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Abstract In this paper, the Fisher’s equation is studied with three different forms of nonlinear
diffusion. When studying population problems, various forms of nonlinear diffusion can
capture the effects of crowding or aggregation processes. Exact solutions for such nonlinear
problems can be extremely useful to practitioners in the field. The Riccati–Bernoulli sub-
ODE method is employed to obtain the exact traveling wave solutions for our nonlinear
diffusion equation. The solutions that we find are new and to our knowledge, have not been
reported in the literature.

1 Introduction

The Fisher’s equation, also known as the Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher-
KPP) equation, in its simplest form is given by [12,20]

∂u

∂t
= u(1 − u) + ∂2u

∂x2 , (1)

where t is time, x is the spatial coordinate, and u(x, t) is the population density. This equation
was first studied by Fisher [12] to investigate the wave propagation of a mutant gene in a
population. In this case,u(x, t) is the frequency of the mutant gene at a given spatial coordinate
x and time t . Thereafter, Eq. (1) has been widely used in areas such as ecology (modeling
population growth of species with u(x, t) being the population density) [21], chemistry
(understanding chemical kinetics with u(x, t) as the concentration of the chemical) [27],
and heat and mass transfer (studying the temperature and material dispersion with u(x, t)
representing either the temperature or the concentration of a material) [9]. In mathematics,
the Fisher’s equation is a model equation that describes the interaction between reaction and
diffusion processes. Recently, it was argued in [25] that when studying population models,
maybe, one has to take into account the eco-evolutionary feedback on population mobility.
As such, one may have to consider diffusion as a population density-dependent process. If
we take the diffusion to be density-dependent, then Eq. (1) can be written as,
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∂u

∂t
= u(1 − u) + ∂

∂x

[
D(u)

∂u

∂x

]
. (2)

Equation (2) with the diffusivity function D(u) = λ0 + λ1u becomes the nonlinear
reaction–diffusion equation

∂u

∂t
= u(1 − u) + ∂

∂x

[
(λ0 + λ1u)

∂u

∂x

]
, (3)

and this has been considered by Cherniha and Dutka in [5], where λ0 and λ1 are real numbers.
Murray [22], Aronson [3], Newman [24], and Harris [14] have studied (3) with λ0 = 0. It is
well known that nonlinear diffusion plays an important role in material or species dispersion
[22,23]. From the biological point of view, the model given by Eq. (3) implies that the
population disperses to regions of lower density more rapidly as the population gets more
crowded.

Equation (2) with the nonlinear diffusivity function

D(u) = 1 + ω

2
+ 1 − ω

2
tanh

u − u0

�u
, (4)

becomes the nonlinear reaction–diffusion equation

∂u

∂t
= u(1 − u) + ∂

∂x

[(1 + ω

2
+ 1 − ω

2
tanh

u − u0

�u

)∂u

∂x

]
, (5)

and this has been considered by Hayes in [15] and [16], where 0 < ω < 1, 0 < u0 <

1, and 0 < �u � 1. She was motivated to take D(u) in this form because of her interest
in traveling wave solutions of a model of non-Fickian polymer-penetrant systems developed
by Cohen, Cox, and White [6–8]. Here, the diffusivity was chosen in the form of Eq. (4) in
order to describe the stress driven diffusion in polymers.

In the past, the exact solutions for nonlinear evolution equations have been investigated
by many authors who were interested in nonlinear phenomena. Many effective and power-
ful methods have been presented such as Hirota’s bilinear method [18], inverse scattering
transform [1], homogeneous balance method [10,28], auxiliary equation method [26], mod-
ified Kudryashov method [4], hyperbolic function method [19], Exp-function method [17],
(G

′
G )-expansion method [11], and many more. Recently, Yang et al. [29] proposed the Riccati–

Bernoulli sub-ODE method by introducing a subsidiary ordinary differential equation of the
form

φ′(ξ) = α φ2−m(ξ) + β φ(ξ) + γ φm(ξ), m �= 1 (6)

where α, β, γ, and m are real constants. The main idea of the Riccati–Bernoulli sub-ODE
method is that it may be possible to obtain a traveling wave solution of a nonlinear partial
differential equation as a polynomial expression where the variable is the solution of a simple
and solvable ordinary differential equation that is the Riccati–Bernoulli sub-ODE. The degree
of this sub-ODE is determined by considering the homogeneous balance between the highest
derivatives and the nonlinear terms in the equation.

