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Abstract In submicron structures, because of surface and small-scale effects, the classi-
cal continuum theory does not lead to accurate results. In order to use this method in the
study of the mechanical behavior of such structures, surface elasticity and size-dependent
theories have been introduced. In this paper, by simultaneously applying the theories of Gurt-
in–Murdoch surface elasticity and the nonlocal strain gradient, the vibration behavior of a
functionally graded nanoshell has been investigated. To this end, the governing motion equa-
tions and related boundary conditions are extracted utilizing Hamilton’s principle and the
first-order shear deformation theory of shell and then will be solved by the generalized differ-
ential quadrature method. The effects of surface properties such as surface elastic properties,
residual surface stress, and surface mass density have been studied. Also, a comparative
study between different continuum mechanics theories, with and without surface effects, at
different boundary conditions and values of length-to-radius ratio and FG gradient index is
presented.

1 Introduction

Due to the wide range of advanced engineering applications of nonhomogeneous submicron
structures, studying the various aspects of their characteristics is of the great importance
in modern engineering. Besides the experimental and atomistic modeling methods which
have difficulties to perform and are computationally expensive, the continuum mechanics-
based approach provides an acceptable and dominant method in this regard. The classical
continuum theory due to lack of consideration the two important characteristics of submicron
structures, called surface and small-scale effects, is not able to estimate an accurate response
of such structures.

In submicron structures, the equilibrium conditions of atoms in exposure to a free surface
are different from those inside since the surface-to-volume ratio is high. In other words,
the energy of surface atoms is different from the bulk atoms. This feature that is known as
surface effects is a significant factor in the investigation of submicron structures. In order to
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incorporate the surface effects into the mechanical analysis of submicron structures using the
continuum mechanics-based approach, Gurtin and Murdoch [1, 2] presented the surface elas-
ticity theory. On the basis of this theory, the surface layers are modeled as a two-dimensional
membrane with zero thickness and different material properties from the bulk section and
are perfectly adhered to the underlying bulk section without slipping. Their achievement has
been widely used in nanoplates [3–5] and nanobeams [6–10] studies, and it has been shown
that surface properties broadly affect the mechanical behavior of submicron structures.

Lee and Chang [11] examined the effects of surface on the natural frequency using nonlocal
Timoshenko beam theory. They demonstrated while the nonlocal effect is not considered in the
model, the result has no difference from those of modified Timoshenko beam theory. Lei et al.
[12] analyzed the effects of surface on the free vibration of double-walled carbon nanotubes
by employing nonlocal Timoshenko beam theory. The influence of the surface elasticity
modulus and residual surface stress on the natural frequency is investigated in this research.
Zhang et al. [13] studied the effects of surface stress on the natural frequency of nanobeams
with use of a modified continuum model. Their results displayed that surface elasticity and
surface density have exponential relations with surface layer thickness. Therefore, surface
relaxation and surface reconstruction can impose, respectively, surface elasticity and residual
surface stresses. Ghadiri et al. [14] took into account surface effects and thermal environment
for analyzing the nonlinear forced vibration behavior of a nanobeam by Euler–Bernoulli
theory. They proved that when the residual surface stress and temperature increase, the jump
phenomenon delays.

Rouhi et al. [15] detected free vibration of nanoshells by using first-order shear deforma-
tion theory (FSDT) and surface elasticity theory of Gurtin–Murdoch. They have examined
the influences of residual surface stress, surface elasticity modulus and surface mass density
on responses. In another work [16], they analyzed the nonlinear vibration of a cylindrical
nanoshell considering the effects of surface by Gurtin–Murdoch method and von Kármán’s
equation, to illustrate that the responses of Gurtin–Murdoch and classical theories are sig-
nificantly different from each other.

Nanthakumar et al. [17] have applied the surface properties to the shape and topology
optimization of nanostructures using Gurtin–Murdoch surface elasticity theory and coupling
of the extended finite element method (XFEM) and the level set method. They presented a
general formulation that can be used for different materials so long as their surface properties
are known.

Small-scale effects as another important feature in submicron structures are the influence
of inter-molecular or inter-atomic interactions [18] and can be taken into account in the
continuum mechanics-based approach by the size-dependent theories. There are two main
theories of this type that are the nonlocal [19, 20] and gradient elasticity [21–25] theories
which, respectively, model the two entirely different effects called stiffness softening and
stiffness enhancement phenomena in the submicron structures. In the nonlocal theory, it is
supposed that the stress at a point is not only a function of strains at that point, but also
a function of strains at all the other points within the body [26, 27]. The size-dependent
parameter in this theory is the nonlocal parameter and considers the long-range cohesive
inter-molecular or inter-atomic forces [27]. The gradient elasticity theories by the material
length scale size-dependent parameter make it possible that the higher-order deformations
and stiffness enhancement phenomenon which cannot be predicted by the nonlocal theory,
are to be included. In these theories, instead of modeling the material as a collection of points,
it is modeled as atoms with higher-order deformations and the constitutive equations consist
of strain gradient terms [28]. It can be realized that to assess the true small-scale effects
on the mechanical analysis of submicron structures, both stiffness softening and stiffness
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enhancement phenomena need to be modeled simultaneously. To this end, nonlocal strain
gradient theory (NSGT) has been presented recently [27] by combining the local and nonlocal
sections of fundamental relations. According to this method, the stress due to submicron scales
is considered in both nonlocal stress and pure strain gradient stresses [25]. Lim et al. [27]
extracted NSGT equations by employing the thermodynamic principles; consequently, the
higher-order nonlocal and the nonlocal gradient length parameters were accounted in small-
scale effects studies. Many researchers have been fascinated by the utilizations of NSGT in
vibrational behavior of nanobeams [28–31]. Ghorbani et al. [32] calibrated the nonlocal and
material length scale parameters of carbon nanotubes by comparing the results of molecular
dynamics simulation and NSGT. They have reported between the size-dependent parameters,
nonlocal parameter has the most significant effect on the natural frequency. Mohammadi
et al. [33] analyzed the vibrational behavior of a cylindrical shell by applying the NSGT. It is
concluded from this study that the strain gradient and nonlocal theories can obtain the highest
and smallest natural frequencies, respectively, and the NSGT resultants set somewhere in
between. Also, in another research, utilizing the NSGT and molecular dynamics simulation,
Mohammadi et al. [34] calibrated the size-dependent parameters of a fluid-conveying CNT.
Decreasing the nonlocal parameter through the enhancement of flow velocity is reported
in this research. The influences of size-dependent parameter on the critical flow rate and
natural frequency of single-walled carbon nanotube exerting the cylindrical shell theory and
NSGT, were examined by Mahinzare et al. [35]. Using the Gurtin–Murdoch and nonlocal
strain gradient theories, Ghorbani et al. [36] investigated the submicron scale effects on the
natural frequency of nanoshells. A new analysis that can be made in the determination of
size-dependent parameters and studying the effects of these parameters on the mechanical
behavior of submicron structures is the uncertainty analysis. To perform this analysis, one
can find a useful software framework in Ref. [37].

