)

where the function W = W (η) is given by integrating:

W ′ (η) = A2
2η

3 + A2 A3η
2 + A2 A7η

2 + A2 A8η + A2
3η + A3 A8 + A6η + A5

A1η2 + A2η + A3
, (3.7)

with initial condition W (0) = 0.
– The functions Pi = Pi (xn, xn−1) are degree three polynomials.

The Proof of Theorem 3 is mainly computational using the explicit form of the invariant
(3.4) and of Eq. (2.5). Overall, it follows the same lines of the proof of Theorem 2, and the
interested reader can find it in Appendix B.

The explicit expression of the variational additive difference equations with one integral
of the form (3.4) is given by:

(A1x2
n−1 + A2xn−1 + A3)xn−2 + (A1x2

n+1 + A2xn+1 + A3)xn+2

+ (A1xn + A2)
(

x2
n+1 + x2

n−1

) + (2A1xn + A2)xn−1xn+1+(2A2xn+A7) (xn+1 + xn−1)

+ A2
2x3

n + (A2 A3 + A2 A7) x2
n + (

A2 A8 + A2
3 + A3 A8 + A6

)

xn + A5

A1x2
n + A2xn + A3

= 0. (3.8)

We choose to not present the explicit form of the Lagrangian for Eq. (3.8) yet, since it depends
on the functional form of the solution of Eq. (3.7). Such solution is different depending on
the values of the parameters Ai , and it is impossible to write down in full generality. We will
present the explicit Lagrangians later when we will discuss the canonical forms of Eq. (3.8).

By direct inspection, it is possible to prove that Eq. (3.8) possess a second invariant of
higher degree. We don’t present its form for general values of the parameters Ai as it is
quite cumbersome. However, we note that such invariant is functionally independent from
(3.4). So, Eq. (3.8) is candidate to be an integrable equation, as it possesses two independent
invariants and it is variational by construction. We defer this part of the proof to Sect. 3.2,
where using the invariance with respect to linear transformations we can provide simple
formulas for the invariants and the associated Poisson structures.

3.2 Canonical forms

Consider Eq. (3.8). This equation depends on a polynomial g (ξ) (3.5), which in the general
case has degree two. Depending on the values of the coefficients A1, A2 and A3, assumed to
be real, the polynomial g (ξ) (3.5) can be of the following five forms:

Case 1 deg g = 2 and it has two real independent solutions x1 and x2.
Case 2 deg g = 2 and it has one solutions x0 of multiplicity two.
Case 3 deg g = 2 and it has two complex conjugate solutions x0 and x∗

0 .
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Case 4 deg g = 1.
Case 5 deg g = 0.

We will now consider explicitly these five possibility and show, using the form invariance
with respect to linear transformations (2.12) that they give raise to five different canonical
forms of Eq. (3.8). That is, an equation of the form (3.8) for a specific choice of the parameters
reduces to one of these five using the appropriate linear transformation and reparametrisation.
Finally, these canonical forms show the true number of independent parameters and will be
helpful to compute the continuum limits in Sect. 4.

Case 1 If deg g = 2 and it has two real independent solutions ξ = x1, x2, these solutions can
be rescaled to ±1 through the transformation:

xn = x2 − x1

2
Xn + x1 + x2

2
. (3.9)

So, in case 1 Eq. (3.8) reduces to the first canonical form:

(X2
n+1 − 1)Xn+2 + (X2

n−1 − 1)Xn−2 + Xn (Xn+1 + Xn−1)
2 + γ (Xn+1 + Xn−1)

+ αXn + β

X2
n − 1

= 0. (3.10)

The three parameters α, β and γ are related to the old ones through scaling.
The first canonical form (3.10) is, up to change of the parameters, the autonomous the

second member of the discrete PII hierarchy, the dP(2)
I I equation. The dP(2)

I I equation was
presented in [7] and the integrability properties with respect to invariants and growth of the
degrees [1,11,17,18,26] of this equation were investigated in [29]. This equation reappeared
later in the classification given in [22], see Sect. 3.1. In [22], the growth properties of Eq.
(3.10) were explained proving that such equation is Liouville integrable. Its Lagrangian,
found with the method of [19], and the associated symplectic structure were presented. For
sake of completeness, here we are going to present again such properties.

The Lagrangian of the first canonical form (3.10) is the following:

L1 = (X2
n+1 − 1)Xn+2 Xn + 1

2
X2

n X2
n+1 + γ Xn Xn+1 + α

2
log

(

X2
n − 1

)

+ β

2
log

(

Xn − 1

Xn + 1

)

. (3.11)

The functionally independent invariants of the first canonical form (3.10) are:

I1 = −Xn−1 Xn (Xn−1 − 1) (Xn − 1) α − (Xn−1 − 1) (Xn − 1) β + (−Xn−1 Xn + 1) γ

− Xn−1 Xn (Xn − 1) (Xn−1 − 1)

(

Xn−1 Xn + Xn Xn+1 + Xn−2 Xn−1

−Xn+1 Xn−2 − Xn − Xn−1 − 1

)

, (3.12a)

J1 = −Xn−1 Xn (Xn − 1) (Xn−1 − 1)

(

Xn−1 Xn + Xn Xn+1 + Xn−2 Xn−1 + Xn+1 Xn−2

−Xn − Xn−2 − Xn−1 − Xn+1

)

α

− (Xn − 1) (Xn−1 − 1) (Xn−1 Xn + Xn Xn+1 + Xn−2 Xn−1 − Xn − Xn−1 − 1) β

+
(−X2

n X2
n−1 − X2

n Xn−1 Xn+1 − Xn Xn−2 X2
n−1 + X2

n Xn−1

+Xn Xn−2 Xn−1 + Xn X2
n−1 + Xn Xn+1 Xn−1 − 1

)

γ

− Xn−1 Xn (Xn − 1) (Xn−1 − 1) (Xn−1 Xn + Xn Xn+1 + Xn−2 Xn−1

−Xn − Xn−2 − Xn−1 − Xn+1) ×
(Xn−1 Xn + Xn Xn+1 + Xn−2 Xn−1 − Xn − Xn−1 − 1) (3.12b)
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Finally, the symplectic structure obtained from the Lagrangian (3.11) has the following
non-zero brackets:

{Xn+1, Xn−1} = − 1

X2
n − 1

, (3.13a)

{Xn+1, Xn−2} = 2Xn Xn−1 + 2Xn Xn+1 + 2Xn−2 Xn−1 + γ

X2
n X2

n−1 − X2
n − X2

n−1 + 1
(3.13b)

{Xn, Xn−2} = − 1

X2
n−1 − 1

, (3.13c)

Using such Poisson structure, it is possible to prove that the invariants (3.12) are commuting.
This ends the proof of the integrability of the first canonical form (3.10).

