
Eur. Phys. J. Plus (2020) 135:834
https://doi.org/10.1140/epjp/s13360-020-00847-1

Regular Art icle

Generalized Lagrange–Jacobi–Gauss–Radau collocation
method for solving a nonlinear optimal control problem
with the classical diffusion equation

Sobhan Latifi1,a, Kourosh Parand2,3,b, Mehdi Delkhosh4,c

1 Department of Computer Sciences, Amirkabir University of Technology, Tehran, Iran
2 Department of Computer Sciences, Shahid Beheshti University, G.C. Tehran, Iran
3 Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University,

G.C. Tehran, Iran
4 Department of Mathematics and Computer Science, Islamic Azad University, Bardaskan Branch, Bardaskan,

Iran

Received: 4 May 2020 / Accepted: 7 October 2020 / Published online: 15 October 2020
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract In this paper, a well-known nonlinear optimal control problem (OCP) arisen in
a variety of biological, chemical, and physical applications is considered. The quadratic
form of the nonlinear cost function is endowed with the state and control functions. In this
problem, the dynamic constraint of the system is given by a classical diffusion equation.
This article is concerned with a generalization of Lagrange functions. Besides, a generalized
Lagrange–Jacobi–Gauss–Radau (GLJGR) collocation method is introduced and applied to
solve the aforementioned OCP. Based on initial and boundary conditions, the time and space
variables, t and x , are clustered with Jacobi–Gauss–Radau points. Then, to solve the OCP,
Lagrange multipliers are used and the optimal control problem is reduced to a parameter
optimization problem. Numerical results demonstrate its accuracy, efficiency, and versatility
of the presented method.

1 Introduction

In order to present OCP solved in this manuscript, firstly, we give an introduction to the OCP
and provide an explanation of the functions and parameters defined in this problem. A brief
review and history of these equations and spectral and pseudospectral methods are in the
following subsections.

1.1 The governing equations

Optimum control problems arise in the minimization of a functional over a set of admissible
control functions subject to dynamic constraints on the state and control functions [1,2].
Regarding that the equations of dynamics in the system are reformed by a partial differential
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equation—with time and space variables—this OCP is known as an optimal control of a
distributed system [1]. The formulation of this optimal control problem is [3]:

min J = 1

2

∫ 1

0

∫ R

0
xr

(
c1z

2(x, t) + c2y
2(x, t)

)
dxdt, (1)

subject to
∂z

∂t
= k(

∂2z

∂x2 + r

x

∂z

∂t
) + y(x, t), (2)

with initial and boundary conditions

z(x, 0) = z0(x), 0 < x < R,

z(R, t) = 0, t > 0. (3)

In fact, this is a nonlinear quadratic optimal control problem with the dynamic system of
the classical diffusion equation.
In Eqs. (1)–(3), y(x, t) is the optimization function that must be calculated so that it and the
function of z(x, t) are held in Eqs. (1)–(3) and the value of J is minimized. z(x, t) and y(x, t)
are called the state and control functions and usually calculated in such a way that they are
smooth and the derivatives and integral in Eqs. (1) and (2) can be calculated analytically
or numerically. z0(x) is a known real function, c1 and c2 are two arbitrary constants, k is a
numerical constant that is specified in the problem, and r and R are positive real constants.
Here, t > 0 and its upper bound is 1. The parameter r is specified in numerical examples as
r = 1 or r = 2.

The purpose of solving this problem is to approximate the control and state functions that
minimize the J .

This OCP arises in a variety of biological, chemical, and physical applications; for more
details, see Refs. [4–6].

1.2 The literature on optimal control problems

Two-dimensional (2D) systems and their beneficial applications in many different industrial
fields draw the attention of scientists presently. These applications rise in heat transfer, image
processing, seismological and geophysical data processing, distributed systems, restoration
of noisy images, earthquake signal processing, water stream heating gas absorption, smart
materials, and transmission lines [7–10]. The miscellaneous chemical, biological, and physi-
cal problems are modeled by diffusion processes involving control function mentioned in Eqs.
(1)–(3). By the aid of Roesser’s model [10], Attasi’s model [11,12], Fornasini–Marchesini’s
models [13,14], the state-space models of 2D systems are organized [7]. Remarkable studies
have been done in the area of optimal controls, and excellent articles are written hereby
[15–19]. Among these studies, numerical techniques have been used to solve optimal control
problems [17,20]. Moreover, Agrawal [1] presented a general formulation and a numerical
scheme for fractional optimal control for a class of distributed systems. He used eigenfunc-
tions to develop his method. In other works, Manabe [21], Bode et al. [22] and Rabiee et
al. [23] studied fractional-order optimal control problems. Additionally, Mamehrashia and
Yousefi [3,7] and Lotfi et al. [24] employed the Ritz method to solve optimal control prob-
lems. With the variational method, Yousefi et al. [25] found the solution of the optimal control
of linear systems, approximately. Li et al. [26] considered a continuous-time 2D system and
converted it to the discrete-time 2D model. In other works, Wei et al. [27] and Zhang et al.
[28] investigated an optimal control problem in continuous-time 2D Roesser’s model. They
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employed iterative adaptive critic design algorithm and the adaptive dynamic programming
method to approximate the solution. Sabeh et al. [29] introduced a pseudo-spectral method
for the solution of distributed optimal control problem with the viscous Burgers equation.