Functionally graded materials (FGMs) establish a class of nonhomogeneous materials
which can be made in a way that their thermo-mechanical behavior varies along a particular
direction. Zidi et al. [38] examined the bending of a FGM plate embedded in two parameters
Pasternak foundation and under thermo-hydro-mechanical loading. They used four variable
refined plate theory and obtained the nondimension stresses and displacements for plates
with the metal-ceramic mixture in their study. Kandasamy et al. [39] conducted research
on thermal buckling and free vibration of FG plates and shells. In some other works [40,
41], vibration behavior of CNT-reinforced FGM cylindrical shell was investigated in the
thermal environment. These researches observed the effect of different parameters such as
FG gradient index, CNTs distribution and their volume fraction. In addition, FGMs have some
applications in submicron structures such as MEMs, NEMs, and atomic force microscopes
[42–45]. Therefore, studying the vibration analysis and structural stability must be considered
in their mechanical design.

From the literature mentioned above, surface and small-scale effects are the two significant
characteristics in submicron structures which must be considered in the investigation of the
mechanical behavior of submicron structures utilizing continuum mechanics based approach.
Also, NSGT is a recently proposed general theory which models both stiffness softening and
stiffness enhancement phenomena of small-scale effects simultaneously. The requirement
to provide the model for the vibration analysis of FG nanoshell with surface and small-
scale effects based on Gurtin–Murdoch surface elasticity theory and NSGT, motivates us to
conduct present study. In this study, for the first time, the effects of surface properties, size-
dependent parameters and FG gradient index on the natural frequency of a FG cylindrical
shell are investigated utilizing the theories of Gurtin–Murdoch and nonlocal strain gradient.
The model presented in this study can be used as a basic model in the study of the effects
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of external loads such as thermal, visco-elastic medium and hygro-thermal on the vibration
behavior of FG nanoshell.

2 Mathematical modeling

In this section, the process of extracting the governing motion equations and the related
boundary conditions (B.Cs) of a FG cylindrical nanoshell is presented. To this end, utilizing
the FSDT and surface elasticity theory of Gurtin–Murdoch, the classical constitutive equa-
tions will be achieved, and then, by calculating nonclassical constitutive equations based on
the NSGT and using Hamilton’s principle, the corresponding equations will be extracted. At
the end of the section, the solution procedure will be discussed.

Figure 1 represents a shell with the thickness h, mean radius R, and length L, which
is considered in curvilinear coordinates (r, θ , z). The desired nanoshell contains the bulk
section with effective material properties of elastic modulus E (z), Poisson’s ratio ν(z) and
mass density ρ(z); and two thin surface layers with surface properties of elastic modulus
Es±, Poisson’s ratio νs±, mass density ρs±, and residual surface stress τ s±. The (+) and (−)
superscripts are related to the upper and bottom thin surfaces, respectively. It is supposed
that the effective material properties vary continuously through the thickness (z−) direction
as follows [46]:

P(z) � P+V +(z) + P−V−(z) (1)

where P(z), P± and V± are the effective material properties (E (z), ν(z) and, ρ(z)), con-
stituents properties (E±, υ± and ρ±) and volume fractions, respectively. According to the
power law function, the volume fractions can be stated as:

V +(z) �
(
z

h
+

1

2

)k

, V−(z) � 1 − V +(z),
h

2
≤ z ≤ h

2
(2)

in which k is the FG gradient index and shows the material properties distribution through
the thickness of the shell. By inserting Eq. (2) into Eq. (1), the following effective material
properties can be concluded:

E(z) � (
E+ − E−)( z

h
+

1

2

)k

+ E−

υ(z) � (
υ+ − υ−)( z

h
+

1

2

)k

+ υ−

ρ(z) � (
ρ+ − ρ−)( z

h
+

1

2

)k

+ ρ−

(3)

2.1 First-order shear deformation shell model

In this model, the components of displacement field will be considered as Eq. (4) where
(ux , uθ , uz) are the displacements at any point of the shell along the (x, θ , z); (u, v, w) are
the middle surface displacements along the (x, θ , z) and ψx and ψθ exhibit the total angular
rotations of the middle surface normals around the θ and x-axis, respectively.

ux (x, θ, z, t) � u(x, θ, t) + zψx (x, θ, t)

uθ (x, θ, z, t) � v(x, θ, t) + zψθ (x, θ, t)

uz(x, θ, z, t) � w(x, θ, t)

(4)
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Fig. 1 Schematic illustration of a FG cylindrical nanoshell

According to this equation and with the assumption of small displacements, the corresponding
strain tensor components are obtained as follows [15]:

εxx � ∂u

∂x
+ z

∂ψx

∂x
� ε0

xx + zκxx ; γxz � ψx +
∂w

∂x

εθθ � 1

R

(
∂v

∂θ
+ w

)
+

z

R

∂ψθ

∂θ
� ε0

θθ + zκθθ ; γθ z � ψθ +
1

R

∂w

∂θ
− v

R

γxθ �
(

1

R

∂u

∂θ
+

∂v

∂x

)
+ z

(
1

R

∂ψx

∂θ
+

∂ψθ

∂x

)
� γ 0

xθ + zκxθ

(5)

The classical constitutive equations of the bulk section can be expressed in terms of Lamé
parameters λ � υE/1 − υ2 and μ � E/2(1 + υ) as:

σ � 2με + λtr(ε)I (6)

where σ , ε, tr(), and I are the classical stress tensor, strain tensor, trace function, and identity
matrix, respectively. In FSDT it is assumed that the normal stress σzz is negligible, thus, Eq. (6)
leads to the constitutive equations as:

