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Abstract This paper investigates the behavior of an electromagnetic plane wave when it
makes incidence with the interface of two different chiral media. The incident fields are
right and left circularly polarized waves. The reflected and transmitted fields have the both
co- and cross-polarized (with respect to the incident polarization) components, because of
optical activity existence in chiral medium. Analytical closed-form formulas are presented
for the reflection and transmission coefficients. Next, conditions that lead to Brewster angles
are presented for the right and left circularly polarized excitations. Finally, the effects of
incident angle, chirality parameters and permittivity of the chiral media are analyzed; also
finite element method is used to validate the investigation.

1 Introduction

Physical and EM properties of combination of new materials are always interesting. One
of the most important topics in the physics and EM theories is the polarization [1]. It is a
specification of transverse EM waves and has wide range of applications such as: liquid crystal
display [2], antennas radiation [3], satellite links [4] and optical structures [1]. Many scientists
have worked to change the polarization of the EM wave in presence of novel structures
like: ferromagnetic [5, 6], anisotropic metamaterials [7] and chiral medium [8–10]. Rotation
of polarization occurred in optically active materials such as chiral medium [11]. Chiral
medium exhibits circular birefringence and different phase velocities for the left circularly
polarized (LCP) and the right circularly polarized (RCP) fields. Also, chiral medium has
been a state of the art in physics [12, 13] and electromagnetic theory like: EM scattering
[14–17], the reflection and transmission coefficients of the interferences of dielectric-chiral
[18] and chiral-dielectric [19]. Time harmonic dependency is assumed as exp(− jωt), and it
is implicit throughout this investigation.

A chiral medium can be expressed by the following constitutive relation [18]:

D � εE + jγB (1)

H � jγE + B
/

μ (2)
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Here μ(� μ0μr ), ε(� ε0εr ) and γ are permeability, permittivity and chirality of the chiral
medium, respectively. Also,E,H,D and B are electric field intensity, magnetic field intensity,
electric flux density and magnetic flux density, respectively.

Two waves propagate in the chiral medium [18]: right and left circularly polarized (RCP
and LCP) waves. The wave number for the RCP wave is expressed as:

h1 � ωμγ +
(
ω2μ2γ 2 + k2)1/ 2

(3)

and the one for the LCP wave is:

h2 � −ωμγ +
(
ω2μ2γ 2 + k2)1/ 2

(4)

where

k � ω
√

με (5)

The total electric field in the chiral medium is summation of the RCP and the LCP fields.
Intrinsic impedance of the chiral medium is equal to η �

√
μ

/
ε. The two phenomena of

optical rotatory dispersion (ORD) and circular dichroism (CD) are found when an EM plane
wave with linear polarization travels through a suspension of chiral molecules [11]. ORD
is called as rotation of the plane of polarization of the transmitted plane wave with respect
to that of the incident plane wave, while CD is defined as the differential absorption of the
left and the right circularly polarized plane waves inside the chiral medium [11]. In this
paper, closed-form formulas for reflection and transmission coefficients and also Brewster
angles are calculated for geometry of interface of two different chiral media. Generally, the
reflection and transmission coefficients are very important [20, 21] to help us to predict and
understand the behavior of EM waves [22, 23]. Closed-form equations are analytical and fast
[24]; being fast [25–27] and analytical [28, 29] have been among the most important and
interesting features in scientific and engineering studies.

2 Geometry and theoretical derivation

The geometry of the problem is shown in Fig. 1, where upper half space (y > 0) is filled by
chiral medium 1 and the lower one (y < 0) by chiral medium 2. A plane wave is traveling
through upper medium and makes incidence with the interface of the two chiral media. The
problem will be solved for incident RCP and LCP waves. In Fig. 1, the red square dot and the
green round dot refer to the incident RCP and LCP waves, respectively. Also, the subscripts
X and c refer to the cross- and co-polarized components of the incident field, respectively.

The incident fields are RCP and LCP fields as follows; so i � 1, 2 where i � 1 refers to
RCP and i � 2 refers to LCP.

