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Abstract By introducing a suitable ansatz and employing the similarity transformation tech-
nique, we construct the first- and second-order rational solutions for a quasi-one-dimensional
(1D) dissipative Gross–Pitaevskii (GP) equation with a time-varying cubic nonlinearity and
an external time-dependent potential. Then, by using these solutions, we engineer first- and
second-order rogue waves in the Bose–Einstein condensate (BEC) contexts for the exper-
imentally relevant systems when the gain/loss of atoms is taken into consideration. Our
analysis shows that the control of the scattering length, the external harmonic, and the linear
trapping potentials allows one to manage the motion and the background of dissipative rogue
matter waves in BEC systems. We show that the wave amplitudes depend on the absolute
value of s-wave scattering and the bias magnetic field, while its motion depends on the exter-
nal trapping potentials. We show that unlike classical rogue waves, the nonzero continuous
wave backgrounds of non-autonomous forced (damped) rogue matter waves in BECs with
time-dependent complicated potential increases (decreases) during the wave motion. Our
results also reveal that neither the gain nor the loss of the BEC atoms affects the amplitude of
the rogue matter waves during their propagation. Our results may help to control and manage
experimentally dissipative rogue waves in a BEC systems.

1 Introduction

Named by oceanographers to isolated large amplitude waves, rogue waves (RWs) are giant
single waves that were firstly found in the oceans with amplitudes much higher than the
average wave crests around them [1]; they occur more frequently than expected for normal,
Gaussian distributed, statistical events. Rogue waves are ubiquitous in nature and appear in
a variety of different contexts such as liquid helium, nonlinear optics, microwave cavities,
nonlinear transmission lines, Bose–Einstein condensates (BECs), etc.[1–8]. Rogue waves are
rare events with the key feature that they appear from nowhere and disappears without a trace
[2,9,10]. RWs may arise from the instability of a certain class of initial conditions that tend
to grow exponentially and thus have the possibility of increasing up to very high amplitudes
reaching three times the amplitude of the unperturbed waves, due to modulational instability
(MI) [11–13]. Rogue waves are, mathematically rational solutions for some nonlinear partial
differential equations (NPDEs) such as the focusing nonlinear Schr ödinger (NLS) equation
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[14,15] and physically are located in both space and time, concentrating thus the energy of the
background into a small region due to the nonlinear properties of the medium [11]. As rational
solutions of some NPDEs, RWs vary more slowly than the usual solitons with hyperbolic
functions; therefore, rogue waves may be more easily stable than standard solitons.

Because of their presence in a variety of different fields of the nonlinear science, RWs
appearing as rational solutions of nonlinear partial differential equation of Schrödinger type
have attracted in recent years more and more attention [15–20]. In the context of NLS equa-
tion, a number of methods including the Darboux transformation, the similarity transforma-
tion, the numerical simulation, as well as the direct approach were used to investigate the
occurrence of the rogue waves and their properties [11,14,15,21–23]. It has been reported
that RWs described by the first-order rational solution of the self-focusing NLS equation are
robust relative to a certain class of perturbations of the NLS equation, while RWs described
by the higher-order rational solutions of the self-focusing NLS equation are able to concen-
trate great amounts of energy into a relatively small area in space [6,11]; this property of the
RWs as the higher-order rational solutions of the self-focusing NLS equation may serve as
the basis for the scientific explanation of rogue waves that can, in a single action, destroy the
biggest ships traveling the vast expanses of the world’s oceans [1].

Since the first experimental and theoretical realizations of Bose–Einstein condensates [24–
27], extensive research works carried out on the behaviors of the macroscopical quantum and
dynamic evolution, matter-wave solitons, rogue waves, coherent structures, as well as domain
formation of BECs trapped in optical lattices become more active and competitive than
before in both experiment and theory aspects, stimulating intensive studies of the nonlinear
excitations of the atomic matter waves [28–31]. As well as we know, just a few works have
been reported on the analytical investigation of rogue matter wave in the context of BECs.
Using numerical simulations, Bludov et al. [8] have predicted the existence of rogue matter
waves in Bose–Einstein condensates either loaded into a parabolic trap or embedded in an
optical lattice. The goal of the present work is to develop mathematical models that may
open possibilities for generating non-autonomous rogue matter waves of BECs trapping an
external time-dependent complex potentials and for detailed studies of their properties in
laboratory conditions. These mathematical studies on non-autonomous rogue matter waves
in BECs with feeding/loss of atoms may also help us to understand deeply the nature and
the dynamics of instabilities in BECs with time-dependent potentials, especially when either
the loss or the gain of atoms in the BEC system is taken into account. The rest of this paper
is organized as follows. In Sect. 2, we present analytical first- and second-order rational
solutions of the dissipative Gross–Pitaevskii (GP) equation with a spatiotemporal potential
that may describe the Bose–Einstein condensate systems with a time-dependent complex
potential, composed of a parabolic background potential, a linear magnetic and the time-
dependent laser fields when either the feeding or the loss of atoms is taken into account. In
Sect. 3, we use the found rational solutions to investigate qualitatively and quantitatively the
properties of the non-autonomous rogue matter waves of BEC system under consideration.
The main results are summarized in Sect. 4.
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2 Model and analytical exact first- and second-order rational solutions of the GP
equation