σxx � (λ + 2μ)εxx + λεθθ

σθθ � (λ + 2μ)εθθ + λεxx

σxθ � μγxθ , σθ z � μγθ z, σxz � μγxz

(7)
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2.2 The Gurtin–Murdoch surface elasticity theory

To consider the surface effects, the stresses on the two thin surfaces S+ (z � h/2) and S−
(z � −h/2) which, respectively, denoted by τ+

βi and τ−
βi , satisfy the equilibrium conditions

of Gurtin–Murdoch theory [1, 2] as,

τ+
βi,β − σ +

i z � ρs+ü+
i at z � h/2 i � R, θ, z; β � R, θ

τ−
βi,β + σ−

i z � ρs−ü−
i at z � −h/2 (8)

where σ +
i z and σ−

i z are the bulk section stresses at S+ and S− surfaces, respectively, and ui
are the components of displacement field. Based on the Gurtin–Murdoch surface elasticity
theory, the constitutive equations in the surface layers are expressed as [15]:

σ s±
αβ � τ s±δαβ +

(
τ s± + λs±

)
εγ γ δαβ + 2

(
μs± − τ s±

)
εαβ + τ s±us±α,β ; (α, β, γ ) � x, θ

σ s±
αz � τ s±us±z,α (9)

where σ s±
αβ are the surface stresses and δαβ is Kronecker delta. Also, λs and μs are surface

Lamé parameters. According to this equation, it can be concluded that:

σ s±
xx � τ s± +

(
λs± + 2μs±)

εxx +
(
τ s± + λs±

)
εθθ , σ s±

θx � μs±γθx − τ s±
[

1

R

∂u

∂θ
+

z

R

∂ψx

∂θ

]

σ s±
θθ � τ s± +

(
λs± + 2μs±)

εθθ +
(
τ s± + λs±

)
εxx − τ s± w

R
, σ s±

xz � τ s± ∂w

∂x

σ s±
xθ � μs±γxθ − τ s±

[
∂v

∂x
+ z

∂ψθ

∂x

]
, σ s±

θ z � τ s±

R

∂w

∂θ
(10)

As mentioned earlier, in the FSDT the normal stress σzz is negligible; but this assumption is
not able to satisfy the equilibrium equation of surface elasticity theory [Eq. (8)]. To solve this
contradiction, different distribution of σzz through the thickness is introduced [47, 48] among
which the cubically distribution is proposed for structures with varying material properties
such as FGM [48]. Using this distribution and the expression related to the i= z in Eq. (8),
σzz is then obtained as:

σzz � f (z)
(
σ s+
zz − σ s−

zz

)
+

1

2

(
σ s+
zz + σ s−

zz

)

� f (z)

[(
τ s+ + τ s−

)∂2w

∂x2 +
1

R2

(
τ s+ + τ s−

)∂2w

∂θ2 − (
ρs+ + ρs−)∂2w

∂t2

]

+
1

2

[(
τ s+ − τ s−

)∂2w

∂x2 +
1

R2

(
τ s+ − τ s−

)∂2w

∂θ2 − (
ρs+ − ρs−)∂2w

∂t2

]
(11)

where f (z) � 2z
h

(
z2

h2 − 3
4

)
. So, the normal stresses σxx and σθθ in Eq. (7) are modified as:

σxx � (λ + 2μ)εxx + λεθθ +
λ

2μ
σzz

σθθ � (λ + 2μ)εθθ + λεxx +
λ

2μ
σzz (12)
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Thus, the classical force resultants Ñ c
i j , bending moments M̃c

i j and shear forces Q̃c
i j incor-

porating the surface effects can be deduced as follows:

Ñ c
xx �

h/2∫
−h/2

σxxdz + σ s+
xx + σ s−

xx ⇒ Ñ c
xx � A∗

11ε
0
xx + A∗

12ε
0
θθ + B∗

11kxx + B∗
12kθθ +

(
τ s+ + τ s−

)

+ a1

(
∂2w

∂x2 +
1

R2

∂2w

∂θ2

)
− a2

∂2w

∂t2

Ñ c
θθ �

h/2∫
−h/2

σθθdz + σ s+
θθ + σ s−

θθ ⇒ Ñ c
θθ � A∗

11ε
0
θθ + A∗

12ε
0
xx + B∗

11kθθ + B∗
12kxx +

(
τ s+ + τ s−

)

+ a1
∂2w

∂x2 +
a1

R2

∂2w

∂θ2 − a2
∂2w

∂t2 − (
τ s+ + τ s−

)w

R

Ñc
xθ �

h/2∫
−h/2

σxθdz +
1

2

(
σ s+
xθ + σ s−

xθ + σ s+
θx + σ s−

θx

) ⇒ Ñ c
xθ � A∗

66γ
0
xθ + B∗

66kxθ

M̃c
xx �

h/2∫
−h/2

σxx zdz +
h

2

(
σ s+
xx − σ s−

xx

) ⇒ M̃c
xx � B∗

11ε
0
xx + B∗

12ε
0
θθ + D∗

11kxx + D∗
12kθθ

+
h

2

(
τ s+ − τ s−

)
+ b1

(
∂2w

∂x2 +
1

R2

∂2w

∂θ2

)
− b2

∂2w

∂t2

M̃c
θθ �

h/2∫
−h/2

σθθ zdz +
h

2

(
σ s+

θθ − σ s−
θθ

) ⇒ M̃c
θθ � B∗

11ε
0
θθ + B∗

12ε
0
xx + D∗

11kθθ + D∗
12kxx

+
h

2

(
τ s+ − τ s−

)
+ b1

(
∂2w

∂x2 +
1

R2

∂2w

∂θ2

)
− b2

∂2w

∂t2 − h

2

(
τ s+ − τ s−

)w

R

M̃c
xθ �

h/2∫
−h/2

σxθ zdz +
h

2

(
σ s+
xθ − σ s−

xθ + σ s+
θx − σ s−

θx

) ⇒ Ñ c
xθ � B∗

66γ
0
xθ + D∗

66kxθ

Qc
xz � κs A66γxz, Qc

θ z � κs A66γθ z, Qs c
xz � (

τ s+ + τ s−
)∂w

∂x
, Qs c

θ z � (
τ s+ + τ s−

) 1

R

∂w

∂θ
(13)

where κs � 5/6 is the shear correction factor [49]. The defined coefficients in this equation
are presented in “Appendix”. This equation will be used in extracting the governing motion
equations and B.C. in terms of displacement field components.