We employ this method to find exact traveling wave solutions for the nonlinear diffusion
equation given by (2). In Sect. 2, we give a brief description of the Riccati–Bernoulli sub-
ODE method. In Sect. 3, we apply the method to solve three different forms of the diffusivity
function D(u) in Eq. (2). Section 4 presents the conclusions.
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2 Description of the Riccati–Bernoulli sub-ODE method

Here, we outline the main steps of the Riccati–Bernoulli sub-ODE method. Let us consider
a general nonlinear partial differential equation, say in two variables, of the form

H(u, ux , ut , uxx , uxt , utt , . . .) = 0. (7)

Step 1: Since we’ll be looking for a traveling wave solution, using the wave variable ξ =
κx + ωt, convert Eq. (7) into an ordinary differential equation for u = u(ξ)

F(u, uξ , uξξ , . . .) = 0, (8)

where κ and ω are nonzero real constants. Here, κ and ω represent the wave number and
frequency, respectively. Also, note that the wave speed v is given by −ω

κ
, i.e., the wave

moving to the left.
Step 2: We seek the solutions of Eq. (8) in the form

u(ξ) =
K∑

k=0

γkφ
k(ξ), (9)

where γk (k = 0, 1, . . . , K ) are all real constants with γK �= 0 and K is a positive integer
to be determined. The function φ(ξ) is the solution of the Riccati–Bernoulli sub-ODE (6).
Depending on the sign of the discriminant � = β2 −4αγ , we can get the solutions of Eq. (6).
For the present work, we will focus only on the two solutions, given by,

φ1(ξ) =
(

−1

2α

(
β + √

� tanh
( (1 − m)

√
�

2
ξ
))) 1

1−m

(10)

and

φ3(ξ) =
(−1

2α

(
β + √

�
(

tanh
(
(1 − m)

√
� ξ

) ± i sech
(
(1 − m)

√
� ξ

)))) 1
1−m

, (11)

where � = β2 − 4αγ > 0 and α �= 0. The reader interested in other forms of solutions for
Eq. (6) is referred to [29].

Step 3: The degree K of Eq. (9) can be determined by considering the homogeneous
balance between the highest order derivatives and nonlinear terms appearing in Eq. (8).

Step 4: Substituting Eq. (6) together with Eq. (9) into Eq. (8) yields an algebraic equation
involving the powers of φ. Equating the coefficients of each power of φ to zero gives a system
of algebraic equations for α, β, γ , and γk (k = 0, 1, . . . , K ).

Step 5: With the aid of a computer algebra system, such asMaple, we can solve the obtained
system of algebraic equations and we will end up with explicit expressions for α, β, γ , and
γk (k = 0, 1, . . . , K ) or any constraints between them.

Step 6: The traveling wave solutions of the nonlinear partial differential equation (7) can
be obtained by substituting the values of γk (k = 0, 1, . . . , K ) and the general solution of
Eq. (6), in our case the expressions (10) or (11), into Eq. (9).

3 Application to the Fisher’s equation with nonlinear diffusion

Now, we would like to apply the method described above to obtain new exact traveling wave
solutions to the Fisher’s equation with nonlinear diffusion. We will consider three different
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forms of density-dependent diffusivities. In the spirit of [25], these diffusivities are chosen
to represent eco-evolutionary feedback so that overcrowding or sparsity of a population does
not lead to its extinction.

