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Abstract This paper investigates the dynamics behavior of the mathematical model of
Human Immunodeficiency Virus (HIV) influenced by stochastic perturbations. This paper is
involved in exploring the disease-free equilibrium’s stochastic global exponential stability
with a basic reproductive number R0 < 1. Necessary and sufficient conditions for stochastic
global exponential stability of the disease-free equilibrium E0 of the nonlinear HIV stochas-
tic system are derived. This can be accomplished by the exponential analysis of the global
mean square stability of trivial equilibrium of the corresponding linear system. Finally, we
provide areas of stability of E0 and numerical simulations to confirm the analytical results
by using the fundamental Euler–Maruyama (EM) algorithm.

1 Introduction

Stochastic systems are becoming widely used as realistic models of physical phenomena than
deterministic systems. Also, the solution of the deterministic system is itself mean of the
stochastic solution of the model [1]. Nowadays, stochastic differential equations are drawing
a lot of attention because of their evolution in systems of our daily life. Therefore, involving
the stochasticity in the formulation of the differential equations provides an attractive study
of the phenomena of interest. Stochastic differential equations (SDEs) now describe applica-
tions in many disciplines including engineering, finance and economics, physics, population
dynamics, biology and medicine. These applications involve some type of complexity, for
instance, in epidemiology there is a lack of knowledge in transmission factors of a disease,
the unexpected and complicated changes in economy and so on. Therefore, the differential
equation cannot be considered in deterministic sense but in probabilistic sense.

The mathematical tools required to solve the stochastic differential equation are different
from the corresponding deterministic equation. When the uncertainty is considered through
stochastic process (e.g., Wiener process), the outcome is a stochastic differential equation.
The existence of the Wiener process in SDE restricts the stochastic process to particular
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pattern, e.g., the Gaussian distribution. Many applications in many disciplines have been
studied by [2–4], for example.

The study of stability is an important qualitative property of the dynamics of stochastic
and random systems. While the theory of stability for stochastic and random differential
equations has been widely studied by [5,6], for example, there is a lack of study of the global
mean square exponential stability. The main objective of this paper is to study the global
mean square exponential stability of the steady state of SDE. Accordingly, we move to the
stochastic HIV/AIDS model to study the stability of E0.

The epidemic of HIV is one of the most major health problems during the last three decades.
HIV/AIDS disease caused millions of deaths. As yet, there is no remedy for HIV. This disease
threatens our daily life; therefore, many problems always arise for researchers regarding it [7–
9]. Theoretically, mathematics plays a vital role in describing the HIV dynamics. It provides
mathematical models which can describe the immunological response to the infection with
HIV disease; moreover, these models enable us to make predictions about the disease, i.e.,
identifying the patterns of the AIDS epidemic [10,11].

Many papers have studied the deterministic version of HIV infection analytically and
numerically by defining ordinary differential equations [12,13], for example. Fractional cal-
culus is a generalization of the classical calculus to an arbitrary order. It can be found in
many applications in fluid dynamics, biomathematics, epidemiology, etc. Two of the most
important fractional derivatives in applications are Riemann–Liouville fractional derivative
and the Caputo fractional derivative. Many mathematical models including HIV/AIDS model
in [14–21] have been studied analytically and numerically by defining the derivative in the
fractional sense.

The study of stability of steady-state points is a good way to identify the solution behavior
without solving the system. Many works have considered the stability of HIV/AIDS models,
for instance [11,22,23].

Unlike other infectious traditional diseases, HIV can take many features; therefore, there
exist sources of uncertainty. This uncertainty motivates the existence of random variables
(e.g., coefficients, initial conditions, forcing terms) or stochastic terms in the mathematical
model. For modeling rapidly fluctuating phenomena, an extremely useful Gaussian white
noise is involved [24]. It is realistic and clear that the stochastic model is more pragmatic
compared by the deterministic model, and the work done by [25] clarifies this by studying the
Influenza model with constant vaccination. The HIV/AIDS epidemic model under stochastic
perturbations was studied by [3,26,27]. Authors in [28,29] have dealt with the stochastic
HIV/AIDS epidemic model numerically using Euler–Maruyama (EM) and Runge–Kutta
techniques. The fractional stochastic epidemic systems were studied numerically by [14,30]
like SIS and SIRS models.