2.3 Nonlocal strain gradient theory

As mentioned in the introduction section, Lim et al. [27] proposed the NSGT that contains
two independent material size-dependent parameters, nonlocal parameter ξ and material
length scale parameter l, which are associated with the nonlocal [20] and pure strain gradient
theories [25], respectively. The NSGT general stress tensor, t, is explained as:

t � σ − ∇σ (1) (14)
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where ∇ is the gradient operator. Also, σ and σ (1) are the nonlocal stress tensors of zeroth
and higher order and are defined as follows [50]:

(1 − ζ 2∇2)σ � C:ε (15)

(1 − ζ 2∇2)σ (1) � l2 C: ∇ε (16)

in which ε, ∇ε and C denote the strain tensor, strain gradient tensor and fourth-order elasticity
tensor, respectively, and ∇2 is the Laplacian operator. Using Eqs. (15), (16) and (14), the
constitutive equation of NSGT can be then obtained. The index notation of this equation is
as follows:

(1 − ζ 2∇2)ti j � Ci jklεkl − l2δmnCi jklεkl,mn ⇒
(1 − ζ 2∇2)ti j � Ci jkl (1 − l2∇2)εkl ⇒
(1 − ζ 2∇2)ti j � (1 − l2∇2)σ c

i j (17)

Here σ c
i j is the classical stress tensor. The governing motion equations and boundary condi-

tions will be derived by computing the strain and kinetic energies and then using Hamilton’s
principle. According to this principle, the variation of the energy of system in the time domain
must be set equal to zero. In the absence of work done by external forces, this principle is
formulated as follows:

δ

∫ t2

t1
(ΠT − Πs) dt � 0 (18)

Here δ is the variation operator, and, ΠT and Πs indicate the kinetic and potential energies,
respectively. According to the NSGT, the strain energy is expressed as [51]:

Πs � 1

2

˚

V

(
σi jεi j + σ

(1)
i jmεi j,m

)
dV (19)

This equation can be rewritten in the following form using the divergence theorem:

Πs�1

2

˚

V

(
σi j − σ

(1)
i jm,m

)
εi jdV +

1

2

¨

A

σ
(1)
i jmεi jdAnx

�1

2

˚

V

ti jεi jdV +
1

2

¨

A

σ
(1)
i jmεi jdAnx (20)

where nx is the unit vector perpendicular to cross-section area and dA � Rdθdz. By defining
the nonclassical force resultants Ñi j , Ñ

(1)
i j , bending moments M̃i j , M̃

(1)
i j and shear forces

Q̃i j , Q̃
(1)
i j based on their counterpart in classical form as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ñxx , Ñ
(1)
xx

Ñθθ , Ñ
(1)
θθ

Ñxθ

Ñ (1)
xθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�
h/2∫

−h/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

txx , σ
(1)
xx

tθθ , σ
(1)
θθ

txθ

σ
(1)
xθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t s+
xx + t s−xx , σ

s+(1)
xx + σ

s+(1)
xx

ts+
θθ + t s−θθ , σ

s+(1)
θθ + σ

s−(1)
θθ

0.5
(
t s+
xθ + t s−xθ + t s+

θx + t s−θx

)
0.5

(
σ
s+(1)
xθ + σ

s−(1)
xθ + σ

s+(1)
θx + σ

s−(1)
θx

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M̃xx , M̃
(1)
xx

M̃θθ , M̃
(1)
θθ

M̃xθ

M̃ (1)
xθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�
h/2∫

−h/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

txx , σ
(1)
xx

tθθ , σ
(1)
θθ

txθ

σ
(1)
xθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
zdz +

h

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t s+
xx − t s−xx , σ

s+(1)
xx − σ

s+(1)
xx

ts+
θθ − t s−θθ , σ

s+(1)
θθ − σ

s−(1)
θθ

0.5
(
t s+
xθ − t s−xθ + t s+

θx − t s−θx

)
0.5

(
σ
s+(1)
xθ − σ

s−(1)
xθ + σ

s+(1)
θx − σ

s−(1)
θx

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q̃xz, Q̃
(1)
xz

Q̃θ z, Q̃
(1)
θ z

Q̃s
xz, Q̃

s(1)
xz

Q̃s
θ z, Q̃

s(1)
θ z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�
h/2∫

−h/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

txz, σ
(1)
xz

tθ z, σ
(1)
θ z

t s+
xz + t s+

xz , σ
s+(1)
xz + σ

s+(1)
xz

t s+
θ z + t s+

θ z , σ
s+(1)
θ z + σ

s+(1)
θ z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz (21)

the strain energy can be written as

Πs � 1

2

∫
A

⎧⎨
⎩

Ñxxε
0
xx + Ñθθ ε

0
θθ + Ñxθ γ

0
xθ + M̃xxκxx + M̃θθ κθθ + M̃xθ κxθ

+Q̃xzγxz + Q̃θ zγθ z+Q̃
s
xz

∂w

∂x
+ Q̃s

θ z
1

R

∂w

∂θ

⎫⎬
⎭ds

+
1

2

∫ ⎧⎨
⎩

Ñ (1)
xx ε0

xx + Ñ (1)
θθ ε0

θθ + Ñ (1)
xθ γ 0

xθ + M̃ (1)
xx κxx + M̃ (1)

θθ κθθ + M̃ (1)
xθ κxθ

+Q̃(1)
xz γxz + Q̃(1)

θ z γθ z+Q̃
s(1)
xz

∂w

∂x
+ Q̃s(1)

θ z
1

R

∂w

∂θ

⎫⎬
⎭Rdθnx (22)

where ds � Rdθdx . It should be noted that in Eq. (21) the terms with (s±) superscripts are
related to the surface stresses.