Einc
1 � P1

(− j sin φ1 âx + j cos φ1 ây + âz
)

exp(− jh1u(x cos φ1 + y sin φ1)) (6)

Einc
2 � P2

(
j sin φ2âx − j cos φ2ây + âz

)
exp(− jh2u(x cos φ2 + y sin φ2)) (7)

Here P1, φ1, P2 and φ2 are the amplitude and incident angle of the incident RCP and LCP
fields, respectively. The subscript u refers to the upper chiral medium. The reflected fields to
the upper half space are expressed as

Er
1 � Γ1

(
j sin φr1 âx + j cos φr1 ây + âz

)
exp(− jh1u(x cos φr1 − y sin φr1)) (8)

Er
2 � Γ2

(− j sin φr2 âx − j cos φr2 ây + âz
)

exp(− jh2u(x cos φr2 − y sin φr2)) (9)
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Fig. 1 Geometry of the problem

where φr1 and φr2 are the angles of the reflected RCP and LCP fields. Also, the transmitted
fields to the chiral medium 2 are stated as below

Et
1 � T1

(− j sin φt1 âx + j cos φt1 ây + âz
)

exp(− jh1l (x cos φt1 + y sin φt1)) (10)

Et
2 � T2

(
j sin φt2 âx − j cos φt2 ây + âz

)
exp(− jh2l (x cos φt2 + y sin φt2)) (11)

Here l denotes the lower half space; while φt1 and φt2 are the angles of the transmitted RCP
and LCP fields. The coefficients Γ1, Γ2, T1 and T2 are the unknown amplitudes that will
be determined by applying boundary conditions. The boundary conditions of the proposed
geometry are

E total
x

∣∣ya�0+ � E total
x

∣∣
ya�0− (12)

E total
z

∣∣ya�0+ � E total
z

∣∣
ya�0− (13)

H total
x

∣∣ya�0+ � H total
x

∣∣
ya�0− (14)

H total
z

∣∣ya�0+ � H total
z

∣∣
ya�0− (15)

As mentioned before, the problem is solved separately for incident RCP and LCP fields.
When the incident field is Einc

1 : to satisfy Eq. (12), Eqs. (6), (8)–(11) are applied and the
following relation is produced.

−P1 sin φ1 + Γ11 sin φr1 − Γ21 sin φr2 + T11 sin φt1 − T21 sin φt2 � 0 (16)

where Γ11, Γ21, T11 and T21 are Γ1, Γ2, T1 and T2 when the excitation is Einc
1 . Also, the

angles φr1, φr2, φt1 and φt2 are as below

φδβ � cos−1

(h1u
2

cos φ1
2

hβκ

)

; δ � r, t ; β � 1, 2; κ �
{
u; for δ � r
l; for δ � t

(17)

where the upper and the lower subscripts are related to the incident RCP and LCP waves,
respectively. The boundary condition of Eq. (13) is satisfied similar to satisfying of Eq. (12)
and results in

P1 + Γ11 + Γ21 − T11 − T21 � 0 (18)
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Applying Eq. (14) leads to

−ηl sin φ1P1 + ηl sin φr1Γ11 + ηl sin φr2Γ21 + ηu sin φt1T11 + ηu sin φt2T21 � 0 (19)

The following relation is obtained using the continuity of Hz on the interface (Eq. (15)).

ηl P1 + ηlΓ11 − ηlΓ21 − ηuT11 + ηuT21 � 0 (20)

The analytical solution of the set of Eqs. (16) and (18)–(20) leads to involved mathematical
manipulation; finally, the following closed-form formulas are obtained for the four unknown
coefficients.

Γ21 � P1

⎡

⎣
sin φt1

( ηl+ηu
2

)(
L1 − L3

ηu

)
− sin φt2

( ηl−ηu
2

)

(
L1 + L3

ηu

)
− sin φ1(ηl L1 − L3)

⎤

⎦ ÷ [L1L4 − L2L3] (21)

where

L1 � sin φt1

(
ηl + ηu

2ηu

)
+ sin φt2

(
ηl − ηu

2ηu

)
+ sin φr1 (22)

L2 � sin φt1

(
ηl − ηu

2ηu

)
+ sin φt2

(
ηl + ηu

2ηu

)
+ sin φr2 (23)

L3 � sin φt1

(ηl + ηu

2

)
− sin φt2

(
ηl − ηu

2

)
+ ηl sin φr1 (24)