Case 2 If deg g = 2 and it has one solution x0 of multiplicity two, this solution can be
rescaled to 0 through the transformation:

xn = Xn + x0. (3.14)

So, in case 2 Eq. (3.8) reduces to the second canonical form

X2
n+1 Xn+2 + X2

n−1 Xn−2 + Xn (Xn+1 + Xn−1)
2 + γ (Xn+1 + Xn−1)

+ α

X2
n

+ β

Xn
= 0. (3.15)

The three parameters α, β and γ which are related to the old ones through scaling.
The second canonical form (3.15) is, up to change of the parameters, equation (P.v)

appearing in the classification of fourth-order difference equations with two invariants of a
given form presented in [22]. In [22], the growth properties of Eq. (3.15) were explained
proving that such equation is Liouville integrable. Its Lagrangian, found with the method of
[19], and the associated symplectic structure, were presented. For sake of completeness, here
we are going to present again such properties.

The Lagrangian of the second canonical form (3.15) is the following:

L2 = X2
n+1 Xn Xn+2 + 1

2
X2

n X2
n+1 + γ Xn Xn+1 − α

Xn
+ β log (Xn) . (3.16)

The functionally independent invariants of the second canonical form (3.15) are:

I2 = (Xn−1 + Xn) α + β Xn Xn−1 + X2
n X2

n−1 (Xn Xn−1

+Xn Xn+1 + Xn−1 Xn−2 − Xn−2 Xn+1 + γ ) (3.17a)

J2 = X2
n−1 X2

n (Xn−1 + Xn+1) (Xn + Xn−2) γ + (

X2
n Xn−1 + Xn+1 X2

n

+X2
n−1 Xn + Xn−2 X2

n−1

)

α

+ Xn−1 Xn (Xn Xn−1 + Xn Xn+1 + Xn−2 Xn−1)
(

X2
n X2

n−1 + Xn+1 X2
n Xn−1

+Xn Xn−2 X2
n−1 + β

)

. (3.17b)

Finally, the symplectic structure obtained from the Lagrangian (3.11) has the following
non-zero brackets:

{Xn+1, Xn−1} = − 1

X2
n
, (3.18a)
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{Xn+1, Xn−2} = 2Xn Xn−1 + 2Xn Xn+1 + 2Xn−2 Xn−1 + γ

X2
n X2

n−1

(3.18b)

{Xn, Xn−2} = − 1

X2
n−1

, (3.18c)

Using such Poisson structure, it is possible to prove that the invariants (3.17) are commuting.
This ends the proof of the integrability of the second canonical form (3.15).

Case 3 If deg g = 2 and it has two complex conjugate solutions x0 = μ+ iν and x∗
0 = μ− iν,

these solutions can be scaled to ±i through the transformation:

xn = νXn + μ. (3.19)

So in case 3, Eq. (3.8) reduces to the the third canonical form:
(

X2
n+1 + 1

)

Xn+2 + (

X2
n−1 + 1

)

Xn−2 + Xn (Xn+1 + Xn−1)
2 + γ (Xn+1 + Xn−1)

+ α + β Xn

X2
n + 1

= 0. (3.20)

The three parameters α, β and γ are related to the old ones through scaling.
The third canonical form (3.20) is connected to the first one (3.10), if we allow complex

changes of variables and complexify the parameters:

Xn ↔ iXn, (α, β, γ ) ↔ (iβ, α,−γ ). (3.21)

Therefore, the third canonical form (3.20) is a different avatar of the autonomous dP(2)
II

equation. We choose to consider it as different equation, because the functional form of the
Lagrangian for Eq. (3.20) is different with respect to the one of Eq. (3.10). Moreover, in
Sect. 4, we will show that the continuum limit of the third canonical form (3.20) is different
from the continuum limit of the second canonical form (3.15).

The Lagrangian of the third canonical form (3.20) is the following:

L3 = (

X2
n+1 + 1

)

Xn Xn+2 + 1

2
X2

n X2
n+1 + γ Xn Xn+1 + α

2
arctan (Xn)

+ β log
(

X2
n + 1

)

. (3.22)

The functionally independent invariants of the third canonical form (3.20) are:
I3 = (

X2
n + 1

) [

(Xn + Xn−2) X3
n−1 + (Xn Xn+1 − Xn−2 Xn+1 + γ ) X2

n−1

]

+ (γ − Xn−2 Xn+1) X2
n

+ [

X3
n + X2

n Xn−2 + (β + 1) Xn + α + Xn−2
]

Xn−1 + Xn+1 X3
n

+ (α + Xn+1) Xn − Xn−2 Xn+1 (3.23a)

J3 = (

X2
n + 1

) [

(Xn + Xn−2)
2 X4

n−1 + (Xn + Xn−2) (2 Xn Xn+1 + γ − 5) X3
n−1

]

−
⎡

⎣

((5 − γ ) Xn+1 − 2Xn−2) X3
n + (

5 γ − β − 2 − 2X2
n−2 − Xn+1 (γ + 5) Xn−2 − 2X2

n+1

)

X2
n

− (

X2
n+1 + 1

)

X4
n + ((5 − γ ) Xn+1 − α − (β + 2) Xn−2) Xn

−2X2
n−2 − ((γ + 5) Xn+1 + α) Xn−2 − X2

n+1 + 5 γ − 1

⎤

⎦ X2
n−1

−
[

(5 − γ − 2Xn−2 Xn+1) X3
n − 2Xn+1 X4

n + ((5 − γ ) Xn−2 − (β + 2) Xn+1 − α) X2
n

+ (5 β − γ + 5 − 2 Xn−2 Xn+1) Xn + (5 − γ ) Xn−2 − Xn+1β + 4α

]

Xn−1

+ X2
n+1 X4

n + Xn+1 (γ − 5) X3
n − (

5 γ − 1 − X2
n−2 − Xn+1 (γ + 5) Xn−2

−Xn+1α − 2X2
n+1+

)

X2
n
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− (4 α − Xn−2β + (5 − γ ) Xn+1) Xn + X2
n−2 + ((γ + 5) Xn+1 + α) Xn−2

+ Xn+1 (α + Xn+1) (3.23b)

Finally, the symplectic structure obtained from the Lagrangian (3.22) has the following
non-zero brackets:

{Xn+1, Xn−1} = − 1

X2
n + 1

, (3.24a)

{Xn+1, Xn−2} = 2Xn Xn−1 + 2Xn Xn+1 + 2Xn−2 Xn−1 + γ

X2
n X2

n−1 + X2
n + X2

n+1 + 1
(3.24b)

{Xn, Xn−2} = − 1

X2
n−1 + 1

, (3.24c)

Using such Poisson structure, it is possible to prove that the invariants (3.23) are commuting.
This ends the proof of the integrability of the third canonical form (3.20).