The kinetic energy of the system can be expressed as:

ΠT � 1

2

∫
s

h/2∫
−h/2

ρ

[(
∂ux
∂t

)2

+

(
∂uθ

∂t

)2

+

(
∂uz
∂t

)2
]

dzds

+
1

2

∫
s+

ρs+

[(
∂ux
∂t

)2

+

(
∂uθ

∂t

)2

+

(
∂uz
∂t

)2
]

ds+

+
1

2

∫
s−

ρs−
[(

∂ux
∂t

)2

+

(
∂uθ

∂t

)2

+

(
∂uz
∂t

)2
]

ds− (23)

By inserting Eq. (4) into Eq. (23), the kinetic energy takes the form of:

ΠT � 1

2

∫
s

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I ∗
0

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]

+ 2I ∗
1

[(
∂u

∂t

)(
∂ψx

∂t

)
+

(
∂v

∂t

)(
∂ψθ

∂t

)]

+I ∗
2

[(
∂ψx

∂t

)2

+

(
∂ψθ

∂t

)2
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ds

(24)

where

I ∗
0 �

h/2∫
−h/2

ρdz +
(
ρs+ + ρs−)

, I ∗
0 �

h/2∫
−h/2

ρzdz +
h

2

(
ρs+ − ρs−)

I ∗
2 �

h/2∫
−h/2

ρz2dz +
h2

4

(
ρs+ + ρs−)

(25)

By substituting Eqs. (22) and (24) in Eq. (18) and calculating the first variation, the equations
of motion can be derived as:

δu :
∂

∂x

(
Ñxx

)
+

1

R

∂

∂θ

(
Ñxθ

)
� I ∗

0
∂2u

∂t2
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δv :
1

R

∂

∂θ

(
Ñθθ

)
+

∂

∂x

(
Ñxθ

)
+

1

R
Qθ z � I ∗

0
∂2v

∂t2

δw :
∂

∂x

(
Q̃xz + Q̃s

xz

)
+

1

R

∂

∂θ

(
Q̃θ z + Q̃s

θ z

)
− 1

R
Ñθθ � I ∗

0
∂2w

∂t2

δψx :
∂

∂x

(
M̃xx

)
+

1

R

∂

∂θ

(
M̃xθ

)
− Q̃xz � I ∗

2
∂2ψx

∂t2

δψθ :
1

R

∂

∂θ

(
M̃θθ

)
+

∂

∂x

(
M̃xθ

)
− Q̃zθ � I ∗

2
∂2ψθ

∂t2 (26)

and B.Cs as:

δu � 0 or Ñxx − 1

R

∂ Ñ (1)
xθ

∂θ
� 0, δ

∂u

∂x
� 0 or Ñ (1)

xx � 0

δv � 0 or Ñxθ − 1

R

∂ Ñ (1)
θθ

∂θ
− Q̃(1)

θ z

R
� 0, δ

∂v

∂x
� 0 or Ñ (1)

xθ � 0

δw � 0 or Q̃xz + Q̃s
xz +

Ñ (1)
θθ

R
− 1

R

∂ Q̃(1)
θ z

∂θ
− 1

R

∂ Q̃s (1)
θ z

∂θ
� 0

δ
∂w

∂x
� 0 or Q̃(1)

xz + Q̃s (1)
xz � 0

δψx � 0 or M̃xx − 1

R

∂ M̃ (1)
xθ

∂θ
+ Q̃(1)

xz � 0, δ
∂ψx

∂x
� 0 or M̃ (1)

xx � 0

δψθ � 0 or M̃xθ − 1

R

∂ M̃ (1)
θθ

∂θ
+ Q̃(1)

θ z � 0, δ
∂ψθ

∂x
� 0 or M̃ (1)

xθ � 0

(27)

According to Eq. (17) which is actually the relation between the nonclassical and classical
stresses, and Eq. (15), it can be concluded that

(1 − ζ 2∇2)

⎧⎪⎪⎨
⎪⎪⎩

Ñi j

M̃i j

Q̃i j

⎫⎪⎪⎬
⎪⎪⎭

� (1 − l2∇2)

⎧⎪⎪⎨
⎪⎪⎩

Ñ c
i j

M̃c
i j

Q̃c
i j

⎫⎪⎪⎬
⎪⎪⎭

(28)

(1 − ζ 2∇2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ñ (1)
i j

M̃ (1)
i j

Q̃(1)
i j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� l2
∂

∂x

⎧⎪⎪⎨
⎪⎪⎩

Ñ c
i j

M̃c
i j

Q̃c
i j

⎫⎪⎪⎬
⎪⎪⎭

(29)

By applying Eqs. (28) and (29) in Eqs. (26) and (27) and using Eq. (13), the governing motion
equations and B.Cs can be extracted in terms of components of displacement field (i.e., u, v,
w, ψx and ψθ ).

2.4 The solution procedure

The extracted governing equations are solved using the generalized differential quadrature
(GDQ) method. This method was presented by Shu and Richards [52] and Shu [53] as an
extension of the differential quadrature (DQ) method [54, 55]. According to this method, the
mth order derivative at a grid point coordinate xi along the x-direction, f (m)

x (xi ), is given as:

f (m)
x (xi ) �

N∑
j�1

C (m)
i j f

(
x j

)
, i � 1, 2, . . . , N (30)
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whereN is the number of grid points along the x-direction, andC (m)
i j are the weighting factors

ofmth order derivative. In the GDQ method, the weighting factors of the first-order derivative
can be computed without any restriction in the choice of the number of grid points as follows
[56]:

C (1)
i j � M(xi )(

xi − x j
)
M

(
x j

) , i, j � 1, 2, . . . , N and i �� j

C (1)
i i � −

N∑
j�1,i �� j

C (1)
i j , i � j (31)

where

M(xi ) �
N∏

j�1,i �� j

(
xi − x j

)
(32)

For the mth order derivative, the weighting factors will be calculated considering the recur-
rence formula as follows:

C (m)
i j � m

(
C (1)
i j C (m−1)

i j − C (m−1)
i j(

xi − x j
)
)

, j �� i, 2 ≤ m ≤ N − 1

C (m)
i i � −

N∑
j�1,i �� j

C (m)
i j , j � i (33)

The distribution of grid points plays an important role in the acceptable performance of the
DQ/GDQ method. In this paper, Chebyshev–Gauss–Lobatto as a nonuniform distribution is
utilized which determines the coordinates of grid points as follows:

xi � 1

2

[
1 − cos

(
i − 1

N − 1
π

)]
, i � 1, 2, . . . N (34)

To solve the governing equations, the following solutions are assumed for the components
of displacement field: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(x, θ, t)
v(x, θ, t)
w(x, θ, t)
ψx (x, θ, t)
ψθ (x, θ, t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�
∞∑
n�1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Un(x) cos (nθ )eiωt

Vn(x) sin (nθ )eiωt

Wn(x) cos (nθ )eiωt

Ψnx (x) cos (nθ )eiωt

Ψnθ (x) sin (nθ )eiωt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(35)

