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Abstract A computational method in parabolic coordinates is proposed to treat the scattering
of a charged particle from both spherically and axially symmetric Coulomb-like potentials.
Specifically, the long-range part of the Hamiltonian is represented in parabolic quasi-Sturmian
basis functions, while the short-range part is approximated by a Sturmian L2-basis-set trun-
cated expansion. We establish an integral representation of the Coulomb Green’s function in
parabolic coordinates from which we derive a convenient closed form for its matrix elements
in the chosen L2 basis set. From the Green’s function, we build quasi-Sturmian functions
that are also given in closed form. Taking advantage of their adequate built-in Coulomb
asymptotic behavior, scattering amplitudes are extracted as simple analytical sums that can
be easily computed. The scheme, based on the proposed quasi-Sturmian approach, proves
to be numerically efficient and robust as illustrated with converged results for three different
scattering potentials, one of spherical and two of axial symmetry.

1 Introduction

Scattering by central potentials, including spherically symmetric Coulomb-like potentials,
can be effectively treated with standard methods using a square-integrable (L2) basis
expressed in spherical coordinates [1]. Scattering by an axially symmetric Coulomb-like
potential, on the other hand, is generally less known, it requires more specific mathematical
tools and is computationally much more challenging. Meanwhile these types of potentials
often arise in molecular physics (e.g., the electron–diatomic-molecule scattering [2–4]) and
also are encountered in nuclear (e.g., the proton–deformed-nucleus scattering [5,6]) and
atomic physics (e.g., an electron moving in the electrostatic field of an ion in the presence
of monochromatic and linearly polarized laser radiation [7]). Mathematically, the axial sym-
metry can be accounted for by employing a specific coordinate system. For example, the
Schrödinger equation for the scattering of a charged particle by two fixed charged centers is
known to be separable in spheroidal coordinates (see, e.g., Ref. [8] and references therein). In
such a case the solution is represented in the form of a product of radial and angular Coulomb
spheroidal functions; the latter are evaluated numerically, not analytically, as eigensolutions
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of the angular equation. The implementation in non-spherical coordinates is seldom applied
in practical numerical ab initio calculations since most scattering methods use standard one-
center spherical expansions. At the same time, parabolic coordinates (with the ẑ axis directed
along the symmetry axis if there is one in the considered physical problem) could be an
efficient and robust alternative both to the spherical and to the spheroidal coordinates.

In this work we propose a method that makes use of the so-called quasi-Sturmian (QS)
basis functions expressed in closed form in parabolic coordinates, similar to those derived
in spherical coordinates [9]. Our parabolic QS approach is capable of treating efficiently
quantum scattering problems not only in the two-center Coulomb case but in the general
case of an axially symmetric Coulomb-like potential. Moreover, as demonstrated below, the
approach has a much larger outreach since it can be successfully applied also to scattering
on central Coulomb-like potentials.

Expansions of the Coulomb wave functions in a complete set of square integrable (L2)
parabolic Sturmians were considered in Ref. [10]. Specifically, the regular and irregular
solutions in this basis set were obtained in analytic form. As mentioned above, here we develop
the scattering formulation making use of parabolic QS basis functions. These are generated by
applying an appropriate Coulomb Green’s operator to the parabolic Sturmians multiplied by
their weight. Consequently, the resulting QS basis functions satisfy the appropriate Coulomb
boundary conditions and an expansion of the scattering solution for Coulomb-like potentials
is anticipated to be convergent in the entire space. In order to solve a scattering problem with
a Coulomb plus short-range potential of spherical or axial symmetry, we express the wave
function as ψ(±) = ψ

(±)
C + ψ

(±)
sc , where ψ

(±)
C is a Coulomb wave function. The scattering

Schrödinger equation is then recast into a driven equation for the unknown ψ
(±)
sc with a

square-integrable inhomogeneous term. We further propose to find the solution, subject to
outgoing or incoming boundary conditions, with an expansion of ψ

(±)
sc in terms of parabolic

QS functions. It should be noted that we have already used such an approach to calculate
the outgoing electron states in laser-assisted (e, 2e) processes on atomic hydrogen [11,12].
The purpose of the present paper is twofold. First, we wish to present the formulation of
the proposed parabolic approach by (i) giving a detailed derivation of the Coulomb Green’s
function representation in the Sturmian basis, (ii) analyzing the asymptotic behavior of the
parabolic QS functions in detail, and (iii) showing how one can readily extract from it the
amplitude for potential scattering. The second purpose is to demonstrate that the proposed
scheme is computationally efficient and robust, and able to deal with a variety of potentials—
with either axial or spherical symmetry—that may occur in nuclear, atomic or molecular
physics.

The remainder of this paper is as follows. In Sect. 2 we focus on the Coulomb Green’s
function matrix representation in the parabolic Sturmian basis. Specifically, we express the
matrix elements in closed form in terms of hypergeometric functions. Section 3 provides an
integral representation of the parabolic QS functions, from which we deduce their leading
asymptotic behavior. This result allows us to express the scattering amplitude in terms of
the coefficients derived from the expansion of the solution ψ

(±)
sc on the basis of parabolic

QS functions. In Sect. 4, the numerical efficiency of the parabolic QS basis set is illustrated
with applications to the scattering of an electron by (i) a Coulomb plus spherically symmetric
short-range potential, (ii) a Coulomb potential dressed by a high-frequency linearly polarized
laser field, and (iii) a two-center Coulomb potential. Finally, Sect. 5 provides a summary of
this work.