Case 4 If deg g = 1, it has a single solution x0 = −ν/μ which can be moved to 0 through
the transformation:

xn = Xn − ν

μ
. (3.25)

So in case 4, Eq. (3.8) reduces to the the fourth canonical form:

Xn+1 Xn+2 + Xn−1 Xn−2 + Xn (Xn + 2Xn+1 + 2Xn−1) + (Xn+1 + Xn−1)
2

− Xn+1 Xn−1 + γ (Xn + Xn+1 + Xn−1) + α

Xn
+ β = 0. (3.26)

The three parameters α, β and γ which are related to the old ones through scaling.
The fourth canonical form (3.26) is, up to change of the parameters, the autonomous

second member of the discrete PI hierarchy, the dP(2)
I equation. The dP(2)

I equation was
presented in [7] and the integrability properties with respect to invariants and growth of the
degrees of this equation were investigated in [29]. Alongside with Eqs. (3.10) and (3.15), this
equation reappeared later in the classification given in [22], see Sect. 3.1. In [22], the growth
properties of Eq. (3.26) were explained proving that such equation is Liouville integrable.
Its Lagrangian, found with the method of [19], and the associated symplectic structure, were
presented. For sake of completeness, here we are going to present again such properties.

The Lagrangian of the fourth canonical form (3.26) is the following:

L4 = Xn Xn+1 Xn+2 + X2
n Xn+1 + Xn X2

n+1 + X3
n

3
+ α log (Xn) + β Xn

+ γ Xn

(

Xn+1 + Xn

2

)

(3.27)

The functionally independent invariants of the fourth canonical form (3.26) are:

I4 = (Xn + Xn−1) α + β Xn Xn−1 + Xn Xn−1 (Xn + Xn−1) γ

+ Xn Xn−1
(

X2
n + 2Xn Xn−1 + Xn Xn+1 + Xn−2 Xn−1 − Xn−2 Xn+1 + X2

n−1

)

(3.28a)

J4 = α(X2
n + 2Xn Xn−1 + Xn Xn+1 + Xn−2 Xn−1 + X2

n−1)

+ β Xn Xn−1(Xn + Xn−2 + Xn−1 + Xn+1)

+ γ Xn Xn−1(Xn + Xn−1 + Xn+1)(Xn + Xn−2 + Xn−1)
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+ Xn Xn−1(Xn + Xn−2 + Xn−1 + Xn+1)(X2
n + 2Xn Xn−1

+ Xn Xn+1 + Xn−2 Xn−1 + X2
n−1) (3.28b)

We note that the invariant (3.28b) does not follow from substitution of parameters into the
general higher degree invariant obtained for Eq. (3.8).

Finally, the symplectic structure obtained from the Lagrangian (3.27) has the following
non-zero brackets:

{Xn+1, Xn−1} = − 1

Xn
, (3.29a)

{Xn+1, Xn−2} = 2Xn + 2Xn−1 + Xn−2 + Xn+1 + γ

Xn Xn−1
(3.29b)

{Xn, Xn−2} = − 1

Xn−1
, (3.29c)

Using such Poisson structure, it is possible to prove that the invariants (3.28) are commuting.
This ends the proof of the integrability of the fourth canonical form (3.26).

Case 5 If deg g = 0 Eq. (3.8) can be transformed into the following linear equation:

Xn+2 + Xn−2 + γ (Xn+1 + Xn−1) + β Xn + α = 0. (3.30)

This is the fifth canonical form. The fifth canonical form (3.30) is a degenerate case as it is
linear.

The Lagrangian of the fifth canonical form (3.30) is the following:

L5 = Xn Xn+2 + αXn + β

2
X2

n + γ Xn Xn+1. (3.31)

The functionally independent invariants of the fifth canonical form (3.30) are:

I5 = α(Xn + Xn−1) + β Xn Xn−1 + γ (X2
n + X2

n−1)

+ Xn(Xn−1 + Xn+1) + Xn−2(Xn−1 − Xn+1), (3.32a)

J5 = α(Xn + Xn−2 + Xn−1 + Xn+1) + β(Xn Xn−2 + Xn−1 Xn+1)

+ γ (Xn−1 + Xn+1)(Xn + Xn−2)

+ X2
n + X2

n−2 + X2
n−1 + X2

n+1. (3.32b)

We note that the invariant (3.32b) is quadratic and does not follow from substitution of
parameters into the general higher degree invariant obtained for Eq. (3.8).

Finally, the symplectic structure obtained from the Lagrangian (3.31) has the following
non-zero brackets:

{Xn+1, Xn−1} = {Xn, Xn−2} = −1, {Xn+1, Xn−2} = γ. (3.33)

Using such Poisson structure, it is possible to prove that the invariants (3.32) are commuting.
This ends the proof of the integrability of the fifth canonical form (3.30).

Remark 5 Following the results of Example 3, we have that the fifth canonical form is (up
to reparametrisation) the most general linear fourth-order difference equation admitting an
autonomous discrete Lagrangian.

To end this section, we summarise our results in the following theorem:
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Theorem 4 If an additive variational difference equation of the form (2.5) admits a multi-
affine invariant with respect to the variables xn+1 and xn−2, then it is Liouville integrable.
Moreover, using a linear transformation it can be brought into one of the five canonical forms
given by Eqs. (3.10), (3.15), (3.20), (3.26) and (3.30).

4 Continuum limits of the integrable cases

In this section, we discuss the continuum limits of the five canonical forms. We will prove that,
under appropriated scaling of the dependent variable and of the parameters, the continuum
limit is given by either by the autonomous second member of the PI hierarchy, the P(2)

I
equation [8,32]:

x iv + 10xx ′′ + r1

2
x ′′ + 5

(

x ′)2 + 10x3 + 3

2
r1x2 + 2r2x + r3 = 0, (4.1)

or by the autonomous second member of the PII hierarchy, the P(2)
II equation [13]:

x iv − (10x2 + r1)x ′′ + 6x5 + 2r1x3 − 10x(x ′)2 + r2 = 0. (4.2)

The fifth canonical form, i.e. the Eq. (3.30), is a special case. The natural continuum limit of
the fifth canonical form (3.30) is the linear equation:

x iv + r1x ′′ + r2x + r3 = 0. (4.3)

As discussed in the general non-autonomous case in [8,13,32], Eq. (4.1) and Eq. (4.2)
are integrable fourth-order equations. Being linear Eq. (4.3) is clearly integrable. For sake of
completeness, here we show their integrals and their Lagrangian. We note that the Lagrangian
for (4.2) was already presented in [19] using the continuum limit approach.