1.3 The literature of spectral and pseudospectral methods

The main feature of spectral methods is to use different orthogonal polynomials/functions as
trial functions. These polynomials/functions are global and infinitely differentiable. These
methods are applied to four types of problems: periodic problems, nonperiodic problems,
whole-line problems, and half-line problems. These can be categorized as: Trigonometric
polynomials for periodic problems; classical Jacobi, ultraspherical, Chebyshev and Legendre
polynomials for non-periodic problems; Hermite polynomials for problems on the whole line;
and Laguerre polynomials for problems on the half line [30]. With the truncated series of
smooth global functions, spectral methods are giving the solution of a particular problem
[31,32]. These methods, with a relatively limited number of degrees of freedom, provide
such an accurate approximation for a smooth solution. Spectral coefficients tend to zero
faster than any algebraic power of their index n; see page 2 in [33].
Spectral methods can fall into three categories: Tau, Collocation and Galerkin methods [34].

– The Tau spectral method is used to approximate numerical solutions of various dif-
ferential equations. This method considers the solution as an expansion of orthogonal
polynomials/functions. Such coefficients, in this expansion, are set to approximate the
solution correctly [35].

– Collocation method helps obtain highly accurate solutions to nonlinear/linear differential
equations; see page 2 in [36–39]. Two common steps in collocation methods are: First,
suitable nodes (Gauss/Gauss–Radau/Gauss–Lobatto) are selected to restate a finite or
discrete form of the differential equations. Second, a system of algebraic equations from
the discretization of the original equation is achieved [40,41].

– In the Galerkin spectral method, trial and test functions are chosen the same [42]; This
method can result in a highly accurate solution.

It is said that spectral Galerkin methods are similar to Tau methods where in approximation
by Tau method, the differential equation is enforced [33].

Furthermore, some other numerical methods like finite difference method (FDM) and
finite element method (FEM) need network construction of data and they perform locally.
Although spectral methods are continuous and globally performing, they do not require
network construction of data [43].

In addition to spectral methods, pseudospectral methods have also attracted researchers
recently [44–47]. As mentioned previously, Sabeh et al. [29] investigated a pseudospectral
method to solve the optimal control problem. Pseudospectral methods are also utilized in the
solution of other optimal control problems as well [48–51]. These methods become popular
because of their computational feasibility and efficiency. In fact, in standard pseudospectral
methods, interpolation operators are used to reduce the cost of computation of the inner
product we encounter in some of the spectral methods. For this purpose, a set of distinct
interpolation points {xi }ni=0 is considered by which the corresponding Lagrange interpolants
are achieved. Besides, when applying collocation points, {xi }ni=0, the residual function is set
to vanish on the same set of points. Notwithstanding, the collocation points do not need to
be chosen the same as the interpolation nodes. Indeed, just for having the Kronecker delta
property, they are considered to be the same: as a consequence, this property helps reduce
computational cost noticeably as well. There are such authors who utilized pseudospec-
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tral methods for the solution of optimal control as well. William [52] introduced a Jacobi
pseudospectral method for solving an optimal control problem. He reported that significant
differences in computation time can be seen for different parameters of the Jacobi polyno-
mial. Jacobi pseudospectral method endowed with Lagrange basis is also in [53] to solve a
problem defined in semi-infinite domain problem. In another work in [54], a set of nonlinear
PDEs was solved by applying this Jacobi pseudospectral method. Garge et al. [50] presented a
unified framework for the numerical solution of optimal control problems using collocation
at Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and Legendre–Gauss–Lobatto
(LGL) points and discussed the advantages of each for solving optimal control problems.
Chebyshev pseudospectral method was utilized by Fahroo et al. [49] to provide an optimal
solution for the optimal control problem.

1.4 The main aim of this paper

To the best of our knowledge, the use of pseudospectral methods for solving optimal control
problems has been limited in the literature to either Chebyshev or Legendre methods. Note-
worthily, the pseudospectral method based on Jacobi can encompass a wide range of other
pseudospectral methods since the Legendre and Chebyshev nodes can be obtained as par-
ticular cases of the general Jacobi. Therefore, examining different choices of the parameters
in the Jacobi polynomials and a proper selection of the Jacobi parameters will allow us to
obtain more accurate real-time solutions to nonlinear optimal control problems. Meanwhile,
an arbitrary and not precise selection of nodes may result in poor interpolation characteristics
such as the Runge phenomenon; therefore, the nodes in pseudospectral methods are selected
as the Gauss–Radau points [52].

In this paper, we present a general formulation and a suitable numerical method called the
GLJGR collocation method to solve OCP for a class of distributed systems. Using GLJGR
collocation method helps lessen the computational and CPU time. The developed method is
exponentially accurate and obtained by a generalization of classical Lagrange polynomials
[55]. Additionally, the equation of the dynamics of optimal control problem is reformed as a
partial differential equation.

This paper is arranged as follows: In Sect. 2, we present some preliminaries and drive some
tools for introducing GL function, GLJGR collocation method, and their relevant derivative
matrices. In Sect. 3, we apply the GLJGR collocation method to the solution of the OCP.
Section 4 shows numerical examples to demonstrate the effectiveness of the proposed method.
Also, a conclusion is given in Sect. 5.

2 Preliminaries, conventions, and notations

In this section, we review some necessary definitions and relevant properties of Jacobi poly-
nomials. In the next step, we introduce generalized Lagrange (GL) functions. Then, we state
some theorems on GL functions and develop GLJGR collocation method. Finally, in terms
of GLJGR collocation method, we give a formula that expresses the derivative matrix of the
mentioned functions.