Lyapunov functions have a pivotal role in the study of stability of deterministic and
stochastic systems, and more details can be found in [31,32]. Introducing a suitable Lya-
punov function enables us to obtain different stability conditions. Regardless of initial states
of the system, global exponential stability makes any trajectory tends to the attractor of the
system [33], and the resulting oscillations will decay in an exponential rate. Few researchers
have addressed the stochastic global exponential stability of the disease-free equilibrium point
under stochastic perturbations, see [3,27]. Using Lyapunov approach, we shall investigate the
stochastic global exponential stability of E0. This will be shown by investigating the stochas-
tic global exponential stability of the equilibrium point for general Eq. (1) and accordingly
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for HIV/AIDS stochastic system. Now, consider the general stochastic differential equation{
ẋ(t) = μ(t, x(t)) + σ(t, x(t))Ḃ(t) t ≥ t0, x ∈ R

x(t0) = x0
(1)

The solution of this equation is

x(t) = x0 +
∫ t

t0
μ(s, x(s))ds +

∫ t

t0
σ(s, x(s))dB(s), (2)

where the last term is known as an Itô (stochastic) integral. Theorems of existence and
uniqueness of solution (2) are considered in [34].

In (1), x(t) is the current state of the system, and B(t) is a one-dimensional Gaussian
standard Wiener process B(t) ∼ N (0, t) which is defined on the complete filtered probability
space (�,F,F B

t ,P), where F B
t is the filtration generated by it up to time t . The functions

μ(t, x(t)), σ (t, x(t)) are continuous and differentiable defined on [t0,∞)×R → R. Assume
that for every x0, there exists a unique global solution x(t, t0, x0). Moreover, assume that
μ(t, 0) = σ(t, 0) = 0, i.e., the system admits the zero solution x(t) = 0. Also, μ, σ

are assumed to satisfy Lipschitz condition, i.e., for L > 0, |μ1(t, x(t)) − μ1(t, x∗(t))| ≤
L|x(t) − x∗(t)|, i.e., |∂μ(t, x(t))

∂x
| < L and also for σ(t, x(t)). Our main results begin by

studying the stability of (1). Then, we will obtain the necessary and sufficient conditions for
global exponential mean square stability of zero solution of the linear system of HIV/AIDS
which are the same conditions of the stability of the disease-free equilibrium point of the
corresponding nonlinear system.

The plan of our paper is as follows: Sect. 2 is dedicated to some important preliminaries.
In Sect. 3, the proof of the global mean square exponential stability of the trivial equilibrium
of (1) is presented. Also, it is devoted to the study of HIV/AIDS model, and we shall investi-
gate the necessary and sufficient conditions for stochastic global exponential stability of the
disease-free equilibrium. In Sect. 4, areas of stability are obtained and numerical simulations
of the solution are carried out followed by results and discussion section. Conclusions and
future works are presented to close the paper in Sect 6.

2 Preliminaries

Definition 1 [35,36] A stochastic process {X (t), t ≥ 0} defined on the probability space
(�,F,P) is called a second-order stochastic process if X (t) is a 2-r.v ∀ t ≥ 0. Then,

E[X2(t)] < ∞.

Lp{[a, b];R} is the family of R-valued Ft -adapted stochastic processes {X (t), a ≤ t ≤ b}
such that

∫ b
a |X (s)|p ds < ∞. Stochastic process {X (t)}a≤t≤b in Lp{[a, b];R} such that∫ b

a E |X (s)|p ds < ∞ is p-integrable process. For p = 2, X (t) is a square integrable
stochastic process.

Definition 2 [32] The zero solution of (1) is

1. Mean square stable if for each ε > 0, ∃ δ > 0 and |x0|2 < δ such that

E|x(t, t0, x0)|2 < ε.
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2. Exponentially mean square stable if it is mean square stable and ∃ λ, C > 0 such that

E|x(t, t0, x0)|2 ≤ C |x0|2e−λ(t−t0).