Atomic units (h̄ = me = e = 1) are assumed throughout.
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2 Coulomb Green’s function

Consider the two-particle Coulomb Hamiltonian in the center-of-mass reference frame,

ĤC = − 1

2μ
Δ − Z

r
, (1)

for an electron and a nucleus of charge Z and a reduced mass μ. The kernels G(±)
(
k; r, r′)

of the corresponding Green’s operators Ĝ(±) = (ĤC − E)−1 satisfy the equation

(
HC − k2

2μ

)
G(±)

(
k; r, r′) = δ(r − r′), (2)

where the energy is E = k2/(2μ); the symbol (+) or (−) corresponds to an outgoing wave or
an incoming wave, respectively. In terms of the parabolic coordinates ξ ∈ [0,∞[, η ∈ [0,∞[
and φ ∈ [0, 2π[, the Cartesian coordinates are defined by x = √

ξη cos φ, y = √
ξη sin φ

and z = (ξ − η)/2; conversely, we have ξ = r + z, η = r − z and φ = tan−1(y/x) where
r = √

x2 + y2 + z2 is the distance from the origin. In such parabolic coordinates, the Green’s
function can be represented by the expansion

G(±)
(
k; r, r′) = 1

2π

∞∑

m=−∞
eim(φ−φ′)G|m|(±)

(
k; ξ, η; ξ ′, η′) . (3)

The partial components G|m|(±) obey the equation

1

2μ
ĥ G|m|(±)(k; ξ, η; ξ ′, η′) = δ(ξ − ξ ′)δ(η − η′), (4)

where

ĥ = −
(

∂

∂ξ
ξ

∂

∂ξ
+ ∂

∂η
η

∂

∂η

)
+ kβ + m2

4ξ
+ m2

4η
− (ξ + η)

k2

4
, (5)

and β = −μZ/k.

2.1 An integral representation of the Coulomb Green’s function

The operator ĥ can be split into the sum

ĥ ≡ ĥξ, τ + ĥη, β−τ , (6)

where

ĥx, t ≡ − ∂

∂x
x

∂

∂x
+ kt + λ2

4x
− k2

4
x, (7)

with τ playing the role of a charge separating parameter. Then, in order to obtain a kernel
representing the inverse operator ĥ−1, we make use of the linearly independent solutions of
the equation

ĥx, t f (x, t) = 0, (8)
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namely

u(x, t) = ei
k
2 x (−ikx)

λ
2 M

(
1 + λ

2
+ i t, 1 + λ; −ikx

)

= e−i k2 x (−ikx)
λ
2 M

(
1 + λ

2
− i t, 1 + λ; ikx

)
,

w(±)(x, t) = e±i k2 x (∓ ikx)
λ
2 U

(
1 + λ

2
± i t, 1 + λ; ∓ ikx

)
, (9)

where M and U are the Kummer functions of, respectively, first and second kind [13]. The
corresponding one-dimensional Green’s functions g(±), defined through

ĥx, t g
(±)(t; x, x ′) = δ(x − x ′), (10)

satisfy the condition

[
−x

∂

∂x
g(±)(t; x, x ′)

]x ′+ε

x ′−ε

= 1 (11)

for small ε. A standard representation is given by [14]

g(±)(t; x, x ′) = −u(x<, t)w(±)(x>, t)

x ′ W
(
u, w(±)

) , (12)

with x< = min(x, x ′), x> = max(x, x ′) and

W
(
u, w(±)

)
≡ u(x ′, t) d

dx ′
(
w(±)(x ′, t)

)
− d

dx ′
(
u(x ′, t)

)
w(±)(x ′, t). (13)

Then, making use of the Wronskian of the Kummer functions (Eq. (13.1.22) in Ref. [13]),
we find

g(±)(t; x, x ′) = Γ
( 1+λ

2 ± i t
)

Γ (1 + λ)

1

(∓ ikx<)
1
2

M∓ i t, λ
2
(∓ ikx<)

1

(∓ ikx>)
1
2

W∓ i t, λ
2
(∓ ikx>),

(14)

where M and W are the Whittaker functions [13]. Finally, using the integral representation
of the product of Whittaker functions (see, e.g., Ref. [15], p. 86, Eq. (5b); Ref. [16], p. 742,
Eq. (6.669, 1)) we have

g(±)(t; x, x ′) =
∞∫

0

dz exp

{
±i

k

2
(x + x ′) cosh z

}(
coth

z

2

)∓ 2i t
Iλ

(
∓ ik

√
xx ′ sinh z

)
,

(15)

where Iλ is the modified Bessel function [13].
The two-dimensional Green’s function for the operator ĥ (6) is then obtained as a convo-

lution integral over the charge separating parameter τ :

± k

2π i

∞∫

−∞
dτg(±)(τ ; ξ, ξ ′) g(±)(β − τ ; η, η′). (16)
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Thus, inserting (15) into (16) and integrating over τ , we obtain the following expression for
Gλ(±):

Gλ(±)(k; ξ, η; ξ ′, η′) = ∓ iμk

∞∫

0

dz sinh z
(

coth
z

2

)∓ 2iβ
e±i k2 (ξ+ξ ′+η+η′) cosh z

×Iλ
(
∓ ik

√
ξξ ′ sinh z

)
Iλ

(
∓ ik

√
ηη′ sinh z

)
. (17)

This integral representation of the Coulomb Green’s function slightly differs from that given
in Ref. [17] (see also Refs. [18,19]).