2.1 Description of the model

At absolute zero temperature, the properties of weakly interacting bosonic gases trapped in a
potential are usually described by a distributed NLS equation with a trap potential which, in
the context of BECs, is named Gross–Pitaevskii equation [32]. The cubic nonlinear term in
the NLS equation, corresponding to the two-body interatomic interactions has been reported
to be generally the dominant one [33] so that the three-body interatomic interactions that
corresponds to the quintic term in the NLS equation and can be treated as a perturbation
over the two-body case can be neglected, especially at low densities [34]. In the physically
important case of the cigar-shaped trapping potential in presence of either the loss or the
gain of atoms, the NLS equation can be integrated out, resulting into a dissipative quasi-one-
dimensional cubic NLS equation (known as Gross–Pitaevskii equation in the BEC theory)

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2 + g(t) |ψ |2 ψ + [
k(t)x2 + λ(t)x + iγ (t)

]
ψ = 0, (1)

where g(t), k(t), λ(t), and γ (t) are all real functions of time t . The temporal and spatial coor-
dinates t and x are measured respectively by harmonic-oscillator units 1/ω⊥ and a⊥ , where
ω⊥ is the harmonic-oscillator frequency and a⊥ = √

�/(mω⊥) and a0 = √
�/(mω0(t))

are the corresponding linear oscillator lengths in the transverse and cigar-axis directions,
respectively, m being the atomic mass and ω0 being the axial-oscillation frequency (in the
cigar-axis direction). In our study, the radial oscillation frequency ω⊥ is considered as con-
stant, while the axial oscillation frequency ω0 will be considered to be time-dependent.
ψ(x, t) is the macroscopic wave function and is measured in units of 1/

√
2πaBa⊥, where

aB = a⊥
∫ +∞
−∞ |ψ |2 dx/

(
2

∫ +∞
−∞ |Ψ |2 dr

)
is the Bohr radius; here, Ψ (r, t) is the original

order parameter connected to the macroscopic wave function ψ(x, t) as follows [35]

Ψ (r, t) = 1√
2πaBa⊥

ψ

(
x

a⊥
, t

)
exp

[

−iω⊥t − y2 + z2

2a2⊥

]

. (2)

Parameter g(t) = −2as/(3aB) of the cubic nonlinearities represents the two-body inter-
atomic interactions coefficients, negative for repulsive interatomic interactions (defocusing
nonlinearities) and positive for attractive ones (or focusing nonlinearities), while parameter
as is the s-scattering length [36]. In the relevant experiments, a bright soliton has been cre-
ated by utilizing a Feshbach resonance to manipulate the sign of the s-wave scattering length
from positive to negative; in his situation, the s-wave scattering length as is allowed to be
a function of time t . In the present study, we consider the general case of time-dependent
s-wave scattering length. The quadratic term of the complex potential

V (x, t) = k(t)x2 + λ(t)x + iγ (t) (3)

is the most physically relevant example of an external potential in the BEC case, giving
the harmonic confinement of atoms by experimentally used magnetic traps. The potential
parameter k(t) = ±ω2

0/
(
2ω2⊥

)
measures the strength of the magnetic trap and may be

negative (confining potential) or positive (repulsive potential); it is typically fixed in current
experiments, but adiabatic changes in the strength of the trap are experimentally feasible.
Hence, we examine the more general time-dependent case. The linear term λ(t)x of the
complex potential (3) may correspond to the gravitational field or some linear potentials. The
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time-dependent parameter γ (t) relates the feeding (γ < 0) or loss (γ > 0) of atoms in the
condensate resulting from the contact with the thermal cloud and three-body recombination
[37,38]. Because the nonlinearity parameter g and the potential parameters k, λ, and γ are
time-dependent functions, Eq. (1) can be used to describe the control and management of
BEC system by properly choosing the four time-dependent parameters.