3.1 Form I

We start with the Fisher’s equation in the form

∂u

∂t
= u(1 − u) + ∂

∂x

[(u + λ0

u − u2

)∂u

∂x

]
, (12)

where the diffusivity function D(u) = u+λ0
u−u2 and λ0 ∈ R. In order to look for the traveling

wave solution of Eq. (12), we make the transformation u(x, t) = u(ξ), where ξ = κx + ωt,
and change Eq. (12) into the following ODE

κ2 d

dξ

[(u + λ0

u − u2

)du

dξ

]
− ω

du

dξ
+ u(1 − u) = 0.

After some algebraic manipulation, we obtain

κ2u(1 − u)(u + λ0)
d2u

dξ2 + κ2[u2 + 2λ0u − λ0]
(du

dξ

)2 − ωu2(1 − u)2 du

dξ
+ u3(1 − u)3 = 0.

(13)

Considering the homogeneous balance between u3 d2u
dξ2 and u6 in Eq. (13),

(
3K +K +2 =

6K ⇔ K = 1
)
, we simply seek the solutions of Eq. (13) of the form

u(ξ) = γ0 + γ1φ, γ1 �= 0, (14)

where φ = φ(ξ) satisfies the Riccati–Bernoulli sub-ODE (6) and γ0 and γ1 are constants to
be determined later.

Substituting Eqs. (6) and (14) into Eq. (13), setting m = 0 and collecting coefficients of
polynomials of φk (k = 0, 1, . . . , 6), then setting each coefficient to zero, we obtain a system
of algebraic equations for α, β, γ, γ0, and γ1. Solving the resulting system with the aid of
Maple, we obtain

α = λγ1, γ = −λβ2κ2 + β2ω + λ

4γ1
, and γ0 = −λβκ2 − βω + 1

2
, (15)

where

λ = −ω ± √
ω2 − 4κ2

2κ2 ,

and β, γ1, κ , and ω are arbitrary nonzero real numbers such that ω2 ≥ 4κ2.
Substituting (15), noting � > 0 when ω2 ≥ 4κ2, with the solutions (10) and (11) of

Eq. (6) into Eq. (14), we obtain the exact traveling wave solutions of (12) as follows:

u(x, t) =
−κ2

(
β + √

� tanh
(

1
2

√
�(κx + ωt)

))

−ω + ε
√

ω2 − 4 κ2
+ 
 (16)

and

u(x, t) =
−κ2

(
β + √

�
(

tanh
(√

� (κx + ωt)
)

± i sech
(√

� (κx + ωt)
)))

−ω + ε
√

ω2 − 4 κ2
+ 
, (17)
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where

� = β2κ2 + 1

4 κ4

(
−ω + ε

√
ω2 − 4 κ2

)2 + β2ω

2 κ2

(
−ω + ε

√
ω2 − 4 κ2

)
+ β2,


 = 1

2

(−ε β

2

√
ω2 − 4 κ2 − β ω

2
+ 1

)
,

ε = ±1, and β, κ, and ω are nonzero real constants such that ω2 ≥ 4κ2. Note that because
of ω2 ≥ 4κ2, we’ll have traveling wave solutions only for speeds v ≥ 2. This characteristic
is the same as for the standard Fisher’s equation (1).

Equations (16) and (17) are exact traveling wave solutions of (12) with the diffusivity
function D(u) = u+λ0

u−u2 where λ0 is an arbitrary real number, traveling at speed v = −ω
κ
.

Eq. (16) represents a kink/anti-kink wave solution, while Eq. (17) represents a complex-
valued wave solution with real kink/anti-kink and imaginary bell/anti-bell wave shapes.
Figure 1 shows that the slope of kink wave solution Eq. (16) varies with the value of its speed
|v|. If |v| is large the wave shape is shallow, but it is steep if |v| is small. This behavior is
also valid for the other solutions (see Fig. 2). The solutions in Figs. 1 and 2 are computed in
the case when β = γ1 = ε = 1.