2.2 Matrix elements of the Green’s function in the Sturmian basis

Consider the basis of Sturmian functions

|n1n2m〉 = eimφ

√
2π

ϕ|m|
n1

(ξ) ϕ|m|
n2

(η), (18)

where the square-integrable functions ϕ
|m|
n are defined in terms of the associated Laguerre

polynomials L |m|
n [13]:

ϕ|m|
n (ρ) =

√
2bΓ (n + 1)

Γ (n + 1 + |m|) (2bρ)|m|/2e−bρL |m|
n (2bρ), (19)

with the basis scale parameter b. The basis functions (18) obey the following orthonormal-
ization condition:

〈n1n2m| 4

(ξ + η)
|n′

1n
′
2m

′〉 = δn1n′
1
δn2n′

2
δmm′ . (20)

Next, we define the functions

|ñ1n2m〉 = 4

(ξ + η)
|n1n2m〉 (21)

which represent the orthogonal complements to (18).
In this |ñ1n2m〉 representation, the matrix elements of the Green’s function are given by

[
G(±)

]n

n1n2m; n′
1n

′
2m

′ ≡ δm′mG|m|(±)

n′
1n

′
2; n1n2

(βn, kn), (22)

where

G|m|(±)

n′
1n

′
2; n1n2

(β, k) ≡ 〈
˜n′
1n

′
2m

∣∣Ĝ(±)
∣∣ñ1n2m

〉

=
∞∫

0

dξ

∞∫

0

dη

∞∫

0

dξ ′
∞∫

0

dη′

ϕ
|m|
n′

1
(ξ)ϕ

|m|
n′

2
(η)G|m|(±)(k; ξ, η; ξ ′, η′)ϕ|m|

n1
(ξ ′)ϕ|m|

n2
(η′). (23)

In Appendix A we show how such four-dimensional integrals can be calculated step by step.
We found it computationally convenient to express the matrix elements as the finite sum

Gλ(+)

n′
1n

′
2; n1n2

(β, k) = 2iμ

k
(1 − ζ 2)(−ζ )K

√(
n′

1 + λ

n′
1

)(
n′

2 + λ

n′
2

) (
n1 + λ

n1

)(
n2 + λ

n2

)
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×
u+v∑

�=0

c� ζ−2� Γ (λ + � + 1 + iβ)Γ (K + 1 − 2�)

Γ (K + λ + 2 − � + iβ)

×2F1
(
K − 2� + 1,−λ − � + iβ; K + λ + 2 − � + iβ; ζ 2) , (24)

where 2F1 is the Gauss hypergeometric function [13], K = n′
1 + n′

2 + n1 + n2, u =
min(n1, n′

1), v = min(n2, n′
2), and

ζ = b + i k2
b − i k2

. (25)

The matrix elements of Gλ(−) (for real positive k) are simply the complex conjugates of
those of Gλ(+). We have found that in order to satisfy Eq. (2) (to within 10−15) in the
matrix representation, the arbitrary precision arithmetic libraries gmp, mpfr and mpc should
be applied. Note that an alternative expansion of the Green’ function kernel in terms of the
Laguerre basis functions of imaginary arguments has been suggested in Ref. [19]; while very
interesting, such an expansion converges very slowly and for this reason is not suitable for
the computation of Green’s function matrix elements.

3 Quasi-Sturmian functions in parabolic coordinates

In parabolic coordinates, the quasi-Sturmian functions subject to appropriate boundary con-
ditions are defined in Ref. [9] through the Green’s operator Ĝ(±), namely

Q(±)
n1n2m (k; ξ, η, φ) = Ĝ(±)|ñ1n2m〉. (26)

Let us separate the φ dependence,

Q(±)
n1n2m(k; ξ, η, φ) = eimφ

√
2π

P |m|(±)
n1n2

(k; ξ, η), (27)

and consider the “radial” part Pλ(±) which, in view of (26), (21) and (18), is expressed in
the form

Pλ(±)
n1n2

(k; ξ, η) =
∞∫

0

dξ ′
∞∫

0

dη′ Gλ(±)(k; ξ, η; ξ ′, η′)ϕλ
n1

(ξ ′)ϕλ
n2

(η′). (28)

To evaluate it we insert the integral representation (17) of the Green’s function, interchange
the integration order, and integrate first over ξ ′ and η′ with the help of the expression in Ref.
[20] (p. 474, Eq. (12.19.2, 6)) for the integral

∞∫

0

dxxλe−px Iλ(b
√
x)Lλ

n(cx). (29)

Substituting z → s = (
tanh z

2

)2 in the resulting integral, one obtains

Pλ(±)
n1n2

(k; ξ, η) = 2μ(1 + ζ±1)

√
n1!n2!

(n1 + λ)!(n2 + λ)!
(

2b
√

ξη
)λ

e−b(ξ+η)
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×
1∫

0

ds (1 − s)±iβ+λ
(
1 − ζ±1s

)∓ iβ+λ (
1 − s − ζ±1s

)n1+n2

× exp

[
2b(ξ + η)

ζ±1s

(1 + ζ±1)

]

×Lλ
n1

(
2bξ

(1 − s)(1 − ζ±1s)

(1 − s − ζ±1s)

)
Lλ
n2

(
2bη

(1 − s)(1 − ζ±1s)

(1 − s − ζ±1s)

)
. (30)

This integral representation allows us to explore the asymptotic behavior of the QS func-
tions, for large distances r , i.e., for large (ξ + η)/2. Using the fact that

√
ξη = √

x2 + y2 =
r sin θ = (1/2)(ξ + η) sin θ , we obtain (see details in Appendix B)

Pλ(+)
n1n2

(k; ξ, η) −→
r→∞ Aλ(+)

n1n2
(θ)

exp {i [kr − β ln(2kr)]}
r

, (31)

where the amplitudes Aλ(+)
n1n2 are expressed as

Aλ(+)
n1n2

(θ) = iμ

k

√
n1!n2!