It is important to note that from the viewpoint of stability, the one-dimensional approxi-
mation (1) that describes the macroscopic wave function ψ(x, t) is different from the three-
dimensional equation that governs the original order parameter (2). For a true 1D system,
one does not expect the collapse of the system when increasing the BEC number of atoms
[39,40]. It happens that a realistic 1D approximation is not a true 1D system, with the
density of particles still increasing due to the strong restoring forces in the perpendicular
directions. Therefore, it is important to associate with the GP Eq. (1) additional conditions
(limits) under which the system becomes effectively 1D, that is, the kinetic energy in the
transverse direction is much greater than the energy of the two body interactions; this means
that ε2 = a⊥/ζ 2 ∼ N |as | /a0 << 1, ζ and N being respectively the healing length and
the total number of atoms [41]. Normalizing the density |ψ(x, t)|2 and the energy in Eq.
(1) in units of 2as and �ω⊥, Eq. (1) under the condition ε2 = a⊥/ζ 2 ∼ N |as | /a0 << 1
becomes effectively 1D. For a concrete BEC system, we can follow the idea used in Ref.
[44] to obtain a safe range of parameters. For example, the BEC bright soliton has been
created for 7 Li with the parameters of N ≈ ×103, ω⊥ = 2π × 700 Hz, and ω0 = 2π × 7
Hz, and afinal = −4aB , which provides a safe range of parameters [44]. If we take for
example as(t = 0) = −0.25aB , we can calculate, under these experimental parameters,
ε2 = a⊥/ζ 2 ∼ N |as | /a0 = 9.5 × 10−3 << 1. Creating the BEC bright soliton in 7 Li, it
has been found that k(t) = −2κ2 with κ � 0.05.

2.2 First- and second-order rational solutions of the GP Eq. (1)

In order to extract exact rational solutions of the GP Eq. (1), we look for solutions of the
form

ψ(x, t) = [A + Bψ1(X, T ) + iCψ2(X, T )] exp [iχ + iλ0T ] , (4a)

where A, B, C , and T are all function of time t , X = X (x, t) and χ = χ(x, t) are two real
functions, λ0 is a real control parameter, and ψ1 and ψ2 are real functions of variables X
and T . Inserting Eq. (4a) into Eq. (1) and asking that ψ1 and ψ2 satisfy equations that do not
contain explicitly X and T lead to

X (x, t) = α(t)x + β(t), (4b)

χ(x, t) = − 1

2α

dα

dt
x2 − 1

α

dβ

dt
x + χ0(t), (4c)

(A(t), B(t),C(t)) = (A0, B0,C0)
√|α| exp

[
−

∫
γ (t)dt

]
, (4d)

where A0, B0, andC0 are real constants and (T, α, β, χ0) is any real solution of the differential
system

dT

dt
− T0α

2(t) = 0, T0 �= 0, (5a)

d2α

dt2 − 2

α

(
dα

dt

)2

+ 2αk = 0, (5b)
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d2β

dt2 − 2

α

dα

dt

dβ

dt
+ αλ = 0, (5c)

dχ0

dt
+ 1

2

(
1

α

dβ

dt

)2

= 0. (5d)

The choice of Eq. (5a) is made to preserve the scaling; here, T0 is an arbitrary real parameter
to be determined later. In Eq. (4b), α(t) is the inverse of the wave width, while −β(t)/α(t)
is the position of its centre of mass. Inserting ansatz (4a) into Eq. ( 1) and setting the real
and imaginary parts of the resulting equation equal to zero, we obtain the following sets of
integrable partial differential equations for ψ1 and ψ2 in terms of rescaled variables X and
T

C0T0
∂ψ2

∂T
− B0

2

∂2ψ1

∂X2 + λ0T0 (A0 + B0ψ1)

−g0 (A0 + B0ψ1)
[
(A0 + B0ψ1)

2 + C2
0ψ2

2

] = 0, (6a)

B0T0
∂ψ1

∂T
+ C0

2

∂2ψ2

∂X2 − C0λ0T0ψ2

+C0g0ψ2
[
(A0 + B0ψ1)

2 + C2
0ψ2

2

] = 0, (6b)

if α(t) is taken from the condition

g2
0α2 − g2 exp

[
−4

∫
γ (t)dt

]
= 0, g0 �= 0 : g0g(t) > 0, (7)

and if the nonlinearity parameter g(t) and the potential parameters k(t) and γ (t) satisfy the
condition

g
d2g

dt2 − 2

(
dg

dt

)2

+ 2g2k − 2g

(
g

dγ

dt
− 2γ

dg

dt
+ 2gγ 2

)
= 0. (8)

In Eq. (7), g0 is an arbitrary real parameter having the same sign as g(t) to be determined later.
That is to say, the GP Eq. (1) in terms of rescaled variables X and T is converted to system
(6a)–(6b) when the nonlinearity parameter g(t), the harmonic trapping potential parameter
k(t), and the linear trapping potential parameter γ (t) satisfy the condition (8) which will be,
in what follows, referred to as the integrable condition.