3. Globally exponentially mean square stable if it is mean square stable and ∀ δ > 0,
∃ λ > 0, K (δ) > 0 such that

E|x(t, t0, x0)|2 ≤ K (δ)e−λ(t−t0).

Lemma 3 [32] Itô formula is the chain rule in Itô calculus which gives an expression to
the differential of x(t) := u(t, x(t)) of (1). Assume that u(t, x(t)) : [t0,∞) × R → R with

continuous partial derivatives ∂
∂t , ∂

∂x , ∂2

∂x2 and L as a generator of (1), then

dx(t) = L u(t, x(t))dt + σ(t, x(t))
∂u(t, x(t))

∂x
dB(t)

=
[

∂u(t, x(t))

∂t
+ μ(t, x(t))

∂u(t, x(t))

∂x
+ 1

2!σ
2(t, x(t))

∂2u(t, x(t))

∂x2

]
dt

+ σ(t, x(t))
∂u(t, x(t))

∂x
dB(t). (3)

Theorem 4 [37] Let X (t) ∈ M2([0, T ],R) where M2([0, T ],R) is the family of square
integrable processes, i.e., E

∫ b
a |X (s)|2 ds < ∞. Then, for 0 ≤ t0 ≤ t1 < T

E

∫ t1

t0
X (s)dBs = 0.

Proof Let ψi , 1 ≤ i ≤ k are bounded random variables such that ψi are Fti -measurable,
then

E

∫ t1

t0
X (s)dBs =

k∑
i=1

E
[
ψi (Bti+1 − Bti )

] =
k∑

i=1

EψiE
[
Bti+1 − Bti

] = 0, (4)

where Bti+1 − Bti is independent of Fti . ��
Remark 5 [38] The one-dimensional Wiener process B(t) ∼ N (0, t) is said to be a standard
Wiener process if

B(0) = 0,

E [dB(t)] = 0,

E [dB(t)dt] = 0,

E
[
dB2(t)

] = dt.

Definition 6 [32] The Lyapunov function V(t, x) is positive definite if V(t, 0) ≡ 0, and
V(t, x) ≥ υ(x) for t ∈ [0,∞), x ∈ R where υ(x) is a nondecreasing positive definite
function υ(0) = 0, υ(x) > 0 for x �= 0. The Lyapunov function V(t, x) is negative-definite
if −V(t, x) is positive-definite.

3 Main results

First, this section focuses on general SDE (1), and we shall prove the global mean square
exponential stability of the zero solution. Second, we move to stochastic HIV/AIDS model,
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and we will study the stochastic global exponential stability of the disease-free equilibrium
by considering the linearized system.

Theorem 7 The zero solution of (1) is exponentially mean square stable.

Proof Let ci > 0, i = 1, 2, . . ., choose a Lyapunov positive definite function V(t, x(t)) ≥
c1|x(t)|2 with a negative definite function LV(t, x(t)) ≤ −c2|x(t)|2, and V(t0, x0) ≤ c3|x0|2
which guarantees the boundedness ofV(t, x(t)) at t = t0. The Lyapunov function is monotone
nonincreasing, i.e.,

E [V(t, x(t))] ≤ E [V(t0, x0)] .

Then, the zero solution is mean square stable as

E|x(t)|2 ≤ 1

c1
E [V(t, x(t))] ≤ 1

c1
E [V(t0, x0)] ≤ c4|x0|2 < ∞,

and x(t) is a square-integrable stochastic process as∫ t

t0
E|x(s)|2ds ≤ −1

c2
E [V(t, x(t)) − V(t0, x0)] ≤ 1

c2
E [V(t0, x0)] ≤ c5|x0|2 < ∞.

For exponentially mean square stability, for λ > 0, we have V(t, x(t)) ≥ c1eλt |x(t)|2, so

E|x(t)|2 ≤ 1

c1
e−λt

E [V(t, x(t))] ≤ 1

c1
e−λt

E [V(t0, x0)] ≤ c4|x0|2.
��

Theorem 8 The zero solution of (1) is globally exponentially mean square stable.