(n1 + λ)!(n2 + λ)! ζ−iβe− πβ
2

(
1

ζ
− ζ

)λ+1 (
sin θ

2

)λ

(−ζ )n1+n2

×
n1∑

ν1=0

n2∑

ν2=0

c(n1,λ)
ν1

c(n2,λ)
ν2

×Γ (iβ + λ + ν1 + ν2 + 1)(1 − ζ−2)ν1+ν2

(
cos

θ

2

)2ν1
(

sin
θ

2

)2ν2

, (32)

with the coefficients c(n,λ)
ν defined by [13]

c(n,λ)
ν = (−1)ν

(n + λ)!
(n − ν)!(ν + λ)!ν! . (33)

We have therefore obtained the desired result: the parabolic QS functions (26) possess the
leading asymptotic behavior given by

Q(±)
n1n2m(k; ξ, η, φ) −→

r→∞
eimφ

√
2π

A|m|(±)
n1n2

(θ)
exp {± i [kr − β ln(2kr)]}

r
, (34)

with

Aλ(−)
n1n2

(θ) =
[
Aλ(+)

n1n2
(θ)

]∗
. (35)

4 Application to potential scattering

We consider below, using our parabolic QS approach, the scattering of a particle of energy
E = k2/(2μ) from three different potentials of the form

V (r) = − Z

r
+U (r) , (36)

where U (r) is a short-range potential of either spherical or axial symmetry. Selecting out-
going boundary conditions, we wish to solve the Schrödinger equation

[HC +U (r) − E] ψ(+)(r) = 0. (37)
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Using the standard ansatz

ψ(+)(r) = ψ
(+)
C (r) + ψsc(r), (38)

where ψ
(+)
C is the Coulomb wave [21]

ψ
(+)
C (r) = 1

(2π)3/2 e− 1
2 πβΓ (1 + iβ)eikr1F1(−iβ, 1; i(kr − kr)), (39)

Eq. (37) is transformed into a driven equation for the scattering function ψsc:

[HC +U (r) − E] ψsc(r) = −U (r)ψ(+)
C (r). (40)

We propose to solve it by expanding ψsc in terms of N × N parabolic QS basis functions
(hereafter we restrict ourselves to the case with only one symmetry axis, which is defined by
the incident momentum k):

ψsc(r) =
N−1∑

n1,n2=0

Cn1,n2 Q
(+)
n1n20(k; ξ, η, φ). (41)

Inserting (41) into (40) gives, in view of the definition (26),

N−1∑

n′
1,n

′
2=0

[
Î + Û Ĝ(+)

]
Cn′

1,n
′
2

∣∣˜n′
1n

′
20

〉 = −U (r)ψ(+)
C (r). (42)

Then, projecting (42) onto
〈
n1n20

∣∣ and inserting the unit operator

Î =
∑

q1,q2,m

∣∣q1q2m
〉〈
q̃1q2m

∣∣ (43)

between Û and Ĝ(+), we obtain the algebraic equation for the coefficients Cn′
1,n

′
2
:

N−1∑

n′
1,n

′
2=0

[

δn1,n′
1
δn2,n′

2
+

∑

q1,q2

Un1n2; q1q2G0(+)

q1q2; n′
1n

′
2
(β, k)

]

Cn′
1,n

′
2

= −dn1,n2 , (44)

where

Un1n2; n′
1n

′
2

= 〈
n1n20

∣∣Û
∣∣n′

1n
′
20

〉
, (45)

dn1,n2 = 〈
n1n20

∣∣Û
∣∣ψ(+)

C

〉
. (46)

The matrix elements (45) of the short-range potential as well as the components (46) of
the right-hand side vector are evaluated numerically. In doing this, we approximate the two-
dimensional integrals by the n-point Gauss-Laguerre quadrature formula [13], and we take
n = 256. In order to compute all the needed elements for the matrix equation in a reasonable
amount of time we use GPU (CUDA parallel programming model). The matrix equation (44)
is solved using the EESL library linear algebra subroutine zgesv.

The basis scale parameter b > 0 in Eq. (19) can be chosen freely. As a thumb rule,
the following general prescription in terms of the length parameter b−1 can be formulated:
the short-range potential should change appreciably on this length, but the latter should not
exceed the characteristic range of the potential. In the present investigation we chose, for a
given potential, a value of b which seemed reasonable and provided a satisfactory numerical
convergence. In a more refined approach, one could envisage searching for an optimal choice
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of b that would minimize the size of the matrix representation (45) to obtain a desired
convergence rate.

According to the two-potential formula (see, e.g., Ref. [22]), the scattering amplitude can
be presented as

f (θ) = fC(θ) + f̃ (θ), (47)

where

fC(θ) = − β

2k

Γ (1 + iβ)

Γ (1 − iβ)

exp
( − iβ ln

[
sin θ

2

]2)

[
sin θ

2

]2 (48)

is the Coulomb amplitude. The amplitude f̃ (θ) contains the effect of the short-range potential
U (r). From the asymptotic behavior of the QS function (34) and of the Coulomb wave (39),
one finds that it is expressed in terms of the coefficients Cn1,n2 as

f̃ N (θ) = 2π

N−1∑

n1,n2=0

Cn1,n2A0(+)
n1n2

(θ). (49)

First, we illustrate the efficiency of our approach in the case of a central potential given
by a Coulomb plus Yukawa potential. Then, we provide illustrations for two non-central
axially symmetric potentials: one arises in the accelerated Kramers–Henneberger frame when
treating the electron scattering on a Coulomb potential in the presence of a linearly polarized
laser field in the high-frequency limit, and the other is generated by two Coulomb centers as,
for example, two nuclei in a homonuclear diatomic molecule.