L4 � sin φt1

(
ηl − ηu

2

)
− sin φt2

(ηl + ηu

2

)
− ηl sin φr2 (25)

and

Γ11 � P1

⎡

⎣
sin φt1

( ηl+ηu
2

)(
L2 − L4

ηu

)
− sin φt2

( ηl−ηu
2

)
(
L2 + L4

ηu

)
− sin φ1(ηl L2 − L4)

⎤

⎦ ÷ [L1L4 − L2L3] (26)

T21 � [Γ21(ηl + ηu) − (ηl − ηu)(P1 + Γ11)] ÷ 2ηu (27)

T11 � P1 + Γ11 + Γ21 − T21 (28)

Now, the problem is solved for incident LCP field. Substituting Eqs. (7)–(11) in Eq. (12)
leads to

sin φ2P2 + Γ12 sin φr1 − Γ22 sin φr2 + T12 sin φt1 − T22 sin φt2 � 0 (29)

Here Γ12, Γ22, T12 and T22 are equal to Γ1, Γ2, T1 and T2 when the incident field is Einc
2 .

Equation (13) is satisfied similar to Eq. (12); the following equation is obtained.

P2 + Γ12 + Γ22 − T12 − T22 � 0 (30)

Applying the boundary condition of Eq. (14) leads to

−ηl sin φ2P2 + ηl sin φr1Γ12 + ηl sin φr2Γ22 + ηu sin φt1T12 + ηu sin φt2T22 � 0 (31)

Finally, satisfying Eq. (15) results in

−ηl P2 + ηlΓ12 − ηlΓ22 − ηuT12 + ηuT22 � 0 (32)

Similar to the process of the derivations of Eqs. (21)–(28), the unknown coefficients
Γ12, Γ22, T12 and T22 are determined.

Γ22 � jηu P2

[L1L4 − L2L3]

⎡

⎣
sin φt1

( ηl−ηu
2

)(
L1 − L3

ηu

)
− sin φt2

( ηl+ηu
2

)
(
L1 + L3

ηu

)
+ sin φ2(ηl L1 + L3)

⎤

⎦ (33)
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Table 1 The conditions for the Brewster angle in case of the two incident fields

Incident field Conditions for Brewster angle Brewster angle �
RCP field ε1 � (

μ1
/

μ2
)(

ε2 − μ2γ 2
2

/
1 − b2

1

)
; γ1 � b1

/
ηu

where b1 � 1 − (
μ1

/
μ2

)(
1 −

√
μ2

/
ε2γ2

)
0◦ < φ1 < 180◦

ε2 � (
μ2

/
μ1

)(
ε1 − μ1γ 2

1

/
1 − b2

2

)
; γ2 � b2

/
ηl

where b2 � 1 − (
μ2

/
μ1

)
(

1 −
√

μ1
/

ε1γ1

)

LCP field ε1 � (
μ1

/
μ2

)(
ε2 − μ2γ 2

2

/
1 − d2

1

)
; γ1 � d1

/
ηu

where d1 � 1 − (
μ1

/
μ2

)
(

1 +
√

μ2
/

ε2γ2

)
0◦ < φ2 < 180◦

ε2 � (
μ2

/
μ1

)(
ε1 − μ1γ 2

1

/
1 − d2

2

)
; γ2 � d2

/
ηl

where d2 � −1 +
(
μ2

/
μ1

)
(

1 −
√

μ1
/

ε1γ1

)

Γ12 � jηu P2

⎡

⎣
sin φt1

( ηl−ηu
2

)(
L2 − L4

ηu

)
− sin φt2

( ηl+ηu
2

)
(
L2 + L4

ηu

)
+ sin φ2(ηl L2 + L4)

⎤

⎦ ÷ [L1L4 − L2L3] (34)

T22 � [(ηl + ηu)(P2 + Γ22) − Γ12(ηl − ηu)] ÷ 2ηu (35)

T12 � P2 + Γ12 + Γ22 − T22 (36)

In the next section, the effects of the incident angles and the chirality parameters of the
two media are studied.

3 Brewster angle

As shown in the previous section, the reflection and transmission coefficients are functions
of the constitutive parameters of the two chiral media. Now, one may ask is there an incident
angle which no energy reflects from the interface (definition of Brewster angle). Based on our
knowledge, there has not been any formulation for Brewster angle related to the geometry
of Fig. 1, yet, because no closed-form formulas have been calculated for the reflected and
transmitted fields.