Here U, V,W, �x , and �θ denote the vibration amplitudes. Also, n and ω exhibit the cir-
cumferential wave number and the natural frequency of nanoshell, respectively. By inserting
Eq. (35) into the governing equations and related B.Cs and then employing the GDQ method,
the following general relation is achieved:

(
[K ] + [M]ω2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U
V
W
Ψx

Ψθ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

� 0 (36)

in which K and M are the stiffness and mass matrixes, respectively. Finally, by calculating
the eigenvalues of the above equation, natural frequencies will be predicted.
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Table 1 Bulk and surfaces
material properties [48]

Properties Unit Bottom surface Upper surface

E GPa 177.3 56.25
ν – 0.27 0.25

ρ kg/m3 7000 3000
λs N/m − 8 7
μs

N/m 2.5 8
τ s N/m 1.7 0.11

ρs kg/m2 7 × 10−6 7 × 10−4

At the end of this subsection, it should be mentioned that in addition to the finite element
based solution methods in solving the governing equations, recently, new solution methods
[57, 58] based on neural networks and machine learning have presented which can be used
in this regard.

3 Numerical results and discussion

In the current section, results of the proposed FG nanoshell will be analyzed. The bulk and
surfaces material properties of this nanoshell are illustrated in Table 1. Also, the dimensionless
nonlocal and material length scale parameters are supposed to be ζ/h � 50 and l/h �
10, respectively. It should be noted that for simplicity, different theories of the classical
continuum, nonlocal, strain gradient and nonlocal strain gradient are displayed as Classic,
Nonlocal, SG and NSGT, respectively.

3.1 Convergence and stability

In order to investigate the convergence and stability of the GDQ method in different theo-
ries and B.Cs with and without consideration of surface effects, the dimensionless natural
frequency of a FG cylindrical nanoshell for the various number of grid points are listed in
Table 2. The dimensionless natural frequency is given by:

� � ωR
√

ρ+/E+ (37)

It is observed that in all cases for simply supported (SS) B.Cs and the case of with surface
effects for clamped (CC) B.Cs, convergence occurs in the minimum number of grid points,
i.e., 13. Beside, SG theory without surface effects and clamped B.Cs requires the maximum
number of grid points (i.e., 21) for convergence. Also, it can be concluded that the sur-
face effects have led to the enhancement of the stability and the rate of convergence of the
responses. The geometric properties of the presented shell model are h � 0.3 nm, R/h � 10,
L/R � 20, ζ/h � 50, l/h � 10, k � 2.

3.2 Comparison of results

In Table 3, results of the natural frequency for a simply supported FG cylindrical macroshell
are compared with those obtained by Loy et al. [59] for various FG gradient index and
the thickness-to-radius ratio. The upper and inner surfaces of this shell consist of Nickel
(E+ � 205.098 GPa, ν+ � 0.31, ρ+ � 8900 kg/m3) and stainless steel (E+ � 207.788 GPa,
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Table 2 Convergence of the dimensionless natural frequency � � ωR
√

ρ+/E+ for a FG cylindrical shell
(h � 0.3 nm, R/h � 10, L/R � 20, ζ/h � 50, l/h � 10, k � 2)

Theory Type B.C. Number of grid points N

13 15 17 19 21 23

Classic Without surface effects CC 0.03936 0.03933 0.03932 0.03931 0.03931 0.03931

SS 0.01929 0.01929 0.01929 0.01929 0.01929 0.01929

With surface effects CC 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872

SS 0.00845 0.00845 0.00845 0.00845 0.00845 0.00845

Nonlocal Without surface effects CC 0.00761 0.00761 0.00761 0.00760 0.00760 0.00760

SS 0.00374 0.00374 0.00374 0.00374 0.00374 0.00374

With surface effects CC 0.00169 0.00169 0.00169 0.00169 0.00169 0.00169

SS 0.00164 0.00164 0.00164 0.00164 0.00164 0.00164

SG Without surface effects CC 0.05715 0.05716 0.05715 0.05715 0.05714 0.05714

SS 0.02854 0.02854 0.02854 0.02854 0.02854 0.02854

With surface effects CC 0.01231 0.01231 0.01231 0.01231 0.01231 0.01231

SS 0.01190 0.01190 0.01190 0.01190 0.01190 0.01190

NSGT Without surface effects CC 0.01106 0.01106 0.01106 0.01106 0.01106 0.01106

SS 0.00553 0.00553 0.00553 0.00553 0.00553 0.00553

With surface effects CC 0.00240 0.00240 0.00240 0.00240 0.00240 0.00240

SS 0.00233 0.00233 0.00233 0.00233 0.00233 0.00233

Table 3 Comparison of the natural frequency ω̃ � ω/2π for a simply supported FG cylindrical macro shell
(m � n � 1 and L/R � 20)

h/R Sources FG gradient index, k

0 0.5 1 2 5 15 30

0.002 [59] 13.548 13.321 13.211 13.103 12.998 12.933 12.914

Present study 13.54799 13.32108 13.21111 13.10336 12.99774 12.93278 12.91406

0.05 [59] 13.572 13.345 13.235 13.127 13.021 12.956 12.937

Present study 13.57185 13.34490 13.23485 13.12694 13.02105 12.95582 12.93701

ν+ � 0.317756, ρ+ � 8166 kg/m3), respectively. From this table, the results of this study are
in excellent accord with those given by Loy et al. [59]. For another validation of the present
study, as tabulated in Table 4 for different values of the nonlocal parameter and the thickness-
to-radius ratio, a simply supported homogeneous nonlocal cylindrical shell model provides
a good agreement with Alibeigloo and Shaban [60]. The observed difference between the
results is due to the fact that in Ref. [60] the three-dimensional elasticity theory is used to
investigate the vibration of the nanoshell. Here, the shell has the properties of E � 1.06 TPa,
ν � 0.3, ρ � 2300 kg/m3, R � 2.32 nm, and L/R � 5. Notice that for comparison study,
the surface effects have been ignored.
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Table 4 Comparison of the
dimensionless natural frequency
� � ωR

√
ρ/E for a simply

supported homogeneous
cylindrical nanoshell based on
the nonlocal theory (m � n � 1
and L/R � 5)

h/R Sources Nonlocal parameter, ζ (nm)