4.1 Scattering by a Coulomb plus Yukawa potential

Let the particle, say an electron, be submitted to the central potential of the form (36) with a
Yukawa potential

U (r) = U0
e−2ar

r
. (50)

The matrix elements (45) and (46) for this potential are given by

Un1n2; n′
1n

′
2

= U0

2

(
2b

2b + a

)2 (
a

2b + a

)n1+n2+n′
1+n′

2

× 2F1

(

−n1,−n′
1; 1;

(
2b

a

)2
)

2F1

(

−n2,−n′
2; 1;

(
2b

a

)2
)

, (51)
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dn1,n2 = U0

2

2b
(
(a + b)2 + k2

4

)
1

2π
e− βπ

2 Γ (1 + iβ)

×
(
a + b − i k2
a + b − i k2

)iβ (
a − b − i k2
a + b − i k2

)n1
(
a − b + i k2
a + b + i k2

)n2

× 2F1

(

−n2,−iβ; 1; 2ikb

(a − b + i k2 )(a + b − i k2 )

)

. (52)

In order to suppress the Gibbs oscillations associated with the use of finite expansions, we
follow Papp’s proposal [1] and employ the σ factors

σ N
n = 1 − exp

{− [α(n − N − 1)/(N + 1)]2}

1 − exp(−α2)
, α = 6. (53)

Specifically, we replace Un1n2; n′
1n

′
2

in (44) by σ N
n1

σ N
n2

Un1n2; n′
1n

′
2
. The use of the smoothing

factors allows us to improve considerably the rate of convergence in the case of short-range
potentials. On the other hand, for the slowly decaying potentials considered in the next
subsections we have found that these factors do not have such an effect.

The amplitude f̃ (θ) can be presented in terms of the partial-wave expansion [22,23]:

f̃ (θ) = 1

2ik

∞∑

�=0

(2� + 1) e2iσ�

(
e2iδ� − 1

)
P�(cos θ), (54)

where σ� = Arg [Γ (� + 1 + iβ)] is the Coulomb phase shift. According to Eq. (49), the
�-wave phase shift δ� is determined by

e2iδN� = 1 + 2π ike−2iσ�

N−1∑

n1,n2=0

Cn1,n2

π∫

0

A0(+)
n1n2

(θ)P�(cos θ) sin θdθ. (55)

The angular integration does not present difficulties in view of the A0(+)
n1n2 (θ) amplitude’s form

(32). Since here λ = 0, the angular part is given by
(

cos
θ

2

)2ν1
(

sin
θ

2

)2ν2

, (56)

and one thus needs the integrals

1∫

−1

(
1 + x

2

)ν1
(

1 − x

2

)ν2

P�(x)dx . (57)

For the s-wave, � = 0, we have

In,m =
1∫

−1

(
1 + x

2

)n (
1 − x

2

)m

dx = 2B(n + 1,m + 1) = 2
Γ (n + 1)Γ (m + 1)

Γ (n + m + 2)
(58)

and for the p-wave, � = 1,

1∫

−1

(
1 + x

2

)n (
1 − x

2

)m

P1(x)dx = In+1,m − In,m+1. (59)
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Table 1 Convergence of the phase shifts δ0 and δ1 for the potential V (r) = − 2
r + 4 exp(−2r)

r with k =√
2E = 0.5 as a function of the size N of the parabolic QS basis set

N
∣
∣γ0,N

∣
∣ δ0(k)

∣
∣γ1,N

∣
∣ δ1(k)

5 0.9891837 1.361369 1.002327 −0.5604802

6 0.9970151 1.362364 0.9948140 −0.5513566

7 0.9982502 1.364919 0.9950018 −0.5546755

8 0.9982024 1.364175 1.000458 −0.5547838

9 0.9997361 1.364197 0.9998475 −0.5544229

10 0.9998452 1.364368 0.9994945 −0.5550903

11 0.9997685 1.364291 1.000024 −0.5553326

12 0.9999001 1.364218 1.000183 −0.5552601

13 0.9999905 1.3642245 1.000011 −0.5552594

14 0.9999871 1.364237 0.9999374 −0.5553244

15 0.9999683 1.364230 0.9999871 −0.5553654

16 0.9999756 1.364218 1.000030 −0.5553599

17 0.9999926 1.364215 1.000017 −0.5553473

18 0.9999989 1.364219 0.9999887 −0.5553522

19 0.9999945 1.364221 0.9999851 −0.5553655

20 0.9999915 1.364218 0.9999999 −0.5553708

21 0.9999944 1.364216 1.000008 −0.5553673

22 0.9999986 1.364216 1.000003 −0.5553642

23 0.9999995 1.364217 0.9999950 −0.5553661

24 0.9999979 1.364218 0.9999949 −0.5553701

25 0.9999970 1.364217 1.000000 −0.5553716

In Table 1 the phase shifts δN0 and δN1 are shown for the same parameters as in Ref. [1]:
Z = 2, U0 = 4, a = 2, k = 0.5. In our calculations we set the basis scale parameter b = 1
in (19). It is clear that the convergence with increasing N is rapidly achieved. The calculated

modulus of γ�,N = e2iδN� is also seen to approach the exact value, i.e., unity.
Obviously, solving the scattering problem with a central potential such as (50) can be

easily achieved with standard methods that use the natural and efficient choice of spherical
coordinates. The purpose of this first illustration was to numerically demonstrate that our
parabolic approach can also deal satisfactorily with central potentials and is not restricted to
potentials with axial symmetry as in the next two illustrations.