2.1 Jacobi polynomials

A basic property of the Jacobi polynomials is that they are the eigenfunctions to a singular
Sturm–Liouville problem. Jacobi polynomials are defined on [−1, 1] and are of high interest
recently [56–59]. The following recurrence relation generates the Jacobi polynomials [60]:

123



Eur. Phys. J. Plus (2020) 135:834 Page 5 of 19 834

Pα,β
k+1(x) = (aα,β

k x − bα,β
k )Pα,β

k − cα,β
k Pα,β

k−1(x), k ≥ 1

Pα,β
0 (x) = 1, Pα,β

1 (x) = 1

2
(α + β + 2)x + 1

2
(α − β),

where

aα,β
k = (2k + α + β + 1)(2k + α + β + 2)

2(k + 1)(k + α + β + 1)
,

bα,β
k = (β2 − α2)(2k + α + β + 1)

2(k + 1)(k + α + β + 1)(2k + α + β)
,

cα,β
k = (k + β)(k + α)(2k + α + β + 2)

(k + 1)(k + α + β + 1)(2k + α + β)
,

The Jacobi polynomials satisfy the following identities:

Pα,β
n (−x) = (−1)n Pβ,α

n (x),

Pα,β
n (−1) = (−1)nΓ (n + β + 1)

n!Γ (β + 1)
,

Pα,β
n (1) = Γ (n + α + 1)

n!Γ (α + 1)

,

(
Pα,β
n (x)

)(m)

= 2−m Γ (m + n + α + β + 1)

Γ (n + α + β + 1)
Pα+m,β+m
n−m (x),

and its weight function is wα,β(x) = (1 − x)α(1 + x)β .
Moreover, the Jacobi polynomials are orthogonal on [−1, 1]:

∫ 1

−1
Pα,β
n (x)Pα,β

m (x)wα,β(x) = δm,nγ
α,β
n ,

γ α,β
n = 2α+β+1Γ (n + α + 1)Γ (n + β + 1)

(2n + α + β + 1)Γ (n + 1)Γ (n + α + β + 1)
,

where δm,n is the Kronecker delta function and L2
wα,β [−1, 1] is the weighted space. The

inner product and the norm of L2
wα,β [−1, 1] with respect to the weight function are defined

as:

(g, h)wα,β =
∫ 1

−1
g(x)h(x)wα,β(x)dx, ‖g‖wα,β = (g, g)

1
2
wα,β

It is noted that the set of Jacobi polynomials forms a complete L2
wα,β [−1, 1] system [36].

It is known that the (n + 1) points of Gauss–Radau are the n roots of Pα,β+1
n (x) over

(−1, 1) and one particular root as −1 or 1. Similarly, for the interval [a,b] with the shifting
parameter u(x), these points are n roots of Pα,β+1

n (u(x)) over (a, b) and one particular root as
a or b on the boundaries, where more details on u(x) are discussed in the following sections.

2.2 Generalized Lagrange (GL) functions

In this section, generally, the GL functions are introduced and the suitable formulas for the
first- and second-order derivative matrices of these functions are presented.
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Definition 1 Let w(x) = ∏N
i=0

(
u(x)−u(xi )

)
, then the generalized Lagrange (GL) formula

is shown as [55]

Lu
j (x) = w(x)

(u − u j )∂uw(x j )
= u′

jw(x)

(u − u j )∂xw(x j )
= κ j

w(x)

(u − u j )
, (4)

where ∂uw(x) = 1
u′ ∂xw(x), κ j = u′

j
∂xw(x j )

, u(x) is a continuous, arbitrary, and sufficiently

differentiable function, xi s are arbitrary distinct points on domain of u(x) such that u′
i �= 0

for any i = 0, · · · , N and ui �= u j for all i �= j .
For simplicity, u = u(x) and ui = u(xi ) are considered.

Theorem 1 Considering the GL functions Lu
j (x) in Eq. (4), one can exhibit the first-order

derivative matrices of GL functions as

D(1) = [dkj ] ∈ �(n+1)×(n+1), 0 ≤ j, k ≤ n,

where

dk j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ j
∂xw(xk )
uk−u j

, j �= k,

κ j
u′
j ∂

2
xw(x j )−u′′

j ∂xw(x j )

2u′
j
2 , j = k.

Proof As the GL functions defined in Eq. (4), the first-order derivative formula for the case
k �= j can be achieved as follows:

dkj = ∂x L
u
j (xk)

Eq.(4)= κ j
∂xw(xk)(uk − u j ) − u′

kw(xk)

(uk − u j )2 = κ j
∂xw(xk)

uk − u j
. (5)

But, when k = j , with L’Hopital’s rule:

d j j = ∂x L
u
j (x j ) = lim

x→x j
κ j

(u − u j )∂xw(x) − u′w(x)

(u − u j )2

Hop=

lim
x→x j

κ j
(u − u j )∂

2
xw(x) − u′′w(x)

2u′(u − u j )

Hop= κ j
u′
j∂

2
xw(x j ) − u′′

j∂xw(x j )

2u′
j
2 .

This completes the proof. 
�

Theorem 2 Let D(1) be the above matrix (first-order derivative matrix of GL functions) and
define matrix Q such that Q = Diag(u′

0, u
′
1, ..., u

′
N ), Q(1) = Diag(u′′

0, u
′′
1, ..., u

′′
N ); then,

the second-order derivative matrix of GL functions can be formulated as:

D(2) = (Q(1) + QD(1))Q−1D(1). (6)

Proof See Ref. [55]. 
�

For simplicity, from now on, D(1) is considered D.
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2.3 Generalized Lagrange–Jacobi–Gauss–Radau (GLJGR) collocation method

It is a well-established fact that a proper choice of collocation points is crucial in terms of
accuracy and computational stability of the approximation by Lagrange basis [61]. As an
appropriate choice of such collocation points, we can refer to the well-known Gauss–Radau
points in which points lie inside (a,b) and one point is clustered near the endpoints [29,61].
In this sequel, we use Jacobi–Gauss–Radau nodes.