Proof From Theorem 6, the zero solution is exponentially stable in mean square. For global
stability, define the Lyapunov function with LV(t, x(t)) ≤ 0, for 0 ≤ k < 1, t ≥ t0

V(t, x(t)) = eεt |x(t)|2 + k
∫ t

t−t0
eεs x2(s)ds, (5)

which implies

V(t0, x0) ≤ eεt0 |x0|2 + kt0eεt0 |x0|2.
From Itô formula (3)

dV(t, x(t)) = LV(t, x(t))dt + Vx (t, x(t))σ (t, x(t))dB(t),

implies

E [V(t, x(t)] − E [V(t0, x0)]

= E

∫ t

t0
LV(τ, x(τ ))dτ + E

[∫ t

t0
Vx (τ, x(τ ))σ (t, x(τ ))dB(τ )

]
.

The last term vanishes by the zero-mean property of stochastic integral (Theorem 4). There-
fore,

E [V(t, x(t)] − E [V(t0, x0)] ≤ 0.

Then,

eεt
E|x(t)|2 ≤ E [V(t, x(t))] ≤ E [V(t0, x0)] ≤ eεt0 |x0|2 + kt0eεt0 |x0|2,
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implies,

E|x(t)|2 ≤ |x0|2(1 + kt0)e
−ε(t−t0).

Choose ε > 0 and a size of the interval t0 such that

t0e−εt0 < 1,

keεt0 < 1.
(6)

By the induction, we have to prove the global stability for t ≥ t0. Firstly, for [t0, 2t0), using
(6)

E|x(t)|2 ≤ |x0|2(1 + kt0)e
−ε(t−t0)

≤ |x0|2(1 + keεt0)e−ε(t−t0)

≤ 1

1 − keεt0
|x0|2e−ε(t−t0).

(7)

For [2t0, 3t0), using (6), (7)

E|x(t)|2 ≤ |x0|2(1 + kt0)e
−ε(t−t0)

≤ |x0|2e−ε(t−t0) + keεt0 e−ε(t−t0)(1 + keεt0)|x0|2e−ε(t0−t0)

= |x0|2e−ε(t−t0) + |x0|2(keεt0 + k2e2εt0)e−ε(t−t0)

= |x0|2e−ε(t−t0)
(
1 + keεt0 + k2e2εt0

)
≤ 1

1 − keεt0
|x0|2e−ε(t−t0).

For [nt0, (n + 1)t0) , n = 1, 2, . . .

E|x(t)|2 ≤ |x0|2(1 + kt0)e
−ε(t−t0)

≤ |x0|2e−ε(t−t0)
(
1 + keεt0 + k2e2εt0 + · · · + knenεt0

)
≤ 1

1 − keεt0
|x0|2e−ε(t−t0).

So

E|x(t)|2 ≤ 1

1 − keεt0
|x0|2e−ε(t−t0).

Therefore, the zero solution of (1) is globally exponentially mean square stable. ��
3.1 Stochastic HIV/AIDS Model

Here we introduce the important result in this paper, consider the nonlinear deterministic
version of HIV/AIDS model⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ(t) = μ − βS(t)I (t) − μS(t)

İ (t) = βS(t)I (t) − μI (t) − δ I (t)

Ȧ(t) = δ I (t) − μA(t) − d A(t)

S(t0) = S0, I (t0) = I0, A(t0) = A0.

(8)

The infected class is I (t), and this class can pass the disease to the susceptibles S(t). The
infected individuals can become AIDS and go to the class A(t). The parameter μ is the rate
of birth and nature death, β is the transmission rate of infection, δ is the rate of infected
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individuals to be AIDS, d is the death rate caused by AIDS disease and all the parameters
μ, β, δ, d ∈ [0,∞). The basic reproduction ratio denoted by R0 of an infection is the expected
number of cases directly generated by one case in a population where all individuals are
susceptible to catch the disease, so

dI (t)

dt
= I (t) (βS(t) − μ − δ)

≤ I (t) (βS0 − μ − δ) ,

So, the disease is spreading for βS0 > μ + δ. Then, the basic reproduction number is

R0 = β

δ + μ
.