4.2 Electron scattering by a Coulomb potential in the presence of an intense high-frequency
laser field

In this second example we consider a short-range noncentral potential U of the form

U (r) = V0(a0; r) + Z

r
, (60)

where V0 is a “dressed” Coulomb potential [24,25]. The latter arises within the Floquet
theory as applied to the Schrödinger equation in the Kramers–Henneberger representation
for an one-electron atom in a laser field described by the vector potential A(t) = A0 cos(ωt),

123



655 Page 12 of 19 Eur. Phys. J. Plus (2020) 135:655

where ω is the laser frequency. In the Kramers–Henneberger frame [7] we have to deal with
the space-translated Coulomb potential

V [r + a(t)] = − Z

|r + a(t)| , (61)

where

a(t) = 1

c

t∫

−∞
A(τ )dτ = a0 sin(ωt) (62)

is the displacement vector, with a0 = A0/(ωc) directed along the z axis and representing the
so-called quiver amplitude. In the high-frequency limit, such a potential is approximated by
its zeroth Fourier component [24,25]

V0(a0; r) = −2Z

π
(r+r−)−

1
2 K

([
1 − r̂+ · r̂−

2

] 1
2
)

, (63)

where r± = r ± a0 and K is a complete elliptic integral of the first kind [13].
In the numerical implementation of our parabolic QS approach we choose the incident

wave vector k to be parallel to the z axis. In this axially symmetric case we can also limit
ourselves to m = 0 and use the expansion (41) in parabolic QS functions. Note that since the
potential U is not diagonal in the orbital angular momentum �, one is dealing with scattering
of coupled partial waves, and the number of partial waves to be accounted for grows with
increasing the quiver amplitude a0 or the energy E [25]. However, such an energy dependence
is absent when using parabolic coordinates, and the size of the matrix representation is only
determined by the properties of the potential (60).

We examined the convergence behavior of the scattering amplitude f̃ N , given by formula
(49), as the basis size N increases. Specifically, we inspected the ratio of the cross section

dσ N

dΩ
= | fC(θ) + f̃ N (θ)|2 (64)

to the Rutherford cross section dσR/dΩ = ∣∣ fC(θ)
∣∣2. We set the potential parameters Z = 1

and a0 = 5. The basis scale parameter is b = 1. As shown on the left of Fig. 1 for scattering
energy E = 0.01 the cross section converges quite rapidly with N in the whole angular
interval. The obtained converged ratio agrees very well with the results presented in Fig. 2 of
Ref. [25] at small and large scattering angles, but notably disagrees in the intermediate angular
region. The agreement at small angles may be attributed to the dominant contribution from
the Coulomb amplitude fC which is exact, and common to both calculations. The authors of
Ref. [25] also employed the two-potential formula, but in contrast to our approach they used a
partial-wave method for computing the short-range amplitude f̃ , which dominates in (47) at
large angles. It is well known that the partial-wave expansion better converges at larger rather
than smaller angles (see, for instance, Refs. [22,23]). This feature may help in explaining
why we observe an agreement between our results and those of Ref. [25] at large angles while
a disagreement at intermediate angles; indeed, one could suspect that the number of partial
waves taken into account in the calculation of Ref. [25] may suffice for describing scattering at
large angles, but may not be enough at intermediate angles. This possible explanation should
nevertheless be discarded since the authors of Ref. [25] state that they increased the number
of coupled partial waves until the result for the cross section has converged to better than 1%.
In order to elucidate this, we further increased N up to 101 in our calculation and found that
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Fig. 1 The ratio of the cross section dσ N /dΩ , calculated for the “dressed” potential (63) with Z = 1 and
a0 = 5, to the Rutherford cross section dσR/dΩ . The convergence behavior of the ratio with increasing the
basis set size N is shown for E = 0.01 (left) and E = 0.5 (right). For E = 0.01 the result of Ref. [25] is
shown with a thick solid line

the curves corresponding to different values of N become almost indistinguishable starting
from N � 60. Thus, the discrepancy observed at intermediate angles remains unexplained.
This said, the discrepancy is not so huge in absolute terms, but is clearly emphasized through
the ratio shown in Fig. 2. Finally, in order to show that within our parabolic approach the
convergence of the calculations is energy independent, we present on the right of Fig. 1 the
numerical results for a higher energy value, E = 0.5.

4.3 Scattering by two Coulomb centers

We now focus on the case of an axially symmetric potential that is of importance for appli-
cations in molecular physics, in particular for diatomic molecules. Specifically, we consider
the electron scattering on the potential generated by a pair of equal point charges (Z/2),
separated by a given distance R and located on the z axis at fixed positions r1 = (0, 0, R/2)

and r2 = (0, 0,−R/2). Their Coulomb-like potential reads

V (r) = − Z/2

|r − r1| − Z/2

|r − r2| , (65)

and the corresponding “short-range” potential

U (r) = V (r) + Z

r
(66)

has singularities (at the point R) on the ξ and η axes. Thus, mathematically this potential
does not significantly differ from the potential (60) (except for the type of singularities); the
convergence properties should be therefore similar, provided that the truncated matrix repre-
sentations in the Sturmian basis set (18) of the same size give equally good approximations
to the potentials.

We analyzed the convergence behavior of the scattering amplitude in the case of Z = 2
simulating, for example, two unscreened protons in a H+

2 molecular target (a value of Z = 1,
on the other hand, would take into account a full screening by the bound electron). The ratio
of the calculated cross sections dσ N/dΩ to the Rutherford one is presented in Fig. 2 for the
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Fig. 2 The ratio of the cross sections dσ N /dΩ and dσR/dΩ for the two-center potential defined by Eq. (65)
when Z = 2 and the separation distance fixed at R = 2. The convergence behavior of the ratio with increasing
the basis set size N is shown for E = 0.01 (left) and E = 0.5 (right)

separation distance R = 2 and two energies, E = 0.01 and E = 0.5. The R = 2 value
was chosen to mimic the equilibrium distance in the diatomic molecule H+

2 : the calculation,
performed with basis scale parameter b = 3, shows rapid convergence over the whole angular
range. For both energies the rate of convergence is comparable to that observed for the
“dressed” Coulomb potential (63).