In the case of GLJGR collocation method, w(x) in Eq. (4) can be considered as two
approaches: in the first approach, one point is clustered near the end of the interval:

w(x) = λPα,β+1
n (u)(u − un), (7)

and in the second approach, one point at the beginning of the interval is clustered:

w(x) = λ(u − u0)P
α,β+1
n (u), (8)

where λ is a real constant. As a matter of simplification, we write

G(u) = Pα,β+1
n (u), (9)

with the following important properties:

∂xG(u) = u′ Γ (α + β + n + 3)

2Γ (α + β + n + 2)
Pα+1,β+2
n−1 (u), (10)

∂2
x G(u) = Γ (α + β + n + 3)

4Γ (α + β + n + 2)

(
2u′′Pα+1,β+2

n−1 (u) + (u′)2(α + β + n + 3)Pα+2,β+3
n−2 (u)

)
,

(11)

Let us speak of the first approach as in Eq. (7). Assuming

w(x) = λPα,β+1
n (u)(u − un),

then we have:

∂xw(x) = λ
[
u′G(u) + (u − un)∂xG(u)

]
, (12)

∂2
xw(x) = λ

[
u′′G(u) + 2u′∂xG(u) + (u − un)∂

2
x G(u)

]
. (13)

G(un) = Γ (α + 1 + n)

(n)!Γ (α + 1)
, ∂xG(un) = u′

n
Γ (α + β + n + 3)

2Γ (α + β + n + 2)

Γ (α + 1 + n)

(n − 1)!Γ (α + 2)
.

(14)

We can rewrite the formula in Theorem 1 for a Jacobi–Gauss–Radau specific case: It is easy
to do this by setting w(x) = λ(u − u0)P

α,β+1
n (u) and recalling that {Pα,β+1

n (u j ) = 0}n−1
j=0.

So, by this, the formula in Theorem 1 can be obtained as a Jacobi–Gauss–Radau case, and
the entry of the first-order derivative matrix of GL functions will be:
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dkj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
k P

α+1,β+2
n−1 (uk )(n!)(α+β+n+2)Γ (α+1)

2Γ (α+1+n)
, j = n, 0 ≤ k ≤ n − 1,

2u′
kΓ (α+n+1)

Γ (α+1)(n!)(α+β+n+2)Pα+1,β+2
n−1 (u j )(uk−u j )(u j−uk )

, k = n, 0 ≤ j ≤ n − 1,

u′
k (uk−un)

(u j−un)(uk−u j )

Pα+1,β+2
n−1 (uk )

Pα+1,β+2
n−1 (u j )

, 0 ≤ j �= k ≤ n − 1,

u′
j

u j−un
+ u′

j (α + β + n + 3)
Pα+3,β+3
n−3 (u j )

4Pα+2,β+2
n−2 (u j )

, 0 ≤ k = j ≤ n − 1,

u′
k (n−1)(α+β+n+2)

2(α+1)
, k = j = n,

Similar to this fashion, for the second approach shown in Eq. (8), one can write:

w(x) = λ(u − u0)P
α,β+1
n (u),

G(u0) = Γ (β + 2 + n)(−1)n

(n)!Γ (β + 2)
, ∂xG(u0)

= u′
0

Γ (α + β + n + 3)

2Γ (α + β + n + 2)

(−1)n−1Γ (β + 2 + n)

(n − 1)!Γ (β + 3)
. (15)

Now this is obvious that {Pα,β+1
n (u j ) = 0}nj=1. Therefore, by the second approach, the

entries of defined matrix D can be filled as:

dkj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
k P

α+1,β+2
n−1 (uk )(n!)(α+β+n+2)Γ (β+2)

2Γ (β+2+n)(−1)n
, j = 0, 1 ≤ k ≤ n,

2u′
kΓ (β+n+2)(−1)n

Γ (β+2)(n!)(α+β+n+2)Pα+1,β+2
n−1 (u j )(uk−u j )(u j−uk )

, k = 0, 1 ≤ j ≤ n,

u′
k (uk−u0)

(u j−u0)(uk−u j )

Pα+1,β+2
n−1 (uk )

Pα+1,β+2
n−1 (u j )

, 1 ≤ j �= k ≤ n,

u′
j

u j−u0
+ u′

j (α + β + n + 3)
Pα+3,β+3
n−3 (u j )

4Pα+2,β+2
n−2 (u j )

, 1 ≤ k = j ≤ n,

−u′
k (n)(α+β+n+2)

2(β+2)
, k = j = 0,

More specifically, Legendre, Chebyshev, and ultraspherical polynomials can be obtained
as special cases from the proposed method. These cases are summarized in the following
remark:

Remark 1 We have all the mentioned formulas of GL functions, i.e., D, D(2) for Gegenbauer
(ultraspherical), Legendre, Chebyshev (the first, second, third, and fourth kinds) polynomials
by simply setting α = β, α = β = 0, α = β = −0.5, α = β = 0.5, α = −0.5,
β = 0.5, andα = 0.5,β = −0.5, respectively. These specifications can be named generalized
Lagrange–[Gegenbauer, Legendre, Chebyshev (first, second, third, fourth)]–Gauss–Radau
for that manner.
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2.4 Operational matrix of GL functions

In this subsection, we intend to clarify that when it comes to the collocation method, the
operational matrix of derivative for GL functions is equal to transpose of the derivative
matrix mentioned in 2.3.
Defining the one-column vectors

L̂u
n(x) =

⎡
⎢⎢⎢⎣

Lu
0(x)

Lu
1(x)
...

Łu
n(x)

⎤
⎥⎥⎥⎦ , Ĥu

n (x) =

⎡
⎢⎢⎢⎣

∂x Lu
0(x)

∂x Lu
1(x)
...