This model admits two equilibria:

1. Disease-free equilibrium E0 = (1, 0, 0) which is globally stable when R0 < 1 for lower
transmission β like social distancing, getting tested and treated for sexually transmitted
disease (STD) and so on.

2. Endemic equilibrium E =
(

δ + μ

β
,
(β − δ − μ)μ

β(δ + μ)
,

δμ(β − δ − μ)

β(d + μ)(δ + μ)

)
which is glob-

ally stable when R0 > 1 and the disease will not disappear.

Lemma 9 The endemic equilibrium E = (S, I , A) of (8) is globally asymptotically
stable if R0 > 1.

Proof Define the Lyapunov function as follows

V(S, I, A) = (S − S log(S)) + (I − I  log(I )) + (A − A log(A)).

Then,

dV
dt

=
(

1 − S

S

)
dS

dt
+

(
1 − I 

I

)
dI

dt
+

(
1 − A

A

)
dA

dt
.

At the steady state, using the relations

μ = βS I  + μS, βS I  = (μ + δ)I  and δ I  = (μ + d)A.

Then,

dV
dt

=
(

1 − S

S

) (−μ(S − S) + βS I  − βSI
) +

(
1 − I 

I

) (−(μ + δ)(I − I )
)

+
(

1 − A

A

) (−(μ + d)(A − A)
)

= −μ
(S − S)2

S
− βSI

(
1 − S

S

) (
1 − S I 

SI

)
− (μ + δ)

(I − I )2

I

− (μ + d)
(A − A)2

A
.

The arithmetic mean is always greater than or equal to the geometrical mean; then,(
1 − S

S

)
≤ 0 and

(
1 − S I 

SI

)
≤ 0. This implies

dV
dt

≤ 0, and
dV
dt

= 0 only when

(S, I, A) = (S, I , A). Then, E is globally asymptotically stable by using the principle
of LaSalle invariant [39]. ��
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For developing the stochastic model, there are two ways of perturbations. First, we can
replace an environmental deterministic parameter by a random parameter [1]. Second, one
can add a stochastic driving force (term) to the deterministic model without changing any
parameter. Here, we assume a nonparametric stochastic perturbations of Gaussian white
noise type. This perturbation has been used by [40]. Then, the stochastic HIV/AIDS model
becomes ⎧⎪⎨

⎪⎩
dS(t) = (μ − βS(t)I (t) − μS(t)) dt + σ S(t)I (t)dB(t)

dI (t) = (βS(t)I (t) − μI (t) − δ I (t)) dt + σ S(t)I (t)dB(t)

dA(t) = (δ I (t) − μA(t) − dA(t)) dt + σ A(t)dB(t)

(9)

The real constant σ represents the intensity of the environmental fluctuations. By centering
system (9) on the equilibrium E0 using the transformation⎧⎪⎨

⎪⎩
x(t) = S(t) − 1

y(t) = I (t)

z(t) = A(t)

Then, ⎧⎪⎨
⎪⎩

dx(t) = (−β(x(t) + 1)y(t) − μx(t)) dt + σ(x(t) + 1)y(t)dB(t)

dy(t) = (β(x(t) + 1)y(t) − μy(t) − δy(t)) dt + σ(x(t) + 1)y(t)dB(t)

dz(t) = (δy(t) − μz(t) − dz(t)) dt + σ z(t)dB(t)

Then, the corresponding linear system is⎧⎪⎨
⎪⎩

dx(t) = (−βy(t) − μx(t)) dt + σ y(t)dB(t)

dy(t) = (βy(t) − μy(t) − δy(t)) dt + σ y(t)dB(t)

dz(t) = (δy(t) − μz(t) − dz(t)) dt + σ z(t)dB(t)

(10)

Following the argument of Theorem 8, the next theorem investigates the necessary and
sufficient conditions for stochastic global exponential stability of the disease-free equilibrium
of (9) which are the sufficient conditions for global mean square exponential stability of the
zero equilibrium point of linear system (10).