It should be noted that Eqs. (16) and (17) are also the exact traveling wave solutions of
the nonlinear reaction–diffusion equations

∂u

∂t
+ (λ0 + 1)

∂2

∂x2 [ln(1 − u)] = u(1 − u) + λ0
∂2

∂x2 [ln(u)] (18)

and

∂u

∂t
+ ∂2

∂x2 [ln(1 − u)] = u(1 − u), (19)

where Eq. (19) can be obtained from (18) when λ0 = 0. Also, note that the solutions (16) and
(17) do not depend on the constant λ0. Since the kink wave solution (16) is between 0 and 1,
the constant λ0 needs to be greater than or equal to zero in order to have positive diffusivity.

3.2 Form II

We next consider the Fisher’s equation in the form

∂u

∂t
= u(1 − u) + ∂

∂x

[
(u − u2)−1 ∂u

∂x

]
, (20)

where the diffusivity function D(u) = (u − u2)−1. By using the transformation u(x, t) =
u(ξ), where ξ = κx + ωt, Eq. (20) is converted to the following ODE

κ2 d

dξ

[
(u − u2)−1 du

dξ

]
− ω

du

dξ
+ u(1 − u) = 0.

After some algebraic manipulation, we obtain

κ2u(1 − u)
d2u

dξ2 + κ2(2u − 1)
(du

dξ

)2 − ωu2(1 − u)2 du

dξ
+ u3(1 − u)3 = 0. (21)

Considering the homogeneous balance between u4 du
dξ

and u6 in Eq. (21), we find K = 1.
We then assume that Eq. (21) has the solution of the form

u(ξ) = γ0 + γ1φ, γ1 �= 0, (22)
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Fig. 1 The kink wave solution Eq. (16) calculated for different values of ω; κ = 1, ω = 3, v = −3 (Solid
Line), κ = 1, ω = 2.5, v = −2.5 (Dash Line), and κ = 1, ω = 2, v = −2 (Dash-Dot Line): a At time t = 0,
b At time t = 1

Fig. 2 The complex-valued wave solution Eq. (17) calculated at time t = 0 for different values of ω; κ =
1, ω = 3, v = −3 (Solid Line), κ = 1, ω = 2.5, v = −2.5 (Dash Line), and κ = 1, ω = 2, v = −2
(Dash-Dot Line): a The real kink wave shape, b The imaginary bell wave shape

where φ = φ(ξ) satisfies the Riccati–Bernoulli sub-ODE (6) and γ0 and γ1 are constants to
be determined later.

Substituting Eqs. (6) and (22) into Eq. (21), setting m = 0 and collecting coefficients of
polynomials of φk (k = 0, 1, . . . , 6), then setting each coefficient to zero, we obtain a system
of algebraic equations for α, β, γ, γ0, and γ1. Solving the resulting system with the aid of
Maple, we obtain

β = 1 − 2γ0

ω
, γ = γ0(γ0 − 1)

αω2 , and γ1 = −αω, (23)
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where α, γ0, κ , and ω are arbitrary nonzero real numbers.
Substituting (23), noting � > 0, with the solutions (10) and (11) of Eq. (6) into Eq. (22),

we obtain the exact traveling wave solutions of (20) as follows:

u(x, t) = ω

2

(
1 − 2 γ0

ω
+

√
1

ω2 tanh

(√
1

4 ω2 (κ x + ω t)

))
+ γ0 (24)

and

u(x, t) = ω

2

(
1 − 2 γ0

ω
+

√
1

ω2

(
tanh

(√
1

ω2 (κ x + ω t)

)
± i sech

(√
1

ω2 (κ x + ω t)

)))
+ γ0,

(25)

where γ0, κ , and ω are arbitrary nonzero real numbers.
Equations (24) and (25) are exact traveling wave solutions of (20) with the diffusivity

function D(u) = (u−u2)−1, traveling at speed v = −ω
κ
. Equation (24) represents a kink/anti-

kink wave solution, while Eq. (25) represents a complex-valued wave solution with real
kink/anti-kink and imaginary bell/anti-bell wave shapes. The slope of each traveling wave
solution varies with the value of its speed |v|. Similar to the case in form I, if |v| is large the
wave has a shallow slope, but it is steep if |v| is small (see Fig. 3).