0 0.3 0.7 0.9

0.02 [60] 0.19686 0.18987 0.18287 0.17937

Present study 0.19536 0.19312 0.18403 0.17761

0.05 [60] 0.20036 0.19336 0.18287 0.17937

Present study 0.19542 0.19318 0.18408 0.17766

(b)(a)

Fig. 2 Variation of the dimensionless natural frequency � with length-to-radius ratio L/R for different values
of surface elastic property λs -homogenous cylindrical nanoshell. a Clamped and b simply supported B.Cs
(h � 0.3 nm, R/h � 10, ζ/h � 50, l/h � 10)

3.3 Effect of surface properties

The aim of this subsection is establishing a comprehensive study on the effects of surface
properties on the dimensionless natural frequency. To this end, a clamped and a simply
supported homogenous cylindrical nanoshell based on the NSGT with properties of h �
0.3 nm, R/h � 10, ζ/h � 50, l/h � 10 are considered. Figures of this subsection include two
parts (a) and (b) which are, respectively, related to the clamped and simply supported B.Cs.

The effects of surface elastic properties of λs and μs are discussed at first. The positive
values of these parameters have the concept of enhancing the stiffness of the whole structure,
and the negative values have the sense of reducing it. Therefore, due to the direct relationship
between the frequency and the stiffness of structure, compared to the zero values of these
properties, their positive and negative values have led to the increase and decrease in the
frequency, respectively. This effect is visible in Figs. 2 and 3 in which the variation of
frequency versus length-to-radius ratio is plotted in different values of λs and μs , respectively.

From the comparative investigation of the influence of these two surface elastic properties
on the frequency, as it can be seen in Figs. 2 and 3, the μs property is more effective than the
λs in this regard. Also, the negative values of λs make more changes to the frequency than
the positive values of this property, while this behavior is not significant for the μs . Another
remarkable conclusion from these figures is the reduction of the surface elastic properties
effect on the frequency by increasing the ratio of length to radius and convergence of the
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(a) (b)

Fig. 3 Variation of the dimensionless natural frequency � with length-to-radius ratio L/R for different values
of surface elastic property μs -homogenous cylindrical nanoshell. a Clamped and b simply supported B.Cs
(h � 0.3 nm, R/h � 10, ζ/h � 50, l/h � 10)

results to the frequency which is close to the frequency of without considering these surface
properties. So, it can be concluded that by increasing the ratio of length to radius, and in fact
by increasing the size of the structure, these properties can be ignored.

Next investigation is about the effect of surface mass density ρs on the frequency. As
illustrated in Fig. 4, given that the consideration of surface mass density leads to an increase
in the density of structure, the frequency reduces through the enhancement of this property.
This behavior can be interpreted in such a way that considering the surface mass density
makes the structure more flexible. This reduction in frequency does not occur at a constant
rate. It means that with a gradual increase in surface mass density, the variation of frequency
decreases. Also, the same behavior to the surface elastic properties can be seen by increasing
the ratio of length to radius, i.e., diminution of the effect of surface mass density on the
frequency and approaching the frequency to the case of without surface mass density.

In order to examine the effect of the surface residual stress τ s , the variation of the dimen-
sionless natural frequency versus the ratio of length to radius for different values of the
surface residual stress is plotted in Fig. 5. This figure shows that the positive surface residual
stress, in the sense of tensile stress, leads to an increase in frequency. This increase goes on
with an almost constant rate by enhancing the surface residual stress. About the effect of
the ratio of length to radius, contrary to the behavior of other surface properties that their
effect declines by increasing this ratio, for the surface residual stress, its effect decreases to
a certain value of the ratio of length to radius and then remains constant. This certain ratio
depends on the amount of surface residual stress so that the increase in the surface residual
stress reduces this ratio. In fact, the surface residual stress has caused that the independence
of the frequency from the ratio of length to radius occurs in a lower ratio. Moreover, it can be
observed that the influence of surface residual stress is more pronounced in simply supported
B.Cs. In other words, the influence of surface residual stress increases for the softer bound-
ary conditions and it means that besides the geometric parameters and the value and sign
of surface properties, the B.Cs also play a role in the influence of surface residual stress on
the frequency. For surface elastic and surface mass density properties, there is no significant
distinction between the results of different B.Cs.
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(a) (b)

Fig. 4 Variation of the dimensionless natural frequency � with length-to-radius ratio L/R for different values
of surface mass density ρs -homogenous cylindrical nanoshell. a Clamped and b simply supported B.Cs (h �
0.3 nm, R/h � 10, ζ/h � 50, l/h � 10)

(a) (b)

Fig. 5 Variation of the dimensionless natural frequency � with length-to-radius ratio L/R for different values
of surface residual stress τ s -homogenous cylindrical nanoshell. a Clamped and b simply supported B.Cs (h �
0.3 nm, R/h � 10, ζ/h � 50, l/h � 10)

From the comparative analysis, one can find that among the surface properties, the effects
of surface residual stress are relatively the major ones.

3.4 Effect of surface and FG gradient index

In this subsection, the dimensionless natural frequency of a clamped and simply supported
FG cylindrical shell has been presented based on the various continuum mechanics theories
including classical (Classic) (ζ/h � 0, l/h � 0), nonlocal (Nonlocal) (ζ/h � 50, l/h � 0),
strain gradient (SG) (ζ/h � 0, l/h � 10) and nonlocal strain gradient (NSGT) (ζ/h � 50,
l/h� 10), with consideration of the surface effects and without them. According to Fig. 6 and
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(a)

With surface effectWithout surface effect
(b)

With surface effect Without surface effect

Fig. 6 Variation of the dimensionless natural frequency � with length-to-radius ratio L/R for different con-
tinuum mechanics theories-FG cylindrical nanoshell. a Clamped and b simply supported B.Cs (h � 0.3 nm,
R/h � 10, ζ/h � 50, l/h � 10, k � 2)

also Tables 5 and 6, by comparing the results of different theories, the greatest and smallest
frequency will be achieved by employing the strain gradient and nonlocal theories, respec-
tively. Indeed, nonlocal and strain gradient theories due to the modeling the softening and
stiffening phenomena, respectively, predict the more and less frequency in comparison with
classical theory. The nonlocal strain gradient theory by applying both phenomena simultane-
ously computes the frequency between the frequency of nonlocal and strain gradient theories
whose value depends on the values of nonlocal and material length scale size-dependent
parameters. This behavior is observed in both cases of with and without the consideration of
surface effects. As indicated in Fig. 6, in the case of without surface effects, by increasing the
length-to-radius ratio the difference between the frequency of different theories decreases
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Table 5 Effect of length-to-radius ratio L/R and surface properties on the dimensionless natural frequency �

of FG cylindrical nanoshell in different continuum mechanics theories and B.Cs (h � 0.3 nm, R/h � 10, k �
2, ζ/h � 50, l/h � 10)

Theory Type B.C.