Theorem 10 The disease-free equilibrium of (9) is stochastically globally exponentially
stable if for ε > 0, 0 ≤ k < 1

β ≤ min{δ + μ, 2μ − ε − k,
1

3

[
2μ + δ − 2σ 2 − ε − k

]},
2μ ≤ ε + δ − 2d + σ 2 + k.

(11)

Proof Consider the Lyapunov function

V(t, x(t), y(t), z(t)) = eεt [
x2(t) + y2(t) + z2(t)

] + k
∫ t

t−t0
eεs [

x2(s) + y2(s) + z2(s)
]

ds.

Then,

dV(t, x(t), y(t), z(t)) = LV(t, x(t), y(t), z(t))dt

+ σ y(t)Vx (t, x(t), y(t), z(t))dB(t)

+ σ y(t)Vy(t, x(t), y(t), z(t))dB(t)

+ σ z(t)Vz(t, x(t), y(t), z(t))dB(t),
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where

LV(t, x(t), y(t), z(t)) = 2eεt x(t)(−βy(t) − μx(t)) + 2eεt y(t)(βy(t) − μy(t) − δy(t))

+ 2eεt z(t)(δy(t) − μz(t) − dz(t)) + 2eεtσ 2 y2(t) + eεtσ 2z2(t)

+ εeεt (x2(t) + y2(t) + z2(t)) + keεt [
x2(t) + y2(t) + z2(t)

]
− keε(t−t0)

[
x2(t − t0) + y2(t − t0) + z2(t − t0)

]
≤ eεt {β(x2(t) + y2(t)) − 2μx2(t) + 2βy2(t) − 2δy2(t) − 2μy2(t)

+δ(z2(t) + y2(t)) − 2μz2(t) − 2dz2(t) + σ 2z2(t) + 2σ 2 y2(t)

+ ε
[
x2(t) + y2(t) + z2(t)

] + k
[
x2(t) + y2(t) + z2(t)

]}
− keε(t−t0)

[
x2(t − t0) + y2(t − t0) + z2(t − t0)

]
.

Then,

dV(t, x(t), y(t), z(t)) ≤ eεt [
(ε + β − 2μ + k) x2(t)

+ eεt (
ε + 3β − 2μ − δ + 2σ 2 + k

)
y2(t)

+ eεt (
ε + δ − 2μ − 2d + σ 2 + k

)
z2(t)

]
dt

− keε(t−t0)
[
x2(t − t0) + y2(t − t0) + z2(t − t0)

]
dt

+ σ
[
y(t)Vx + y(t)Vy + z(t)Vz

]
dB(t).

Taking the expectation

E [dV(t, x(t), y(t), z(t))] ≤ eεt [
(ε + β − 2μ + k)E|x(t)|2

+ eεt (
ε + 3β − 2μ − δ + 2σ 2 + k

)
E|y(t)|2

+ eεt (
ε + δ − 2μ − 2d + σ 2 + k

)
E|z(t)|2

− keε(t−t0)
E

[
x2(s − s0) + y2(s − s0) + z2(s − s0)

]]
dt

+ σE
[(

y(t)Vx + y(t)Vy + z(t)Vz
)

dB(t)
]
.

By Remark 5, the last term vanishes. Then E

[
dV
dt

]
≤ 0 if

R0 ≤ 1 i.e., β < δ + μ, ε + β − 2μ + k ≤ 0

ε + 3β − 2μ − δ + 2σ 2 + k ≤ 0 and ε + δ − 2μ − 2d + σ 2 + k ≤ 0.

The first three conditions imply β ≤ min{δ + μ, 2μ − ε − k,
1

3

[
2μ + δ − 2σ 2 − ε − k

]}.
For global stability, it is known that V is monotone nonincreasing, then

E [V(t, x(t), y(t), z(t))] ≤ E [V(t0, x0, y0, z0)]

Then,

eεt
E

[
x2(t) + y2(t) + z2(t)

] ≤ E [V(t, x(t), y(t), z(t))]

≤ E [V(t0, x0, y0, z0)]

≤ eεt0
(
x2

0 + y2
0 + z2

0

) + kt0eεt0(x2
0 + y2

0 + z2
0).
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Assume

x2(t) + y2(t) + z2(t) = N 2(t),

x2
0 + y2

0 + z2
0 = N 2

0 .