It should be noted that Eqs. (24) and (25) are also the exact traveling wave solutions of
the nonlinear reaction–diffusion equation

∂u

∂t
+ ∂2

∂x2 [ln(1 − u)] = u(1 − u) + ∂2

∂x2 [ln(u)] .

In addition, we can show that the solutions (24) and (25) are also the exact traveling wave
solution of (20) with the diffusivity function D(u) = λ0(u − u2)−1, where λ0 is an arbitrary
nonzero real number, and hence the solutions (24) and (25) don’t depend on the constant λ0.
Since the kink wave solution (24) is between 0 and 1, the constant λ0 needs to be greater
than zero in order to have positive diffusivity.

3.3 Form III

Now, we consider the Fisher’s equation in the form

∂u

∂t
= u(1 − u) + ∂2

∂x2

[
u2] , (26)

where the diffusivity function D(u) = 2u. A minimum wave speed for the traveling wave
solutions of Eq. (26) was found previously in [3] by analyzing the trajectories in the uuξ -
phase plane. The minimum wave speed was found to be v = 1. This means that Eq. (26) has
wave solutions with speeds v ≥ 1. In [14], Harris was able to find the exact traveling wave
with the minimum wave speed v = 1, namely

u(x, t) = 1 − c exp
( x − t

2

)
. (27)

This solution is such that u(x, t) ≥ 0 when x ≤ x̄ and u(x, t) = 0 when x > x̄ for
t ≥ 0. So, the solution profile has a cut-off point at x = x̄ . At this cut-off point, u(x, t) is
continuous, but not differentiable with respect to x . The condition that u(x, t) ≥ 0 imposes
a certain restriction on the constant c since the initial condition that generates the above

solution is u(x, 0) = 1 − c exp
(
x
2

)
, for x ≤ 2 ln( 1

c ) ≡ x� and u(x, 0) = 0, for x > x�.
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Fig. 3 The kink wave solution
Eq. (24) calculated at time t = 0
for different values of ω;
κ = 1, ω = 2, v = −2 (Solid
Line), κ = 1, ω = 0.5, v = −0.5
(Dash Line), and
κ = 1, ω = 0.1, v = −0.1
(Dash-Dot Line)

This implies that c is an arbitrary positive constant. In addition, one can see that the cut-off
point x̄ at t = 0 is given by x̄ = x� and for any t > 0, x̄ = x� + t (when the solution wave
is moving to the right with speed 1).

Let us look for traveling wave solutions of (26) using the Riccati–Bernoulli sub-ODE
method. As before, by using the transformation u(x, t) = u(ξ), where ξ = κx + ωt,
Eq. (26) is converted to the following ODE

κ2 d2

dξ2

[
u2] − ω

du

dξ
+ u(1 − u) = 0. (28)

Considering the homogeneous balance between du
dξ

and u2 in Eq. (28), we find K = 1.
Therefore, we suppose that the solution of Eq. (28) is of the form

u(ξ) = γ0 + γ1φ, γ1 �= 0, (29)

where φ = φ(ξ) satisfies the Riccati–Bernoulli sub-ODE (6) and γ0 and γ1 are constants to
be determined later.