∂x Lu
n(x)

⎤
⎥⎥⎥⎦ ,C =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ ,

for the approximation of a function ξ(x), one can write

ξ(x) ≈
n∑

i=0

ci L
u
i (x) = CT L̂u

n(x),

and similarly for the derivative of this function, one can rewrite it as

∂xξ(x) = CT K L̂u
n(x), (16)

where K ∈ �(n+1)×(n+1) is the operational matrix of derivative where

K L̂u
n(x) = Ĥu

n (x),

and in other words,
⎡
⎢⎢⎢⎣

K00 K01 . . . K0n

K10 K11 . . . K1n
...

Kn0 Kn1 . . . Knn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Lu
0(x)

Lu
1(x)
...

Lu
n(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∂x Lu
0(x)

∂x Lu
1(x)
...

∂x Lu
n(x)

⎤
⎥⎥⎥⎦ .

To prove it, take the j th row

[
K j0 K j1 . . . K jn

]
⎡
⎢⎢⎢⎣

Lu
0(x)

Lu
1(x)
...

Lu
n(x)

⎤
⎥⎥⎥⎦ = ∂x L

u
j (x),

and by collocating the Jacobi–Gauss–Radau nodes ({xi }ni=0) in this equation, we obtain:

K ji = ∂x L
u
j (xi ),

K ji = di j .

This means that the operational matrix for these functions is

K = DT , (17)

where D is defined in Sect. 2.3. Similarly, for ∂xxξ(x), one can also say

∂xxξ(x) = CT (
D(2)

)T
L̂u
i (x), (18)

where D(2) is defined in Eq. (6).
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3 Numerical method

The main objective of this section is to develop the GLJGR collocation method to solve OCP.
In this section, firstly, a promising function approximation method has been presented. Then,
GLJGR collocation is implemented so as to accomplish the introduction of the presented
numerical method for OCP of interest.

3.1 Function approximation

If H = L2(η), η = 0 ∪ (0, 1) × (0, 1) ∪ 1, where

s = {Lu
i (x)L

u
j (t) | 0 ≤ i ≤ n, 0 ≤ j ≤ m},

s ⊂ H , s is the set of GL functions product and

Vnm = Span{Lu
i (x)L

u
j (t) | 0 ≤ i ≤ n, 0 ≤ j ≤ m},

where Vnm is a finite-dimensional vector space. For any q ∈ S, one can find the best approx-
imation of q in space Vnm as Pnm(x, t) such that

∃Pnm(x, t) ∈ Vnm,∀lnm(x, t) ∈ Vnm, ‖q − Pnm(x, t)‖2 ≤ ‖q − lnm(x, t)‖2,

where ‖ f ‖2 = √〈 f, f 〉 and 〈., .〉 is the inner product. Therefore, for any Pnm(x, t) ∈ Vnm ,
one can write

Pnm(x, t) =
n∑

i=0

m∑
j=0

ci j L
u
i (x)L

u
j (t) = (L̂u

n(x))
T C L̂u

m(t), (19)

in which C is a matrix of �(m+1)×(n+1), and ci j are the relevant coefficients and calculable.
Lu
i (x) is considered by the first approach mentioned in Sect. 2.3 in which u(x) = 2

R x − 1,
and Lu

j (t) is based on the second approach and considered as u(t) = 2t − 1. This can be
proved that as n and m increase, the approximate solution tends to the exact solution [3].

3.2 Implementation of GLJGR collocation method for solving the OCP

Now, for the approximation of state and control functions

y(x, t) ≈ ynm(x, t) =
n∑

i=0

m∑
j=0

ai j L
u
i (x)L

u
j (t) = (L̂u

n(x))
T AL̂u

m(t), (20)

z(x, t) ≈ znm(x, t) =
n∑

i=0

m∑
j=0

bi j L
u
i (x)L

u
j (t) = (L̂u

n(x))
T B L̂u

m(t), (21)

where

A =

⎡
⎢⎢⎢⎣

a00 a01 . . . a0m
a10 a11 . . . a1m
.
.
.

an0 an1 . . . anm

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b00 b01 . . . b0m
b10 b11 . . . b1m
.
.
.

bn0 bn1 . . . bnm

⎤
⎥⎥⎥⎦ , L̂u

m(t) =

⎡
⎢⎢⎢⎣

Lu
0(t)

Lu
1(t)
.
.
.

Lu
m(t)

⎤
⎥⎥⎥⎦ , L̂u

n(x) =

⎡
⎢⎢⎢⎣

Lu
0(x)

Lu
1(x)
.
.
.

Lu
n(x)

⎤
⎥⎥⎥⎦ ,

We define residual functions res(x, t) by substituting Eqs. (20) and (21) in Eq. (2)

res(x, t) = − x∂znm(x, t)

∂t
+ k

(
x∂2znm(x, t)

∂x2 + r
∂znm(x, t)

∂t

)
+ xynm(x, t); (22)
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in terms of Eqs. (17) and (18), one can write

∂znm(x, t)

∂x
=

(
DT L̂u

n(x)

)T

B L̂u
m(t) = L̂u

n(x)
T DBL̂u

m(t), (23)

∂2znm(x, t)

∂x2 =
(

(D(2))T L̂u
n(x)

)T

B L̂u
m(t) = L̂u

n(x)
T D(2)BL̂u

m(t), (24)

∂znm(x, t)

∂t
= L̂u

n(x)
T B D̂T L̂u

m(t), (25)

A, B ∈ �(n+1)×(m+1), D ∈ �(n+1)×(n+1) and D̂ ∈ �(m+1)×(m+1) so Eq. (22) can be restated
as

res(x, t) = −x L̂u
n(x)