Then,

eεt
E|N (t)|2 ≤ E [V(t, N (t))] ≤ E [V(t0, N0)] ≤ eεt0 |N0|2 + kt0eεt0 |N0|2,

implies

E|N (t)|2 ≤ |N0|2(1 + kt0)e
−ε(t−t0).

By (6) and the induction, we can show

E|N (t)|2 ≤ 1

1 − keεt0
|N0|2e−ε(t−t0) t ≥ t0. (12)

Firstly, for [t0, 2t0), using (6),

E|N (t)|2 ≤ |N0|2(1 + kt0)e
−ε(t−t0)

≤ |N0|2(1 + keεt0)e−ε(t−t0)

≤ 1

1 − keεt0
|N0|2e−ε(t−t0).

(13)

For [2t0, 3t0), using (6), (13)

E|N (t)|2 ≤ |N0|2(1 + kt0)e
−ε(t−t0)

≤ |N0|2e−ε(t−t0) + keεt0 e−ε(t−t0)(1 + keεt0)|N0|2e−ε(t0−t0)

= |N0|2e−ε(t−t0) + |N0|2(keεt0 + k2e2εt0)e−ε(t−t0)

= |N0|2e−ε(t−t0)
(
1 + keεt0 + k2e2εt0

)
≤ 1

1 − keεt0
|N0|2e−ε(t−t0).

For [nt0, (n + 1)t0) , n = 1, 2, . . .

E|N (t)|2 ≤ |N0|2(1 + kt0)e
−ε(t−t0)

≤ |N0|2e−ε(t−t0)
(
1 + keεt0 + k2e2εt0 + · · · + knenεt0

)
≤ 1

1 − keεt0
|N0|2e−ε(t−t0).

So if conditions (11) hold as well as inequality (12), then the zero solution of (10) is globally
exponentially mean square stable. Consequently, the disease-free equilibrium point of (9) is
stochastically globally exponentially stable. ��

4 Numerical example

Consider the stochastic HIV/AIDS model⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dS(t) = (1.5 − 2S(t)I (t) − 1.5S(t)) dt + 0.5S(t)I (t)dB(t)

dI (t) = (2S(t)I (t) − 1.5I (t) − 4I (t)) dt + 0.5S(t)I (t)dB(t)

dA(t) = (4I (t) − 1.5A(t) − A(t)) dt + 0.5A(t)dB(t)

S0 = 0.5, I0 = 3, A0 = 1.5.

(14)
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4.1 Stochastic Euler–Maruyama Scheme

For numerical approximation, Brownian motion is discretized by dividing [0, T ] into N > 0

subintervals; then, �t = T

N
. Further, �Bn = Btn+1 − Btn where �Bn ∼ N (0,�t). The

stochastic integral
∫ T

0 σ(s, x)dB(s) ≈ ∑N
n=0 σ(tn, xn)(Btn+1 − Btn ). Therefore, for good

approximation of this integral, �t must be small enough as the mesh of partition of [0, T ]
goes to zero. From solution (2),

∫ tn+1

tn
μ(s, x)ds ≈ μ(tn, xn)�t and

∫ tn+1

tn
σ(s, x)dB(s) ≈ σ(tn, xn)�Bn .

Then, Euler–Maruyama scheme has the form

xn+1 = xn + μ(tn, xn)�t + σ(tn, xn)�Bn . (15)

The data required in the algorithm are the process x(tn) with random sample of normal
distribution, and the result is the position of the process x(tn+1) at the time tn+1. Euler–
Maruyama is strongly convergent with order 0.5, This means that if we want to reduce the
error 10 times, we have to make the step size 100 times smaller. Unfortunately, the step size
cannot be too small because of computational errors and time. Rates of convergence of this
scheme are given by [41]. More approximation methods can be used like the Milstein scheme
(which increases the accuracy of Euler by adding a second-order “correction” term in the
scheme) and Runge–Kutta scheme. These methods converge strongly with order 1, i.e., if we
want to reduce the error 10 times, we have to make the step size 10 times smaller. Sometimes
it is computationally costly to compute the derivatives, so we avoid the Runge–Kutta scheme.
Milstein scheme is superior to the Euler–Maruyama. It was shown first by [42].