CC SS

L/R � 10 L/R � 50 L/R � 10 L/R � 50

Classic Without surface effect 0.1199 0.0071 0.0706 0.0033

With surface effect 0.0113 0.0083 0.0096 0.0083

Nonlocal Without surface effect 0.0224 0.0014 0.0132 0.0006

With surface effect 0.0021 0.0016 0.0018 0.0016

SG Without surface effect 0.1808 0.0107 0.1016 0.0057

With surface effect 0.0160 0.0117 0.0141 0.0117

NSGT Without surface effect 0.0342 0.0021 0.0193 0.0011

With surface effect 0.0031 0.0023 0.0026 0.0023

Table 6 Effect of FG gradient index k and surface effects on the dimensionless natural frequency � of FG
cylindrical nanoshell in different continuum mechanics theories and B.Cs (h � 0.3 nm, R/h � 10, L/R � 20,
ζ/h � 50, l/h � 10)

Theory Type B.C. FG gradient index, k

0.2 0.4 1.4 4

Classic Without surface effect CC 0.03655 0.03747 0.03900 0.03973

SS 0.01794 0.01839 0.01914 0.01950

With surface effect CC 0.00864 0.00866 0.00871 0.00874

SS 0.00844 0.00844 0.00845 0.00845

Nonlocal Without surface effect CC 0.00707 0.00725 0.00755 0.00769

SS 0.00348 0.00356 0.00371 0.00378

With surface effect CC 0.00168 0.00168 0.00169 0.00170

SS 0.00164 0.00164 0.00165 0.00165

SG Without surface effect CC 0.05301 0.05447 0.05673 0.05763

SS 0.02631 0.02724 0.02842 0.02854

With surface effect CC 0.01216 0.01220 0.01229 0.01234

SS 0.01185 0.01187 0.01188 0.01190

NSGT Without surface effect CC 0.01026 0.01054 0.01099 0.01115

SS 0.00510 0.00528 0.00551 0.00553

With surface effect CC 0.00237 0.00238 0.00240 0.00241

SS 0.00231 0.00232 0.00232 0.00233

and at higher ratios, the effect of this ratio has declined and the frequency will reach an almost
constant value. On the other hand, consideration of surface effects causes that this difference
remains constant and does not change with the variation of length-to-radius ratio. Moreover,
the frequency independence from the length-to-radius ratio occurs at the lower ratios.
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According to the results of the previous subsection, it can be concluded that the observed
behavior in the case of with surface effects is due to the surface residual stress property and
as expressed before, surface residual stress is the most influential surface property on the
frequency.

To more accurately investigate the influence of surface effects on the frequency of the
proposed FG shell model in different length-to-radius ratios, the values of dimensionless
frequency in length-to-radius ratios of 10 and 50, for different continuum theories, B.Cs
and with and without surface effects are shown in Table 5. An overall conclusion from this
table is that the difference between the frequency of with and without surface effects is
more prominent at lower value of length-to-radius ratio and for the high ratio this difference
drastically reduced. Therefore, it can be said that considering surface effects at lower length-
to-radius ratio is critical for correctly predicting the behavior of nanoscale systems and it is not
enough to just modeling these systems based on the nonclassical continuum size-dependent
theories. Next interesting result in this table is about the frequency of length-to-radius ratio
of 50 in simply supported B.Cs and with surface effects, in which its value is equal to the
results of clamped B.Cs. In other words, in the high length-to-radius ratio, when surface
effects are considered, the frequency is independent of B.Cs. This behavior is observed in all
four theories. At the low ratios, being larger the clamped frequency from simply supported
frequency is valid. Moreover, by comparing the frequency of with and without surface effects,
it can be deduced that its ratio follows an almost constant value in all four theories, which
means that the influence of surface effects on the frequency is independent of the type of
continuum mechanics theories. Also, it is seen that consideration of surface effects reduces
and enhances the frequency at length-to-radius ratios 10 and 50, respectively. It is worth noting
that, as discussed in the previous subsection, the influence of surface effects on the frequency
depends on the geometry and both value and sign of surface properties, so, increasing and/or
decreasing influence of surface effects on frequency are not general results.

About the FG gradient index effect, as depicted in Table 6, an enhancement of this parame-
ter increases the frequency in all continuum mechanics theories and types of with and without
the consideration of surface effects. Also, from this table it can be realized that surface prop-
erties decrease the effect of FG gradient index. In other words, surface properties decrease
the rate of frequency changes relative to FG gradient index. This behavior is less pronounced
in strain gradient theory as compared to other theories.

4 Conclusion

In this paper, by applying the Gurtin–Murdoch surface elasticity theory and NSGT, surface
effects on the natural frequency of a FG cylindrical nanoshell were investigated. It is observed
that with increasing the surface elastic properties and residual surface stress, the frequency
increases and surface mass density reduces the frequency, and among the surface properties,
the surface residual stress has the most effect on the frequency. Also, except the surface
residual stress, the effect of other surface properties decreases through the enhancement of
the length-to-radius ratio. The difference between the frequency of with and without surface
effects is more prominent at lower values of length-to-radius ratio and for the high ratio this
difference drastically reduced. In the high length-to-radius ratio, when surface effects are
considered, the frequency is independent of the boundary conditions. Generally, in addition
to the sign and the value of surface properties, geometric parameters also play a role in the
influence of surface properties on the natural frequency. Also, surface properties decline the
rate of frequency changes relative to FG gradient index. This behavior is less pronounced
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in strain gradient theory as compared to other theories. Another noticeable result was that
utilizing the strain gradient and nonlocal theories, the greatest and smallest frequency could
be predicted, respectively, and the results of NSGT fall somewhere in between. Given the
importance of natural frequency as an inherent property and design criteria, the results of the
present study can be useful in precise prediction and properly design of the micro/nanoscale
equipment.

Appendix

The coefficients in Eq. (13) are defined as follows:
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