Equation (4.1) possesses the following first integrals

K1,I = x ′x ′′′ + 5x4

2
+ r1

2
x3 + r2x2 + x

16

[

80(x ′)2 + 16r3)
] + r1

4
(x ′)2 − (x ′′)2

12
(4.4a)

K2,I = (x ′′′)2 + (20x + r1)
(x ′′)2

2
− (60x2 + 6xr1 + 4r2)

(x ′)2

2

+ (40x3 + 6x2r1 + 8xr2 − 4x ′2 + 4r3)
x ′′

2

− 3x2

2

(

r1x2 + 4x3 + 8r2

3
x + 4r3

)

, (4.4b)

while Eq. (4.2) possesses the following first integrals:

K1,II = x ′x ′′′ − (x ′′)2

2
− (10x2 + r1)

(x ′)2

2
+ x

2
(2x5 + r1x3 − r2x − 2r3), (4.5a)

K2,II = (x ′′′)2 − (10x2 + r1)(x ′′)2 + (x ′)4 + (30x4 + 6r1x2 − r2)(x ′)2

+
[

12x5 + 4r1x3 + 4x(x ′)2 − 2r2x − 2r3

]

x ′′

+ x3 [

3x4 (x − r2) + 2r1x3 − 8r3
]

. (4.5b)

Moreover, Eq. (4.1) can be derived by the following Lagrangian:

L I = (x ′′)2

2
+ x (21x + r1)

x ′′

4
+ 11x

2

(

x ′)2 + x

2

(

5x3 + r1x2 + 2r2x + 2r3
)

, (4.6)
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while Eq. (4.2) can be derived by the following Lagrangian:

L II = (x ′′)2

2
− x

(

5x2

3
+ r1

2

)

x ′′ + x
(

x5 + r1

2
x3 + r2

)

. (4.7)

We recall that following [12], these Lagrangians are unique up to the addition of a total
derivative and multiplication by a scalar. Finally, Eq. (4.3) can be derived by the following
Lagrangian:

L lin = (x ′′)2

2
− r1

2

(

x ′)2 + r1

2
x2 + r3x . (4.8)

Remark 6 We note that according to the result of [12] the most general variational fourth-
order linear differential equation is the following one:

x iv + r0x ′′′ + r1x ′′ + r0

2

(

r1 − r2
0

4

)

x ′ + r2x + r3 = 0. (4.9)

The Lagrangian of the above equation is:

L F = er0t/2

[

(x ′′)2

2
+

(

r2
0

8
− r1

2

)

(

x ′)2 + r1

2
x2 + r3x

]

. (4.10)

It follows from this consideration that Eq. (4.3) is the most general fourth-order linear dif-
ferential equation admitting an autonomous Lagrangian.

4.1 Equations reducing to Eq. (4.1)

The second canonical form (3.15) under the following scaling:

xn = 1 + h2

2
x(t), t = nh, α = −16 + 2r1h2 − 2r2h4, β = 30 − 3r1h2 + 2r2h4,

γ = −10 + r1

2
h2 + r3

4
h6, (4.11)

in the limit h → 0 reduces to Eq. (4.1). With the same scaling as h → 0, we have:

4L2

h8

t.d.≡ L I + O (h) , (4.12)

and

I2 = − K1,I

2
h8 + O(h9), J2 = −

(

K1,I

32
+ r1r3

32

)

h8 + O(h9). (4.13)

That is, the two invariants collapse in a single first integral in the continuum limit and (4.4b)
is not recovered.

Remark 7 This result on the second canonical form (3.15) shows that the new equation found
in [22] can be interpreted as new autonomous fourth-order dPI equation. We conjecture that
Eq. (3.15) is the fourth-order member of a “non-standard” dPI hierarchy. At the moment, no
information on the existence of this hierarchy is available.

The third canonical form (3.20) under the following scaling:

xn = 1 + h2x(t), t = nh, α = −16 + 4r1h2 − 4r2h4, β = 56 − 8r1h2,

γ = −14 + r1h2 + r2h4 + r3h6, (4.14)
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in the limit h → 0 reduces to Eq. (4.1). With the same scaling as h → 0, we have:

L3

h8

t.d.≡ L I + O (h) , (4.15)

and

I3 = −8K1,Ih
8 + O(h9), J3 = −

(

136K1,I + 6r1r3 + 5r2
2

17

)

h8 + O(h9). (4.16)

That is, the two invariants collapse in a single first integral in the continuum limit and (4.4b)
is not recovered.

Remark 8 Despite being connected with the P(2)
II equation, the simplest continuum limit of

the third canonical form (3.15) is a member of the PI hierarchy. No continuum limit of Eq.
(3.10) to the autonomous fourth-order member of the PII hierarchy is at present known. As
in Remark 7, we conjecture the third canonical form (3.20) is the fourth-order member of a
“non-standard” dPI hierarchy.

The fourth canonical form (3.26) under the following scaling:

xn = 1 + h2x(t), t = nh, α = −10 + 3r1

2
h2 − r2h4, β = 30 − 3r1h2,

γ = −10 + r1

2
h2 + r2

3
h4 + r3

3
h6, (4.17)

in the limit h → 0 reduces to Eq. (4.1). With the same scaling as h → 0, we have:

L4

h8

t.d.≡ L I + O (h) , (4.18)

and

I4 = 2K1,Ih
8 + O(h9), J4 =

(

32K1,I + 6r1r3

24
+ r2

2

36

)

h8 + O(h9). (4.19)

That is, the two invariants collapse in a single first integral in the continuum limit and (4.4b)
is not recovered. This continuum limit was first discussed in [8].