T B D̂T L̂u
m(t) + k

(
x L̂u

n(x)
T D(2)BL̂u

m(t)

+r L̂u
n(x)

T B D̂T L̂u
m(t)

)
+ x L̂u

n(x)
T AL̂u

m(t), (26)

and the initial and boundary conditions of the problem are obtained as

znm(x, 0) ≈ z0(x), 0 < x < R, znm(R, t) ≈ 0, t > 0, (27)

and within the assumption of Eqs. (21) and (20)

L̂u
n(x)

T B L̂u
m(0) ≈ z0(x), L̂u

n(R)T B L̂u
m(t) ≈ 0. (28)

As 0 and R are the t0 and xn , with the aid of the characteristic of Lagrange polynomials, we
write

L̂u
n(x)

T B

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ = L̂u

n(x)
T B[:, 0], [

0 0 ... 1
]
BL̂u

m(t) = B[n, :]L̂u
m(t), (29)

where B[:, 0] and B[n, :] are the first column and (n + 1)th row of Matrix B.
Then, with (n + 1) collocation nodes in x space and (m + 1) collocation nodes in t space,

a set of algebraic equations is constructed by using Eq. (26) together with the conditions in
Eq. (28). (Simplification of Eq. (29) is also used.)

⎧⎪⎨
⎪⎩
F[i] = L̂u

n(xi )
T B[:, 0] − z0(xi ) = Bi0 − z0(xi ), i = 0, . . . , n,

F[n + j] = B[n, :]L̂u
m(t j ) = Bnj , j = 1, . . . ,m,

F[n + m + (i)(m + 1) + j + 1] = res(xi , t j ), i = 0, ..., n, j = 0, ...,m,

(30)

in which res(xi , t j ) can be considered as

res(xi , t j ) = −xi B[i, :]D̂T [:, j] + k

(
xi D

(2)[i, :]B[:, j] + r B[i, :]D̂T [:, j]
)

+ xiai j .

or
res(xi , t j ) = (kr − xi )B[i, :]D̂T [:, j] + kxi D

(2)[i, :]B[:, j] + xiai j . (31)

The reason why j starts from 1 (in the second case of Eq. (30)) is that: in both examples we
will consider later, for the first case of Eq. (30), we have z0(xn = R) = 0 and this makes a
redundancy with the second case of Eq. (30) at j = 0. To avoid this, j starts from 1.
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We now describe the method of the selection of points in this paper. In what follows, we have
used xi and t j which are considered as the following statements. Firstly,

{xi }ni=0 = {x |(Pα,β+1
n (u(x))(u(x) − u(xn))) = 0}, (32)

which should x ∈ (0, R]. Therefore, we set u(x) = 2x
R − 1, and we have:

{xi }n−1
i=0 = {x |Pα,β+1

n

(
2x

R
− 1

)
= 0}, and xn = R. (33)

One can see that this assignment is based on the first approach in Sect. 2.3.
With the same fashion, for variable t we have

{t j }mj=0 = {
t |(u(t) − u(t0))P

α,β+1
n (u(t)) = 0

}
(34)

that should t ∈ [0, 1). Therefore, we set u(t) = 2t − 1, and we have:

t0 = 0, and {t j }mj=1 = {
t |Pα,β+1

n (2t − 1) = 0
}

(35)

Again, one can consider this assignment based on the second approach shown by Eq. (8) in
Sect. 2.3.
At the next step, we approximate the integral existing in the OCP. For this, we exploit Gauss–
Jacobi quadrature.
For estimating an integral by Gauss–Jacobi quadrature, we do as follows:

∫ b

a
f (v)wα,β

(
2(v − a)

b − a
− 1

)
dv ≈

(
b − a

2

) ∫ 1

−1
f

(
b − a

2
s + b + a

2

)
wα,β(s)ds,

= b − a

2

N∑
i=0

f

(
b − a

2
si + b + a

2

)
�i

= b − a

2

N∑
i=0

f (vi )�i , (36)

where v ∈ [a, b] and s ∈ [−1, 1] , and Eq. (36) is exact when degree
(
f (v)

) ≤ (2N + 1)

for Gauss–Jacobi quadrature.
{si }Ni=0 are Gauss–Jacobi nodes, and their relevant weights {� }Ni=0 are [64]

�i = Γ (N + α + 2)Γ (N + β + 2)(
Pα,β
N+1(si )

)′
(1 − s2

i )

2α+β+1

Γ (N + 2 + α + β)Γ (N + 2)
, (37)

The cost functional J is estimated by a numerical integration method. For this, we applied
Gauss–Jacobi quadratures in Eq. (36) for both variables t and x .

min J = 1

2

∫ 1

0

∫ R

0
xr

(
c1z

2
nm(x, t) + c2y

2
nm(x, t)

)
dxdt,

≈ R

8

(
c1

N∑
i=0

M∑
j=0

� i
x (

x̂i+1
2 )

r
�

j
t z

2
nm(

x̂i+1
2 ,

t̂ j+1
2 )

wα,β(x̂i )wα,β(t̂i )

+c2

N∑
i=0

M∑
j=0

� i
x (

x̂i+1
2 )

r
�

j
t y

2
nm(

x̂i+1
2 ,

t̂ j+1
2 )

wα,β(x̂i )wα,β(t̂i )