If there are no closed-form formulas for the coefficients, the Brewster angle is not deter-
mined.

After determining the closed-form formulas and many mathematical manipulations, the
Brewster angle is occurred under the following conditions for the incident RCP and LCP
fields (see Table 1).

where −1 < ηlγ2 < 1; and ε1, μ1, γ1 and ηu are the permittivity, the permeability,
the chirality parameter and the intrinsic impedance of the upper medium, respectively; also
ε2, μ2, γ2 and ηl are the permittivity, the permeability, the chirality parameter and the
intrinsic impedance of the lower medium, respectively. Please note: the permittivity and the
permeability of each medium should have a same sign. It is notable that the mentioned point
is referred to double positive (DPS) and double negative (DNG) media. The Brewster angle is
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(a) (b)

Fig. 2 The normalized reflected electric field versus incident angle for εr2 � 6, εr1 � 2 and ηlγ2 � 0.5; The
incident field is: a RCP field b LCP field

so applicable for the geometry of Fig. 1, particularly, for determining the chirality of a chiral
medium and also concealing the lower medium electromagnetically because for any incident
angle there is no reflected wave. These works can be done using the degrees of freedom
presented in Table 1. For example, consider a chiral medium with unknown chirality; and
it is so important to determine its chirality for a specific application like medicine [30, 31].
This chiral medium can be set as the lower medium in the geometry of Fig. 1 and a RCP or
LCP field travels to the interface. Then, the parameters of Table 1 should be varied until no
wave reflects. When there is no reflected field, the chirality of the lower medium is obtained
easily using the formulas of Table 1. The case of concealing the lower medium can be done
similar to the previous case.

4 Results and discussion

In this section, the influences of the chirality, permittivity, incident angle and permeability on
the normalized reflected electric field are studied. It is notable that FEM is applied in order
to validate the results.

Figure 2 depicts the effects of the chirality of the upper medium on the normalized reflected
electric field for the incident RCP and LCP waves. By increasing the ηuγ1, the reflected field
decreases for grazing incident angles in case of the both incident fields; but when the angle
of incidence gets away from the grazing angles, the reflected field increases by enhancement
of the ηuγ1 for incident LCP field, and the variation of the ηuγ1 has almost no effect for
incident RCP field. Also the results obtained by FEM are in a very good agreement with the
results of the proposed formulations.

Figure 3 shows the normalized reflected electric field for different values of ε1 for the
both incident fields. Generally, increasing the ε1 leads to decreasing the reflected field for
the incident RCP and LCP fields; but the amount of the decrease for the incident LCP field
is more than the one for the incident RCP field. Please note that the results computed by the
presented closed-form formulas correspond completely with the results of FEM.

The relations presented in Table 1 are used to calculate the Brewster angles for the both
incident fields and different values of the constitutive parameters. Let us define parameters
“a” and “τ” as μ1

/
μ2 and 1 − (

μ2
/

ε2
)
γ 2

2

/
1 − (b, d)2

1, respectively, where b and d are used
for the incident RCP and LCP waves, respectively. It is obvious that various permeabilities
result in different values of the parameter “a”. In order to validate the formulas of Table 1, the
normalized reflected electric field is computed and compared with FEM in Fig. 4 for different
values of the permittivities and permeabilities that result in various values of “a” (I:μ2 � 1,
μ1 � 2 ⇒ a � 2, ε2 � 2; II:μ2 � 2.5, μ1 � −7.5 ⇒ a � −3, ε2 � 1.5). According
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(a) (b)

Fig. 3 The normalized reflected electric field versus incident angle for εr2 � 6, ηuγ1 � 0.2 and ηlγ2 � 0.5;
the incident field is: a RCP field b LCP field

(a) (b)

Fig. 4 The normalized reflected electric field versus ε1 for: a μ2 � 1, μ1 � 2 and ε2 � 2 b μ2 � 2.5,
μ1 � −7.5 and ε2 � 1.5

to Table 1, the values of I and II leads to zero reflection for ε1 � 4τ and ε1 � −4.5τ ,
respectively, in case of incident RCP and LCP fields and all angles of incidence. It is notable
that in Fig. 4 the amount of ηuγ1 is calculated using Table 1. It is shown that the values of I
result in zero reflection for ε1 � 4τ , all incident angles and the both incident fields (Fig. 4a);
also zero reflection occurs for ε1 � −4.5τ , all angles of incidence and the both incident
fields in case of values of II. The equality between the results of the formulas of Table 1 and
FEM confirms that the formulas are accurate and reliable.