4.2 Equations reducing to Eq. (4.2)

The first canonical form (3.10) under the following scaling:

xn = hx(t), t = nh, α = 6 + 2r1h2, β = r2h5, γ = 4 + r1h2, (4.20)

in the limit h → 0 reduces to Eq. (4.2). With the same scaling as h → 0 we have:

L1

h6

t.d.≡ −L II + O (h) , (4.21)

and

I1 = − 1

32
K1,IIh

6 + O(h7), J1 = 3

16
K1,IIh

6 + O(h7). (4.22)

That is, the two invariants collapse in a single first integral in the continuum limit and (4.5b)
is not recovered. This continuum limit was first discussed in [7].
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4.3 Equation reducing to Eq. (4.3)

The fifth canonical form (3.30) under the following scaling:

xn = x(t), t = nh, α = r3h4, β = 6 − 2r1h2 + r2h4, γ = −4 + r1h2, (4.23)

in the limit h → 0 reduces to Eq. (4.3). Using the same scaling we have that the discrete
Lagrangian (3.31) has the following limit as h → 0:

L5

h4

t.d.≡ L lin + O (h) . (4.24)

Since Eqs. (3.30) and (4.3) are linear instead of discussing the relationship between the
invariants, we discuss the relationship between the explicit solutions. The explicit solution
of Eq. (3.30) is obtained as linear combination of the base solutions Xn,i = qn

i , where qi are
the four roots of the characteristic polynomial:

q4 + γ q3 + βq2 + γ q + 1 = 0, (4.25)

plus a particular solution of the inhomogeneous equation. In the same way, the general
solution of (4.3) is obtained through as linear combination of the base solutions xn,i = eμi t ,
where μi are the four roots of the characteristic polynomial:

μ4 + r1μ
2 + r2 = 0, (4.26)

plus a particular solution of the inhomogeneous equation. The solutions of Eq. (4.26) are
obtained from the solutions of Eq. (4.25) using the scaling given in formula (4.23) and

q = 1 + μh, (4.27)

in the limit where h → 0. Indeed, using formula (4.27) into (4.25) we obtain:
(

μ4 + r1μ
2 + r2

)

h4 + O
(

h5
)

= 0. (4.28)

Finally, using t = nh the base solutions are such that:

Xn,i = (1 + μi h)t/h = eμi t + O(h) = xi (t) + O(h). (4.29)

An analogous result holds for the particular solution if we write down its expression using
the method of variation of constants [10].

5 Conclusions

In this paper, we discussed the conditions for an additive fourth-order difference equations to
be variational. Our main result, stated in Theorem 2, tells us that there exists a family of such
equations depending on two arbitrary functions, one of a single variable g = g (ξ), and one
of two variables V = V (ξ, η), and on an arbitrary constant λ. As evidenced in Corollary 1,
the Lagrangian is autonomous if and only if λ = 1.

Additive difference equations can be considered also for 2kth-order difference equation:

xn+k = f
(

x(−k+1,k−1)
n

)

xn−k + h
(

x(−k+1,k−1)
n

)

, (5.1)

where
x(m,l)

n = (xn+m, . . . , xn+l) , l ≤ m. (5.2)

The result of this paper stimulates to consider the following conjecture:
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Table 1 Resuming table of the integrable canonical forms

Canonical form Equation Roots of g (ξ) Continuum limit Introduced

1st (3.10) −1,1 Autonomous P(2)
II [7,29]

2nd (3.15) 0,0 Autonomous P(2)
I [22]

3rd (3.20) −i, i autonomous P(2)
I –

4th (3.26) 0 Autonomous P(2)
I [8,29]

5th (3.30) – Eq. (4.3) –

Conjecture An additive 2kth-order difference equation is variational if and only if it can be
derived from the following Lagrangian:

L(k)
n = λ−n

[

f
(

x(1,k−1)
n

)

xn xn+k + V
(

x(0,k−1)
n

)

]

. (5.3)

The study of this conjecture will be subject of further studies. A starting point for these
studies is the known hierarchies of discrete equations, e.g. those presented in [7,8].

Moreover, we produced a list of integrable equations with autonomous Lagrangian using
an ansatz on the shape of one invariant. Interestingly enough, equations of the said list
naturally possess a second invariant without imposing any additional conditions. We showed
that it is possible to reduce these equations to five canonical forms, which we related to
known examples from [7,8,22,29]. We remark that in the cited papers, the same equations
were derived or studied with different approaches.

Finally, we computed the continuum limits of the canonical forms. This allowed us to
identify Eq. (3.15), an equation recently introduced in [22], with a new dP(2)

I equation.

Moreover, the continuum limits showed that Eq. (3.20), which is related to the dP(2)
II equation,

is actually a discretisation of the P(2)
I equation. In the same way we proved, following the

example given in [19], that variational structures are preserved upon continuum limit, while
invariants are not. A resuming table of the integrable case, and their continuum limits can be
found in Table 1.

Now, we would like to propose a interpretation of the appearance of non-autonomous
Lagrangians in Theorem 2 based on the analogy with the continuum systems. From the
results of Example 3 and from the continuum limit (4.3) of the fifth canonical from (3.30), we
infer that non-autonomous Lagrangians are linked to some form of dissipation or accretion.
We propose this analogy for two main reasons. First, because in the continuum limit (4.3),
odd-order derivates are absent. Odd-order derivates are naturally related to dissipation or
accretion in continuous systems. Second, we can prove that the additive variational fourth-
order equations with non-autonomous Lagrangians are not measure preserving, but they
either shrink or expand the volume of the phase space. Computing the Jacobian determinant
of (2.5), we obtain:

Jn = λ2 g (xn−1)

g (xn+1)
. (5.4)

This implies that the volume element is given by:

Vn = g (xn) g (xn−1) d xn+1 ∧ d xn ∧ d xn−1 ∧ d xn−2 (5.5)

and evolves according to:
Vn+1 = λ2Vn, (5.6)
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Fig. 1 In blue a trajectory of Eq.
(3.10) with A5 = 2, A6 = 0,
A7 = −1 and initial conditions
xi ∼ 10−2. In red a trajectory of
the equation obtained from
Ln,1 = λ−n L1, with λ = 0.999,
same parameters and same initial
conditions. While the trajectory
of (3.10) oscillated around the
fixed point in the origin, the
asymmetric trajectory collapse
into it as n → ∞. Trajectories are
computed using 104 iterations

that is Vn = λ2n V0. We obtain that if |λ| > 1 the volume of the phase space is increasing,
while if 0 < |λ| < 1 the volume of the phase space is decreasing. This is another usual
feature of continuous accretive and dissipative equations, respectively. If and only if |λ| = 1,
we have the conservation of the volume as required by the Hamiltonian approach. For the
above reasons, we say the autonomous Lagrangian case is conservative, while the non-
autonomous one is dissipative or accretive depending on the absolute value of λ. The case
λ = −1 preserves the volumes, but since the associated Lagrangian is non-autonomous the
corresponding symplectic form does not allows to apply the discrete Liouville theorem. This
behaviour is displayed graphically in Fig. 1 in the case of the first canonical form (3.10) and
its asymmetric version obtained from the discrete Lagrangian Ln,1 = λ−n L1 with a given
λ ∈ (−1, 1).