)
, (38)
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Table 1 Numerical results of Example 1

n m α β J n m α β J n m α β J

2 2 0 0 0.0248814 5 5 0 0 0.01391215 5 7 0 0 0.0089648

−0.5 −0.5 0.0284523 −0.5 −0.5 0.01567798 −0.5 −0.5 0.0095673

0.5 0.5 0.0230089 0.5 0.5 0.01248992 0.5 0.5 0.0084049

−0.5 0.5 0.0278755 −0.5 0.5 0.01794318 −0.5 0.5 0.0105544

0.5 −0.5 0.0224106 0.5 −0.5 0.01128294 0.5 −0.5 0.0079716

0 1 0.0255469 0 1 0.01516258 0 1 0.0092312

1 0 0.0209952 1 0 0.01069205 1 0 0.0078231

0 2 0.0265474 0 2 0.01506972 0 2 0.0084796

2 0 0.0205804 2 0 0.00913921 2 0 0.0074379

3 1 0.0193088 3 1 0.00859934 3 1 0.0071598

7 5 0 0 0.0186896 7 10 0 0 0.00813737 10 10 0 0 0.0089628

−0.5 −0.5 0.0207502 −0.5 −0.5 0.00862000 −0.5 −0.5 0.0095609

0.5 0.5 0.0168244 0.5 0.5 0.00765917 0.5 0.5 0.0083101

−0.5 0.5 0.0223249 −0.5 0.5 0.00777906 −0.5 0.5 0.0091915

0.5 −0.5 0.0163430 0.5 −0.5 0.00850356 0.5 −0.5 0.0087234

0 1 0.0195875 0 1 0.00765102 0 1 0.0082872

1 0 0.0151638 1 0 0.00757913 1 0 0.0083260

0 2 0.0189639 0 2 0.00652118 0 2 0.0067052

2 0 0.0128480 2 0 0.00733578 2 0 0.0079058

3 1 0.0114265 3 1 0.00699366 3 1 0.0072780

where � i
x , �

j
t , x̂i , t̂ j are as follows

{x̂i }Ni=0 = {x |Pα,β
N+1(x) = 0}, (39)

{t̂ j }Mj=0 = {t |Pα,β
M+1(t) = 0}, (40)

� i
x = Γ (N + α + 2)Γ (N + β + 2)(

Pα,β
N+1(x̂i )

)′
(1 − x̂i

2
)

2α+β+1

Γ (N + 2 + α + β)Γ (N + 2)
, (41)

�
j
t = Γ (M + α + 2)Γ (M + β + 2)(

Pα,β
M+1(t̂ j )

)′
(1 − t̂ j

2
)

2α+β+1

Γ (M + 2 + α + β)Γ (M + 2)
. (42)

From Eq. (38) to Eq. (42) for both variables t and x , we consider 15 Gauss–Jacobi nodes
(M = N = 14).
Thus, on the basis of what we have just discussed, the optimal control problem is reduced to
a parameter optimization problem. This can be stated as follows:

L(A, B, λ̂) = J +
2(n+m)+nm+1∑

i=0

λi F[i], (43)
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(a) Approximation of state function z(x, t)
(b) Approximation of z(x, t) for x = 0.5 with various
choices of m,n

(c) Approximation of control variable y(x, t)
(d) Approximation of y(x, t) for x = 0.5 with various
choices of m,n

Fig. 1 Plots of approximate state and control functions for Example 1.

λ̂ = {λi }2(n+m)+nm+1
i=0 are Lagrange multipliers. Therefore, the minimization problem can,

under these new conditions
⎧⎪⎪⎨
⎪⎪⎩

∂L
∂ai j

= 0, i = 0, . . . , n, j = 0, . . . ,m,

∂L
∂bi j

= 0, i = 0, . . . , n, j = 0, . . . ,m,

∂L
∂λi

= 0, i = 0, . . . , 2(n + m) + nm + 1,

produce a system of 4(n + m + 1) + 3nm algebraic equations which can be solved by
a mathematical software for achieving the unknowns. This system is solved by Newton’s
method via ”fsolve” command in Maple. The solution of this system is given by using Maple
software.
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Table 2 Numerical results for J in Example 1 with the presented method and the Ritz method [3] (α = 0,
β = 2)

n 1 2 2 2 3 3 3
m 4 4 6 7 7 9 10

Ritz method [3] 0.081044 0.028790 0.018283 0.016484 0.013027 0.010405 0.007569

presented method 0.01586417 0.01408943 0.01396815 0.01401548 0.00473073 0.00470629 0.00468442

4 Numerical examples

In this section, the GLJGR collocation method is used to solve two cases of aforementioned
OCP in Eq. (1). The aim is to find the state and control functions z(x, t), y(x, t) that minimize
the cost function J .

Example 1 Consider the aforementioned OCP with c1 = c2 = r = R = k = 1 and initial
condition [3,62]

z(x, 0) = z0(x) = 1 − ( x
R

)2
, 0 < x < R.

so the optimal control problem of Eq. (1) would be

min J = 1

2

∫ 1

0

∫ 1

0
x
(
z2(x, t) + y2(x, t)

)
dxdt, (44)

subject to

x
∂z

∂t
= x

(
∂2z

∂x2 + 1

x

∂z

∂t

)
+ xy(x, t), (45)

with boundary and initial conditions

z(x, 0) = z0(x) = 1 − x2, 0 < x < 1, z(1, t) = 0, t > 0. (46)

Consider the assumptions mentioned in Example 1. With the methodology presented in
Sects. 2 and 3, we approximate the function z(x, t) and y(x, t). In Table 1, the presented
method is used to solve the OCP of Example 1. This table, by presenting the value of cost
functional, simply shows the accuracy of the presented method for the different choices of
n and m. The effect of α and β is shown as well to provide Chebyshev (all four kinds),
Legendre cases, and other different cases. As the aim of this paper is to find z(x, t), y(x, t)
in order to minimize J , we plot these state and control functions in Fig. 1a, c. Also, the
graph of these functions for the different number of bases is illustrated in Fig. 1b, d; they are
the surface plots of the state and control functions. The comparison with the Ritz method by
Mamehrashi and Yousefi [3] is made in Table 2. These results show that the presented method
is accurate and provides such solutions rather faster than the Ritz method. In other words,
with n = 1,m = 4, we obtained such a result that the Ritz method, somehow, provides with
n = 2,m = 7. Similar to what has been concluded in [3], we obtained that the control and
state functions initially have distinct values over the x-axis and as time goes by they tend to
reach the same value: This phenomenon is representative of a diffusion process.