In both Figs. 1 and 2, convergence in N seems to be slower in the backward direction than
in the forward one. There is no physical reason to attribute to this visual feature. It is due to
the fact that we are plotting a ratio: the Coulomb contribution is the smallest in the backward
direction so that the N dependence appears emphasized in that region.

5 Summary

We have proposed a new approach to quantum scattering theory in parabolic coordinates. The
problem is recast as a driven equation with purely incoming or outgoing boundary conditions;
the solution in the entire space is approximated by a truncated expansion in terms of parabolic
QS functions. The QS asymptotic behavior has been evaluated in closed form, so that the
scattering amplitude is expressed directly in terms of the expansion coefficients. The latter
are obtained by solving the matrix representation of the driven equation in the complete
set of parabolic Sturmians. Evaluation of the matrix includes calculation of the L2 matrix
elements of the Coulomb Green’s function for which we derived an analytic form suitable
for numerical computations. The short-range part of the interaction is approximated by a
truncated matrix in the L2 basis.

The proposed approach has been implemented and tested by studying electron scattering
from three Coulomb-like potentials, two of which possess an axial symmetry. Convergence
with increasing basis set size is observed in all cases. For axially symmetric potentials, it is
natural to use parabolic rather than spherical coordinates. Indeed, an incident Coulomb wave
factorizes in parabolic coordinates, so that the inhomogeneous term of either the Lippmann–
Schwinger or driven equations is represented quite compactly for arbitrary energies. On
the contrary, the number of terms required in the spherical partial-wave expansion of the
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driven term increases as the scattering energy grows. The advantage of using the parabolic
coordinates persists also for the case when the direction of the incident particle momentum is
different from the symmetry axis. If the z axis is taken to be directed along the symmetry axis,
the matrix elements of the operators in (42) are diagonal in m, and hence the equations for
each m are solved separately. One can achieve convergence of the quasi-Sturmian expansion
separately, for each m-component of the wave function. For the solution it remains then to
achieve convergence of the expansion in terms of the angular basis functions.

The parabolic QS approach can be applied to other scattering problems. In particular,
one can use it for the treatment of elastic electron scattering on atomic or molecular ions,
provided the electron-target interaction is approximated by a local potential that accounts for
the exchange and correlation-polarization effects, as done for example in Ref. [26]. Further,
the present formalism can be directly extended to multichannel scattering (see, e.g., Ref. [11]),
including the case of few-body Coulomb scattering [27]. Specifically, in order to describe a
double ionization of atoms by high-energy projectiles, convoluted parabolic QS functions,
analogous to those in spherical coordinates [28], can be used as a basis. In the latter case, the
z axis is chosen along the incident particle direction.
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Federation (project no. 0818-2020-0005). The research is carried out using the equipment of the shared research
facilities of HPC computing resources at Lomonosov Moscow State University and the Shared Facility Center
“Data Center of FEB RAS” (Khabarovsk, Russia) [29].

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment:
The data of numerical calculations presented in this manuscript are available upon reasonable request by
contacting with the corresponding author.].

A The matrix elements of the Green’s function

In this appendix we provide the calculation details to perform the four-dimensional integral

G|m|(±)

n′
1n

′
2; n1n2

(β, k) =
∞∫

0

dξ

∞∫

0

dη

∞∫

0

dξ ′
∞∫

0

dη′

ϕ
|m|
n′

1
(ξ)ϕ

|m|
n′

2
(η)G|m|(±)(k; ξ, η; ξ ′, η′)ϕ|m|

n1
(ξ ′)ϕ|m|

n2
(η′). (67)

We first make use of the integral representation (17) and interchange integration orders. For
the sake of brevity, we consider hereafter only the (+) case. Consider first the integral over
ξ ′

In(ξ) =
∞∫

0

dξ ′ exp

{
i
k

2
ξ ′c − bξ ′

}
Iλ

(
−ik

√
ξξ ′s

)
(2bξ ′)

λ
2 Lλ

n(2bξ
′), (68)

where c and s denote cosh(z) and sinh(z), respectively. We calculate it using formula (2.19.12,
6) of Ref. [20]

In(ξ) = (−1)n

b

(
ps

√
2x

)λ (1 − pc)n

(1 + pc)n+λ+1 exp

{
p2s2x

1 + pc

}
Lλ
n

(
−2

p2s2x

1 − p2c2

)
, (69)
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where p = −i k
2b , x = bξ . Then we consider the integral over ξ and perform the following

auxiliary integral:

Jmn =
∞∫

0

dξ (2bξ)
λ
2 Lλ

m(2bξ)e−bξIn(ξ)ei
k
2 ξc

= (−1)n
2λ

b2 (ps)λ
(1 − pc)n

(1 + pc)n+λ+1

×
∞∫

0

dx xλ exp

{
−x

1 + 2pc + p2

1 + pc

}
Lλ
m(2x)Lλ

n

(
−2

p2s2x

1 − p2c2

)
. (70)

Using formula (2.19.14, 6) of Ref. [20] we obtain

Jmn = (−1)m+n 2λ

b2 Γ (λ + 1)
(λ + 1)m(λ + 1)n

m!n!
× (ps)λ(1 − p2)m+n

(1 + 2pc + p2)m+n+λ+1 2F1

(
−m,−n; λ + 1; 4p2(c2 − 1)

(1 − p2)2

)
. (71)

The integration over η and η′ are performed in exactly the same manner.
Further, for evaluating the Green’s function matrix element (67) it remains to integrate

over z, and we perform the following integral:

K = −iμk

∞∫

0

dz sinh(z)
[
coth

( z

2

)]−2iβ
Jn′

1,n1
Jn′

2,n2
. (72)

We use a change of variables

x =
[
tanh

( z

2

)]2 ⇒ dx = √
x(1 − x)dz (73)

to write

K = iμ

2k

1

b2 (1 − ζ 2)2λ+2(−ζ )−K (λ!)2
(λ + 1)n′

1
(λ + 1)n1

n′
1!n1!