It is well known that dissipative and accretive systems are not integrable in the Liouville
sense, as they fail to preserve the measure of the phase space. On the other side, in the
continuous setting it is also known that some dissipative systems admit time-dependent first
integrals [5,30]. Up to our knowledge such possibility has never been explored in the discrete
setting, so this raises the following question:

Problem Do non-trivial variational discrete systems admitting n-dependent invariants exist?

Here, by non-trivial we mean a system for which it is not possible to write down the general
solution and invert it with respect to the initial conditions in order to get the n-dependent
invariants. This restriction is important to rule out linear system, for which this procedure is
always possible. This problem might be interesting from the point of view of applications as
in several real cases one might need to take into account dissipative effects caused, e.g. by
friction. We are planning to address to this problem in a future study.

Other application of the result of this paper can arise in the field of geometric integration
theory [3,4,31]. Geometric integration theory is a branch of numerical analysis which deals
in preserving properties when discretising a continuous system. The variational structure
might be such a property. For instance, consider the following Lagrangian:
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L =
(

x ′′)2

2
− α

(

x ′)4

12
+ ω2

2
x2 − βx (5.7)

and its Euler–Lagrange equation:

x iv + α
(

x ′)2
x ′′ + ω2x = β. (5.8)

A trivial discretisation of Eq. (5.8) is obtained by replacing the derivatives with the discrete
derivatives:

x ′ → δn xn = xn − xn−1

h
. (5.9)

The resulting discrete equation is (up to translation in n):

xn+2 − 4xn+1 + 6xn − 4xn−1 + xn−2

h4 + α
(xn−1 − xn−2)

2(xn − 2xn−1 + xn−2)

h4

+ ω2xn−2 = β. (5.10)

This equation is nor invertible nor variational. On the other hand, there exist infinitely many
variational discretisation of Eq. (5.9) with the following hypotheses:

– λ = 1,
– the function g is a constant,
– the functions M and N in (2.19) are third-order polynomials in their variables,
– the coefficients of M and N are second-order polynomials in h.

An example is the following one:

xn+2 − 4xn+1 + (

6 − ω2h4) xn − 4xn−1 + xn−2

+ α

3
(xn+1 + xn−1 − 2xn)

(

x2
n+1 + x2

n + x2
n−1 − xn+1xn

−xn+1xn−1 − xn xn−1) = h4β. (5.11)

This discretisation is variational by construction. We argue that this kind of discretisation,
even in the non-integrable case, might be convenient from a numerical point of view. This
topic will be subject of future studies. We note that some ad hoc constructions of variational
discretisation of fourth-order difference equation was given in [27].

Finally, additive fourth-order difference equations are not the only possible generalisation
of second-order equations. For instance, in [6] several integrable equations of multipliticative
form were derived:

xn+2xn−2 = F (xn+1, xn, xn−1) . (5.12)

In an upcoming paper, we are addressing the problem of giving necessary and sufficient condi-
tions on the existence of a variational structure of such equations and study their integrability
properties.

Acknowledgements GG would like to thank Prof. N. Joshi for the helpful discussions during the preparation
of this paper. GG is supported by the Australian Research Council through grants FL120100094 (Prof. N.
Joshi), DP190101838 (A/Prof. M. Radnović), and DP200100210 (Prof. N. Joshi and A/Prof. M. Radnović).
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A Proof of Theorem 2

Applying the method described in Sect. 2 to Eq. (2.9a), we obtain following equation (since
f and h depend on the same variables we drop the explicit dependence on xn+1, xn and
xn−1):

∂3 f

∂x2
n+1∂xn−1

∂ f

∂xn+1

∂h

∂xn−1
− ∂3 f

∂x2
n+1∂xn−1

∂2h

∂xn+1∂xn−1
h + ∂3h

∂xn+1
2∂xn−1

∂2 f

∂xn+1∂xn−1
h

− ∂3h

∂x2
n+1∂xn−1

∂ f

∂xn+1

∂ f

∂xn−1
− ∂2 f

∂x2
n+1

∂2 f

∂xn+1∂xn−1

∂h

∂xn−1

+ ∂2 f

∂x2
n+1

∂2h

∂xn+1∂xn−1

∂h

∂xn−1
= 0. (A.1)

Using the CAS Maple 2016 to solve Eq. (A.1), we find that the solution is actually inde-
pendent of h and has the following form:

f (xn+1, xn, xn−1) = G+ (xn+1) G (xn) G− (xn−1) . (A.2)

Going back to Eq. (2.9a), if we solve with respect to ∂3Ln−2/∂x2
n−2∂xn and differentiating

with respect to xn+1, we find the following simple compatibility condition:

G (xn)

[

G ′+(xn+1)
∂h

∂xn−1
(xn+1, xn, xn−1) − G+(xn+1)

∂h

∂xn−1, xn+1
(xn+1, xn, xn−1)

]

×
[

G−(xn−1)
∂ln−2

∂xn−1, xn
(xn, xn−1, xn−2) − ∂ln−2

∂xn
(xn, xn−1, xn−2)G

′−(xn−1)

]

= 0, (A.3)

where we defined:

ln−2 (xn, xn−1, xn−2) ≡ ∂Ln−2

∂xn−2
(xn, xn−1, xn−2) . (A.4)

Equation (A.3) has three factors which can be annihilated separately. The first factor gives
G (xn) = 0, that is f ≡ 0, which is not allowed. Therefore, from (A.3) we can choose to fix
either f or ln−2. We will now address these two possibilities.