Example 2 In this example, the r = 2, c1 = c2 = R = k = 1 and the initial condition is
[3,63]

z(x, 0) = z0(x) = sin(2πx), 0 < x < R.
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Table 3 Numerical results of Example 2

n m α β J n m α β J n m α β J

2 2 0 0 0.981774266 5 5 0 0 2.36052795 5 7 0 0 0.7709361

−0.5 −0.5 0.598751916 −0.5 −0.5 2.56788894 −0.5 -0.5 0.8706653

0.5 0.5 1.226311717 0.5 0.5 2.15726157 0.5 0.5 0.8083347

−0.5 0.5 0.135957972 −0.5 0.5 2.26726831 −0.5 0.5 0.6988001

0.5 −0.5 2.079513828 0.5 −0.5 2.38904227 0.5 −0.5 0.8083347

0 1 0.383652016 0 1 2.04317188 0 1 0.5890023

1 0 2.022399132 1 0 2.22743042 1 0 0.7332970

0 2 0.101961113 0 2 1.68004117 0 2 0.4074085

2 0 2.012714897 2 0 2.08193333 2 0 0.6923438

3 1 1.877493818 3 1 1.77464161 3 1 0.5390153

7 5 0 0 2.498801296 7 10 0 0 0.16882398 10 10 0 0 0.1877156

−0.5 −0.5 2.650340836 −0.5 −0.5 0.20321134 −0.5 −0.5 0.2208658

0.5 0.5 2.305646950 0.5 0.5 0.13032446 0.5 0.5 0.1469488

−0.5 0.5 2.415879813 −0.5 0.5 0.14219532 −0.5 0.5 0.1510822

0.5 −0.5 2.499141221 0.5 −0.5 0.18137586 0.5 −0.5 0.2050793

0 1 2.201622390 0 1 0.10295491 0 1 0.1096786

1 0 2.349064681 1 0 0.15196838 1 0 0.1759308

0 2 1.837451911 0 2 0.05137739 0 2 0.0481434

2 0 2.162014225 2 0 0.13443163 2 0 0.1631296

3 1 1.831793809 3 1 0.08179826 3 1 0.1001137

Therefore, we have

min J = 1

2

∫ 1

0

∫ 1

0
x2(z2(x, t) + y2(x, t)

)
dxdt, (47)

subject to

x
∂z

∂t
= x

(
∂2z

∂x2 + 2

x

∂z

∂t

)
+ xy(x, t), (48)

with boundary and initial conditions

z(x, 0) = z0(x) = sin(2πx), 0 < x < 1, z(1, t) = 0, t > 0. (49)

Like Example 1, the method discussed in Sects. 2, 3 is utilized to approximate the solution
of Example 2. The cost functional J for the different selection of n, m, α, β is calculated in
Table 3. Figure 2a, c shows numerical results for state and control functions, i.e., z(x, t) and
y(x, t), respectively. These results are plotted in Fig. 2b, d at x = 0.5 in a surface plot. Note
that initially the state and control at two different locations differ, but as time progresses,
the two values become very close. As said in Example 1, this is because of diffusion. A
comparison with the Ritz method [3] is made and reported in Table 4. The results in this table
demonstrate that the presented method is accurate and reliable, and these results seem to be
reached faster than the Ritz method.
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(a) Approximation of state function z(x, t)
(b) Approximation of z(x, t) for x = 0.5 with various
choices of m,n

(c) Approximation of control function y(x, t)
(d) Approximation of y(x, t) for x = 0.5 with various
choices of m,n

Fig. 2 Plots of approximate state and control functions for Example 2

Table 4 Numerical results for J in Example. 2 with the presented method and the Ritz method [3] (α = 0,
β = 2)

n 4 5 5 6 6 7 7
m 5 5 6 6 7 7 8

Ritz
method
[3]

2.72722 1.92027 1.27424 0.91850 0.55287 0.54935 0.36868

presented
method

1.834166023 1.680041170 0.834822493 0.865965461 0.426441006 0.467294422 0.229834210
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5 Conclusion

In this study, an OCP is investigated. This problem has beneficial applications in many
chemical, biological, and physical fields of studies. The goal of this article is to develop an
efficient and accurate method to solve this nonlinear OCP. The method is based upon GLJGR
collocation method. Firstly, GL functions are introduced so as to satisfy in delta Kronecker
function and GLJGR collocation method is described. The advantage of employing this
method is that it reduces the computational and CPU time remarkably. As expressed, these
functions are a generalization of the classical Lagrange polynomials. The corresponding
differentiation matrices of D(1) and D(2) can be obtained by simple formulas. The main
benefit of the proposed formulas is that these formulas are derivative-free. Additionally,
the accuracy of the presented method by GL function has an exponential convergence rate.
Secondly, the obtained results compared with those provided by Mamehrashi and Yousefi
[3] show the accuracy and reliability of the presented method. This numerical approach is
applicable and effective for such kind of nonlinear OCPs and other problems that can be
approximated by Gauss–Radau nodes.
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