(λ + 1)n′
2
(λ + 1)n2

n′
2!n2! K̃, (74)

where

K̃ =
1∫

0

dx xiβ+λ(1 − x)K (1 − ζ 2x)−K−2λ−2
2F1

(

−n′
1,−n1; λ + 1;

(
1 − ζ 2

ζ

)2
x

(1 − x)2

)

× 2F1

(

−n′
2,−n2; λ + 1;

(
1 − ζ 2

ζ

)2
x

(1 − x)2

)

, (75)

and K = n′
1 + n′

2 + n1 + n2. The integral K̃ is calculated as follows. Using the expression
of the polynomial

2F1 (−m,−n; λ + 1; z) =
min(m,n)∑

�=0

(
m
�

)(
n
�

)

(
λ + �

�

) z�, (76)
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the product of the two hypergeometric functions becomes the polynomial

u+v∑

�=0

c�

[(
1 − ζ 2

ζ

)2
x

(1 − x)2

]�

(77)

whose coefficients c� are

c� =
min(�,u)∑

j=max(�−v,0)

(
n1

j

) (
n′

1
j

)(
n2

� − j

)(
n′

2
� − j

)

(
j + λ

j

) (
� − j + λ

� − j

) ,

with u = min(n1, n′
1) and v = min(n2, n′

2). We thus have

K̃ =
u+v∑

�=0

c�

(
1 − ζ 2

ζ

)2�

L� (78)

in terms of the integrals

L� =
1∫

0

dx xiβ+λ+�(1 − x)K−2�(1 − ζ 2x)−K−2λ−2 (79)

which are readily identified as the integral representation of Gauss hypergeometric functions
[13] (Eq. (15.3.1))

L� = Γ (iβ + λ + � + 1)Γ (K − 2� + 1)

Γ (iβ + K + λ + 2 − �)

× 2F1
(
K + 2λ + 2, λ + � + 1 + iβ; K + λ + 2 − � + iβ; ζ 2)

= 1

(1 − ζ 2)2λ+1+2�

Γ (iβ + λ + � + 1)Γ (K − 2� + 1)

Γ (iβ + K + λ + 2 − �)

× 2F1
(
K − 2� + 1,−λ − � + iβ; K + λ + 2 − � + iβ; ζ 2) , (80)

the second equality being obtained through the transformation (15.3.3) of Ref. [13].
Inserting (80) and (78) into (74), and including the basis (19) normalization factors, we

find that the matrix element (67) can be expressed as the finite sum (24).

B Asymptotic behavior of the QS functions

In this appendix we explore the large-distance (r = (ξ +η)/2 → ∞) behavior of the “radial”
part P |m|(±)

n1n2 (k; ξ, η) of the QS functions, starting from the integral representation (30). For
the sake of brevity we present here the (+) results only; the (−) case is obtained by complex
conjugation. Let us express the Laguerre polynomials Lλ

n in (30) as

Lλ
n(x) =

n∑

ν=0

c(n,λ)
ν xν, (81)
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where the coefficients c(n,λ)
ν are given by (33) [13]. Thus, the integral in (30) is expressed in

terms of the integrals

IM,N =
1∫

0

ds(1 − s)iβ+M(1 − ζ s)−iβ+M(1 − s − ζ s)N eαs, (82)

where

M = λ + ν1 + ν2, N = n1 + n2 − ν1 − ν2, (83)

and

α = 2b(ξ + η)
ζ

ζ + 1
. (84)

Then, using the formal binomial expansions

(1 − ζ s)−iβ+M =
∞∑

�=0

Γ (−iβ + M + 1)

Γ (−iβ + M + 1 − �)

(−ζ s)�

Γ (� + 1)
(85)

and

(1 − s − ζ s)N =
N∑

ν=0

( N
N − ν

)
(1 − s)ν(−ζ s)N−ν, (86)

the integral (82) is given by a sum of integrals

JM+ν,N+�−ν ≡
1∫

0

ds(1 − s)iβ+M+ν sN+�−ν eαs

= Γ (iβ + M+ν + 1)Γ (N + � − ν + 1)

Γ (iβ + M+N+� + 2)

× M(N + � − ν + 1, iβ + M + N + � + 2;α) (87)

that are easily identified to be related to the Kummer function M (second equality). Using
the asymptotic approximation of the Kummer function for large |α| (see, e.g., Eq. (13.5.1)
in Ref. [13]), we find the following (�- and N -independent) asymptotic expression:

JM+ν,N+�−ν � Γ (iβ + M + ν + 1) α−(iβ+M+ν+1) eα. (88)

As a consequence, one can retain (for fixed M) only the ν = 0 term in (86), and therefore
the integral (82) is approximated by

IM,N � (−ζ )N (1 − ζ )−iβ+M Γ (iβ + M + 1) α−(iβ+M+1) eα. (89)

Finally, after some algebra and using the fact that
√

ξη = √
x2 + y2 = r sin θ = (1/2)(ξ +

η) sin θ , we obtain

Pλ(+)
n1n2

(k; ξ, η) −→
r→∞ Aλ(+)

n1n2
(θ)

exp {i [kr − β ln(2kr)]}
r

, (90)

with the amplitudesAλ(+)
n1n2 (θ) given by Eq. (32). For the (−) case we simply have Aλ(−)

n1n2 (θ) =[
Aλ(+)

n1n2 (θ)
]∗

.
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