Figure 5 illustrates the reflected electric field from the interface in case of incident RCP
and LCP fields for μ1 � 2, μ2 � 1, ε2 � 2 and different ηlγ2. Please note that the chirality
of the upper chiral medium can be obtained using Table 1. It is observed that for various ηlγ2,
the reflected wave is equal to zero for only one value of ε1 that is determined using Table 1
(ε1 � aε2 −→[ε2 � 2]a � 2ε1 � 4τ) for all the incident angles which is indicated by black
arrow.

The amount of the reflected field for another values of the permittivities and the perme-
abilities (μ1 � −3, μ2 � −1.5, ε2 � −2.5) that lead to the same value of a (a � 2) of
Fig. 5 are used in calculation of Fig. 6 for the two incident fields and different values of
the chirality of the lower medium. It is shown that the reflected field exists for all the inci-
dent angles and all the permittivities of the upper medium, except for ε1 � −5τ (Table 1:
ε1 � aε2 −→[ε2 � −2.5]a � 2ε1 � −5τ).

In Fig. 7, the effects of the incident angles and ε1 on the reflected field for RCP
and LCP excitation fields and different ηlγ2 are studied. Where μ1 � 3, μ2 � −1,
ε2 � −0.5. It is observed that as mentioned in Table 1, only one value of ε1

(ε1 � aε2 −→[ε2 � −0.5]a � −3ε1 � 1.5τ) results in zero RCS or Brewster angles (zero
reflection) for all the incident angles and the both excitations.
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Fig. 5 The normalized reflected electric field versus incident angle and ε1 ÷τ for μ1 � 2, μ2 � 1 and ε2 � 2;
the incident field is: a RCP field, ηlγ2 � 0.2 b LCP field, ηlγ2 � 0.2 c RCP field, ηlγ2 � −0.8 d LCP field,
ηlγ2 � −0.8

Fig. 6 The normalized reflected electric field versus incident angle and ε1 ÷ τ for μ1 � −3, μ2 � −1.5 and
ε2 � −2.5; the incident field is: a RCP field, ηlγ2 � 0.35 b LCP field, ηlγ2 � 0.35 c RCP field, ηlγ2 � −0.5
d LCP field, ηlγ2 � −0.5

Figure 8 shows the behavior of the reflected electric field versus the permittivity of the
upper medium and the incident angles in case of the both excitations forμ1 � −7.5,μ2 � 2.5,
ε2 � 1.5. It is shown that there is no reflected field for all the incident angles—this is zero
RCS—and various ηlγ2 when the permittivity of the upper medium is equal to −4.5τ

(ε1 � aε2 −→[ε2 � 1.5]a � −3ε1 � −4.5τ).
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Fig. 7 The normalized reflected electric field versus incident angle and ε1 ÷ τ for μ1 � 3, μ2 � −1 and
ε2 � −0.5; the incident field is: aRCP field, ηlγ2 � 0.99bLCP field, ηlγ2 � 0.99 cRCP field, ηlγ2 � −0.25
d LCP field, ηlγ2 � −0.25

Fig. 8 The normalized reflected electric field versus incident angle and ε1 ÷ τ for μ1 � −7.5, μ2 � 2.5 and
ε2 � 1.5; the incident field is: a RCP field, ηlγ2 � 0.01 (b) LCP field, ηlγ2 � 0.01 c RCP field, ηlγ2 � −0.95
d LCP field, ηlγ2 � −0.95

5 Conclusion

In this paper, the analytical closed-form formulas for the reflection and transmission coeffi-
cients are presented when a RCP or LCP field travels to the interface of two chiral media.
After obtaining the formulas, we are able to find conditions that result in no reflected field or
Brewster angles. The conditions are presented for the both incident fields. Also the influences
of the chirality of the lower medium, the permittivity and the permeability of the media on the
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reflected electric field are studied. The conditions of Brewster angles are applied to calculate
the reflected electric field for different values of the parameters of the problem. Also, the
presented investigation is validated using FEM.
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