A.1 Fix ln−2 from (A.3)

Solving the second factor in (A.3), we obtain the following value for ln−2:

ln−2 (xn, xn−1, xn−2) = l1,n−2 (xn, xn−2) G− (xn−1) + l2,n−2 (xn−1, xn−2) . (A.5)

Inserting (A.5) into (2.9a), we obtain the following equation:
(

G+ (xn+1) G ′− (xn−1) G (xn) xn−2 + ∂h

∂xn−1
(xn+1, xn, xn−1)

)

∂2l1,n−2

∂xn−2∂xn
(xn, xn−2) = 0. (A.6)

Again we have two factors we can choose to annihilate. The first factors, since no function
depends on xn−2 is equivalent to the following equations:

G+ (xn+1) G ′− (xn−1) G (xn) = 0,
∂h

∂xn−1
(xn+1, xn, xn−1) = 0. (A.7)
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The first equation implies G− (xn−1) = constat and the second one implies h = h (xn+1, xn).
This is not allowed as the equation will be independent of xn−1. Therefore, we are forced to
annihilate the second factor. This implies:

l1,n−2 (xn, xn−2) = l1,1,n−2 (xn−2) + l1,2,n−2 (xn) . (A.8)

Inserting this into (A.5) and using the arbitrariness of l2,n−2, we can write:

ln−2 (xn, xn−1, xn−2) = l1,2,n−2 (xn) G− (xn−1) + ∂l2,n−2

∂xn−2
(xn−1, xn−2) . (A.9)

Using the definition of ln−2 (A.4) and the fact that discrete Lagrangians are defined only
up to total difference, from formula (A.9) we obtain the following form of the Lagrangian:

Ln (xn+2, xn+1, xn) = l1,2,n−2 (xn+2) G− (xn+1) xn + l2,n (xn+1, xn) . (A.10)

The Euler–Lagrange equation corresponding to (A.10), upon substitution of Eq. (2.8) are:

∂l2,n

∂xn
(xn, xn+1) + G− (xn+1) l1,2,n (xn+2) + ∂l2,n−1

∂xn
(xn−1, xn)

+G ′− (xn) l1,2,n−1 (xn+1) xn−1 = l ′1,2,n−2 (xn)
h (xn+1, xn, xn−1) − xn+2

G+ (xn+1) G (xn)
.

(A.11)

Differentiating Eq. (A.11) with respect to xn+2 twice, we obtain:

G− (xn+1) l ′′1,2,n (xn+2) = 0. (A.12)

Using the usual argument, we obtain that we need to annihilate the second factor, which
gives:

l1,2,n (xn+2) = C1,n xn+2 + C2,n, (A.13)

where C1,n and C2,n are two functions depending on n alone. Substituting back in Eq. (A.11)
and applying the differential operator

∂

∂xn

(

1

G (xn)

∂

∂xn+2

)

, (A.14)

we obtain:

C1,n−2
G ′ (xn)

G2 (xn)
= 0. (A.15)

Since C1,n−2 	= 0, we obtain G (xn) = 1/K1 where K1 is a constant. Inserting this value
into (A.11), we obtain:

∂l2,n

∂xn
(xn, xn+1) + G− (xn+1)

(

C1,n xn+2 + C2,n
) + ∂l2,n−1

∂xn
(xn−1, xn)

+G ′− (xn)
(

C1,n−1xn+1 + C2,n−1
)

xn−1

= C1,n−2 K1
h (xn+1, xn, xn−1) − xn+2

G+ (xn+1)
. (A.16)

We can take the coefficient with respect to xn+2, and we obtain:

G− (xn+1) C1,n = − C1,n−2 K1

G+ (xn+1)
. (A.17)

123



853 Page 26 of 30 Eur. Phys. J. Plus (2020) 135:853

We can rewrite this equation as:

G− (xn+1) G+ (xn+1) = −C1,n−2 K1

C1,n
. (A.18)

Since K1 is a constant, upon differentiation with respect to xn+1, there exists a constant
q ∈ R \ {0} such that:

G+ (xn+1) = K1

qG− (xn+1)
, and C1,n = qC1,n−2. (A.19)

Using conditions (A.19) into (A.16), we obtain:

∂l2,n

∂xn
(xn, xn+1) + G− (xn+1) C2,n + ∂l2,n−1

∂xn
(xn−1, xn)

+G ′− (xn)
(

C1,n−1xn+1 + C2,n−1
)

xn−1 = C1,n−2G− (xn+1) h (xn+1, xn, xn−1) .

(A.20)

Differentiating with respect to xn+1 and xn−1, we obtain a PDE for h which can be solved to
give:

h (xn+1, xn, xn−1) = h1 (xn, xn−1) + h2 (xn+1, xn)

G− (xn+1)

− C1,n−1

qC1,n−2

G− (xn) xn+1xn−1

G− (xn+1)
. (A.21)

Since h must not depend explicitly on n, we must impose that the coefficient Fn =
C1,n−1/C1,n−2 is n independent, that is it is a total difference. Using again Eq. (A.19),
we obtain:

C2
1,n−1 − qC2

1,n−2 = 0. (A.22)

This implies q > 0, that is q = λ2 for some λ ∈ R \ {0}, and then

C±
1,n = A (±λ)n (A.23)

with A ∈ R a constant. However, due to the arbitrariness ofλ we can consider only the solution
C+

1,n . Indeed, λ can be negative and the cases with C−
1,n just follow from the substitution

λ → −λ. Therefore, we drop the superscript + in (A.23). This reasoning implies that the h
in (A.21) assumes the following form:

h (xn+1, xn, xn−1) = h1 (xn, xn−1) + h2 (xn+1, xn)

G− (xn+1)
− G− (xn) xn+1xn−1

λG− (xn+1)
. (A.24)

We can finally insert (A.24) into (A.20) and obtain:

∂l2,n

∂xn
(xn, xn+1) + G− (xn+1) C2,n + ∂l2,n−1

∂xn
(xn−1, xn)

+G ′− (xn) C2,n−1xn−1 = −Aλn [

f1 (xn, xn−1) + f2 (xn+1, xn)
]

. (A.25)

Differentiating with respect to xn+1, we obtain a linear PDE for l2,n (xn+1, xn). Solving such
equation, we obtain the following form for this function:

l2,n (xn+1, xn) = l2,2,n (xn+1) + l2,1 (xn) − Aλn
∫ xn

f2 (xn+1, ξ) d ξ

− C2,n xnG− (xn+1) . (A.26)
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From the form of the Lagrangian function, using the property of equivalence, we can remove
the arbitrary function l2,2,n (xn+1) and keep only l2,1,n (xn). So, in (A.25) this yields:

l ′2,1,n (xn)

Aλn
+ f1 (xn, xn−1) = 1

λ

∫ xn−1 ∂ f2

∂xn
(xn, ξ) d ξ. (A.27)

Differentiation with respect to xn−1 yields the following equation:

∂ f1

∂xn−1
(xn, xn−1) = 1

λ

∂ f2

∂xn
(xn, xn−1) . (A.28)

Equation (A.28) stimulates the introduction of a potential function V = V (xn, xn−1) such
that:

f1 (xn, xn−1) = 1

λ

∂V

∂xn
(xn, xn−1) , f2 (xn, xn−1) = ∂V

∂xn−1
(xn, xn−1) . (A.29)

Using such potential, we have that Eq. (A.28) is identically satisfied, while (A.27) reduces to
l ′2,1,n (xn) = 0. This implies l2,1,n (xn) = C3,n , but this function of n can be removed from
the Lagrangian as it is a total difference.