4.2 Numerical illustrations

Inequalities (11) are the conditions of global mean square exponential stability of the zero
solution of (10) and the disease-free equilibrium of (9). Given by these conditions and in
space of parameters (β, μ, δ), the stochastic global exponential stability regions of E0 of (9)
are shown in Fig. 1 for different values of the parameter σ and in Fig. 2 for different values of
the parameter d . The regions of stability are shown in three-dimensional space with k = 0.01
and ε = 0.2.

For the numerical simulations, this paper deals with the numerical simulation algorithm
of the trajectories of Brownian motion and the scheme of Euler–Maruyama that have been
presented by the extant literature [43,44]. Author in [1] has shown that the scheme of Euler–
Maruyama converges to the equilibria of the system for small enough step sizes. As we
studied stochastic nonlinear HIV/AIDS model (9) via corresponding linear system (10), we
perform a numerical simulation for the zero solution of (10) at first. From the stability region
for σ = 0.5, choosing the coordinates (β, μ, δ) = (1.5, 2, 4), all 50 trajectories for each of
the variables S(t), I (t) and A(t) converge to zero and this is shown in Fig. 4.

For the numerical simulation of the disease-free equilibrium of (9) and with the same
coordinates (1.5, 2, 4), we have obtained 50 trajectories for each process converging to the
disease-free equilibrium E0 = (1, 0, 0) in Fig. 3a. With the coordinates (5, 1.5, 2), Fig. 3b
shows an unstable disease-free equilibrium and the solutions converge to the epidemic equi-
librium (0.7, 0.1285, 0.1028).
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Fig. 1 Regions of stability of the disease-free equilibrium of (9) with d = 1

Fig. 2 Regions of stability of the disease-free equilibrium of (9) with σ = 0.5

5 Results and discussion

Theorem 10 indicates that the epidemic dies out if condition (11) holds. These conditions are
necessary and sufficient for stochastic global exponential stability of E0. Stability regions
become better for small values of σ . For σ = 0.5, when d → 0 we still have the same
stability region of E0. For larger values of the death rate caused by AIDS, the stability region
increases.

With condition (11), all solutions converge to E0 and the disease dies out eventually. All
solutions do not converge to E0 if condition (11) is not met. The epidemic will persist, and
the number of susceptibles and the infected individuals in the population tend to positive
constants. Euler–Maruyama does a better job as we reduce the step size �t , and we lose the
convergence for specific values of �t , for instance, if �t = 0.5, trajectories do not converge
to the equilibrium point .

6 Conclusion and further directions

Our paper has highlighted the stochastic global exponential stability of the disease-free equi-
librium point of the stochastic HIV/AIDS model. Necessary and sufficient conditions are
obtained. Many numerical simulations are carried out to support the analytical results. For
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(a) Stable disease-free equilibrium of (9). (b) Stable epidemic equilibrium of (9).

Fig. 3 Fifty trajectories for each process S(t)(blue), I (t)(red) and A(t)(green)

Fig. 4 Fifty trajectories for each process S(t)(blue), I (t)(red) and A(t)(green)

further directions, we can consider the uncertainty in the differential equation by assum-
ing that the coefficients, initial conditions and forcing terms are random variables and/or
stochastic processes. In this case, the equation is termed as random differential equation
(RDE). Existence of these random variables allows for a wider type of probability distribu-
tions (e.g., Poisson, geometrical, binomial, gamma, etc.), and this makes RDE very important
for describing the real-life applications rightfully. Moreover, we hope that our work will be
applicable to stochastic models influenced by fractional Brownian motion.
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