Substituting Eqs. (6) and (29) into Eq. (28), setting m = 2 and collecting coefficients of
polynomials of φk (k = 0, 1, . . . , 4), then setting each coefficient to zero, we obtain a system
of algebraic equations for α, β, γ, γ0, and γ1. Solving the resulting system with the aid of
Maple, we obtain two kinds of solutions, namely

β = ∓1

2κ
, γ = 0, γ1 = ∓(γ0 − 1)

2ακ
, and ω = ±κ, (30)

and

β = ±1

2κ
, γ = 0, γ1 = ±γ0

2ακ
, and ω = ±2κ, (31)

where α, γ0, and κ are arbitrary nonzero real numbers.
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Fig. 4 The traveling wave
solution Eq. (32) calculated at
time t = 1 for different values of
γ0; κ = 1, γ0 = −1 (Solid Line),
κ = 1, γ0 = −2 (Dash Line), and
κ = 1, γ0 = −4 (Dash-Dot Line)

Substituting (31), noting � > 0, with the solution (10) of Eq. (6) into Eq. (29), we obtain
a new exact traveling wave solution (that has not been found in the literature) given by

u(x, t) = ∓γ0

2κ

(
±1

4κ
+ 1

4

√
1

κ2 tanh

(
κ

4

√
1

κ2 (x ∓ 2t)

))−1

+ γ0. (32)

Here, the wave speed is other than the minimum speed 1, it is 2 and the wave can travel either
to the right or to the left.

As in the case of the solution in Eq. (27), the solution profile of Eq. (32) has a cut-off point
x̄ . However, now, the solution is such that u(x, t) ≤ 1 when x ≤ x̄ and u(x, t) = 1 when
x > x̄ for t ≥ 0. The condition that u(x, t) ≤ 1 imposes a certain restriction on the constant
γ0 since the initial condition that generates the above solution is

u(x, 0) = γ0

2κ

(
−1

4κ
+ 1

4

√
1

κ2 tanh

(
κ

4

√
1

κ2 x

))−1

+ γ0,

for x ≤ 4 arctanh
(

1+γ0
1−γ0

)
≡ x� and u(x, 0) = 1, for x > x�. This implies that γ0 is an

arbitrary negative constant. Also, as before, the cut-off point x̄ at t = 0 is given by x̄ = x�

and for any t > 0, x̄ = x� − 2t (when the solution wave is moving to the left with speed 2
as in Figure 4).

Finally, the choice of m in Eq. (6) is not just restricted to either 0 or 2. For instance, in
Form III, in the case when m /∈ {0, 2} and after doing the same process as before, we obtain
two kinds of solutions, namely

α = 0, β = ∓1

2κ
, γ = 0, γ0 = 1, and ω = ±κ, (33)

and

α = 0, β = ±1

2κ
, γ = 0, γ0 = 0, and ω = ±2κ, (34)
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where γ1 and κ are arbitrary nonzero real numbers. Equations (33) and (34) are true for
any value of m, other than m = 0, 1 or 2. One can easily see that the wave speeds |v| that
correspond to (33) and (34) are 1 and 2, respectively. Also, these traveling wave solutions
given by Eqs. (33) and (34) are the same (with a phase difference) as the solutions in Eqs. (27)
and (32), respectively.

4 Conclusions

We showed that the Riccati–Bernoulli sub-ODE method is a very useful technique for finding
exact traveling wave solutions of the Fisher’s equation with nonlinear diffusion. It is inter-
esting to note the effect of wave speed on the steepness of the solution profile. In the case of
form I, as in the standard Fisher’s equation (1), wave solutions are possible for every wave
speed greater than or equal to 2 [12,13,20]. For Eq. (1), wave solution in closed form can be
found only for the wave speed 5√

6
[2]. However, for form I, as shown by Eq. (16), we are able

to find kink wave solutions in closed forms for any wave speed that is greater than or equal
to 2. Similarly, in the case of form II, using Eq. (24), we can obtain kink wave solutions in
closed forms for any nonzero wave speed v. Further, for the case of form III, we are able to
construct a wave solution at a speed that is not the minimum speed. The solutions obtained
in this paper are new and, to our knowledge, have not been reported elsewhere. These exact
solutions can be important predictive tools for practitioners in ecology and biology.
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