Summing up, we obtained that if an additive fourth-order difference Eq. (1.6) is Lagrangian
then it has the following form:

G− (xn+1) xn+2 + λ2G− (xn−1) xn−2 + λG ′− (xn) xn+1xn−1

+ ∂V

∂xn
(xn+1, xn) + λ

∂V

∂xn
(xn, xn−1) = 0. (A.30)

Letting g ≡ G− Eq. (2.5) follows. The constant K1 appearing in the Lagrangian can be
scaled away and we obtain the Lagrangian (2.7).

A.2 Fix h from (A.3)

If we fix h from (A.3), we obtain:

h (xn+1, xn, xn−1) = h+ (xn+1, xn) + G+ (xn+1) h− (xn, xn−1) . (A.31)

After a long calculation which follows the same strategy outlined in the case when we fix
ln−2 from (A.3) we find that this case implies G ≡ 0, and so it is impossible.

This concludes the Proof of Theorem 2.

B Proof of Theorem 3

Since (3.4) has to be an invariant it must satisfy the following condition:

xn+2 P1 (xn+1, xn) + xn−1 P2 (xn+1, xn) + xn+2xn−1 P3 (xn+1, xn) + P4 (xn+1, xn)

− xn+1 P1 (xn, xn−1) − xn−2 P2 (xn, xn−1) − xn+1xn−2 P3 (xn, xn−1)

− P4 (xn, xn−1) = 0. (B.1)

After substituting the form of Eq. (2.5), no function depends on xn−2, so we can take the
coefficients with respect to it. This yields the following system of functional equations which
must be identically satisfied:
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g(xn−1)P1(xn+1, xn)

g(xn+1)
+ g(xn−1)xn−1 P3(xn+1, xn)

g(xn+1)

+ P2(xn, xn−1) + xn+1 P3(xn, xn−1) = 0, (B.2a)

xn−1 P2(xn+1, xn) − xn+1 P1(xn, xn−1) + P4(xn+1, xn) − P4(xn, xn−1)

−
(

g′(xn), xn)xn−1xn+1 + ∂V (xn+1, xn)

∂xn
+ ∂V (xn, xn−1)

∂xn

)(

P1(xn+1, xn)

g(xn+1)

+ xn−1 P3(xn+1, xn)

g(xn+1)

)

= 0. (B.2b)

To solve the above equations, apply again the procedure described in Sect. 2. Applying this
strategy to Eq. (B.2a), we are able to solve Eq. (B.2a) fixing the form of the functions Pi in
terms of the function g:

P1 (xn, xn−1) = −g(xn)
[

xn(C1 − C2xn−1)g(xn−1) − P(xn−1)
]

, (B.3a)

P2 (xn, xn−1) = − [

xn−1(C2xn + C1)g(xn) + P(xn)
]

g(xn−1), (B.3b)

P3 (xn, xn−1) = g(xn)
[

(xn−1 − xn)C2 + C1
]

g(xn−1). (B.3c)

In (B.3), the function P = P (ξ) is undetermined, and Ci are constants. Inserting (B.3) in
Eq. (B.2b), we apply the same strategy with respect to the function V = V (xn+1, xn) and
then with respect to P4 (xn+1, xn). After some steps, we find the following equation:

C2g (xn) g′ (xn) = 0. (B.4)

This equation implies C2 = 0, as otherwise the function g = g (ξ) will be a trivial constant.
Substituting C2 = 0, we obtain the following PDE for V = V (xn, xn−1):

− C1g′′(xn−1)xn + 2C1g′(xn) − C1
∂V (xn, xn−1)

∂ ∗ 2xn−1, xn
+ P ′′(xn−1) = 0. (B.5)

giving the form of V in terms of g and P:

V (xn, xn−1) = V3(xn) + V2(xn)xn−1 + V1(xn−1) − x2
n

2
g(xn−1) + g(xn)x2

n−1

+ xn

C1
P(xn−1). (B.6)

By arbitrariness of V1 (xn−1), we can write V1 (xn−1) = W (xn−1) − V3 (xn−1) and remove
the total difference V3 (xn) − V3 (xn−1). That is, we can write V (xn, xn−1) as:

V (xn, xn−1) = V2(xn)xn−1 + W (xn−1) − x2
n

2
g(xn−1) + g(xn)x2

n−1 + xn

C1
P(xn−1). (B.7)

Going back to Eq. (B.2b) and removing iteratively all the functions depending on xn+1 and
xn−1, we finally find the following condition on g:

3C1g′′′(xn)g(xn)3 = 0. (B.8)

As g needs to be non-trivial and C1 	= 0 from (B.7) we finally obtain that g has to be
second-order polynomial of the form (3.5).

Using the conditions in (B.2b), we find the following expression for the function V2:

V2 (xn) = A4
√

A1x2
n + A2xn + A3

+ 3A2C1x2
n + 2C5xn + 2C6

2C1
. (B.9)
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The function V2 (xn) appears to be algebraic in xn . However, substituting back in order to
check the compatibility conditions we obtain A4 = 0. Therefore, no algebraic term is left.

The above computations produce rather cumbersome expression for P4 (xn, xn−1), which
we will not present. However, we notice that this final form of P4 (xn, xn−1) yield the fol-
lowing condition for the function W = W (η):

W ′ (η) = 1

C1

C1(A2
2 − A1 A3)η

3 − (A1C6 − A2C5)η
2 + A6C1η + A5C1

A1η2 + A2η + A3
(B.10)

Since C1 	= 0 we perform the scaling C5 = A7C1 and C6 = A8C1. This yields the expression
(3.7) for W (η) and shows that

P4 (xn, xn−1) = −x2
n−1g (xn)

[

(A1xn + A2)xn−1 + (2A2xn + A7)
]

− [

(A1 A3 + A2
2)x3

n + A2(2A3 + A7)x2
n

+(A2 A8 + 2A2
3 + A6)xn + A3 A8 + A5

]

xn−1

−xn(A2 A3x2
n + A3 A7xn + A3 A8 + A5). (B.11)

This concludes the Proof of Theorem 3.
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