Thus, the virtue of the suitable ansatz (4a) is that with relatively less complicated calcu-
lation, we not only establish the integrable condition (8) for the GP Eq. (1), but also retrieve
the system of nonlinear partial differential Eqs. (6a)–(6b), which may be used to investigate
various properties of the BEC system under consideration. It is important to note that Eq.
(5b) is satisfied as soon as α is given by Eq. (7) and g(t), k(t), and γ (t) satisfy the integrable
condition (8).

Following Akhmediev et al. [15], system (6a)–(6b), we find for the first-order rational
solution,

ψ1(X, T ) = − 4

B0
(
1 + 2X2 + 4T 2

) , ψ2(X, T ) = − 8T

C0
(
1 + 2X2 + 4T 2

) . (9)

Inserting Eq. (9) into Eq. (4a) and using Eqs. (4b)–(4d) yield the following first-order rational
solution of the GP Eq. (1)

ψ(x, t) = √
2g(t) exp

[
−2

∫
γ (t)dt

] [
1 − 4 + i8T

1 + 2 [α(t)x + β(t)]2 + 4T 2

]
exp [iχ + iT ] .

(10)
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Because g0 = 1
2 and g0g(t) > 0 (see condition (7) and the Appendix), the first-order rational

solution of the GP Eq. (1) is associated to BECs with attractive interatomic interactions.
Taking for simplicity A0 = λ0 = 1, g0 = 1

2 , and T0 = 1
2 and employing again the direct

method developed in Ref. [15], we find the below second-order rational solution of system
(6a)–(6b)

ψ1(X, T ) = ψ11(X, T )

ψ12(X, T )
, ψ2(X, T ) = ψ22(X, T )

ψ21(X, T )
, (11a)

where ψ11, ψi j , and ψ22(X, T ) are given in Eq. (A1) of the appendix. Inserting Eqs. (11a)
and (A1) into Eq. (4a) and using Eq. (4d) lead to the following second-order rational solution
of the GP Eq. (1)

ψ(x, t)

=
⎡

⎣1 +
3

(
1 − 4X2

) + 8T 2
(
8T 2 − 9

) − 4
(
X2 + 6T 2

)2 + 2i
{

15 − 8T 2 + 12X2 − (
4T 2 + 2X2

)2
}

8ψ12(X, T )

⎤

⎦

×√
2g exp

[
−2

∫
γ (t)dt

]
exp [iχ(x, t) + iT (t)] . (12)

3 Control and management of dissipative rogue matter waves in BECs with
complicated potential

In this section we show how the GP Eq. (1) can be used to describe the control and management
of BECs with complicated potential by properly choosing the nonlinearity parameter g(t)
and the three time-dependent parameters k(t), λ(t) and γ (t) of the complex potential (3).
Because the control of rogue waves in BEC systems under a harmonic potential with gain/loss
or a real second-order polynomial potential have already been discussed in the literature with
analytical results (see for example Refs. [42] and [43]), we focus ourselves more on BEC
systems for which both the linear term and gain/loss are taken into consideration. Because the
methodology used to derive the above rogue wave solutions of the GP Eq. (1) with potential
(3) is based neither on the standard NLS equation nor on the Hirota Bilinear Method [42], it
is important to investigate, when using these exact solutions, the control and management of
dissipative (γ (t) �= 0) rogue matter waves in BEC systems in both the situation when linear
term of potential (3) is absent (λ(t) = 0) and the situation when potential (3) contains the
linear term (λ(t) �= 0). Because we are interested in dissipative rogue matter waves, we will
not investigate the case of BECs in second-order polynomial potential [43].

As we can see from the first- and the second-order rational solutions (10) and (12),
the amplitude of the rogue matter waves found in this work is proportional to p(t) =√

2g(t) exp
[−2

∫
γ (t)dt

]
which depends on both the feeding (loss) parameter γ (t) and

the s-wave scattering length. Therefore, the wave amplitude increases (decreases) with time
if function p(t) increases (decreases) with time t [because the maximum value of the main
peak of the rogue wave is unique, that is, is reached at one and only one time t̃ , this maximum
remains constant during the wave propagation, so that during the rogue wave evolution, one
can only observe how its background density either increases or decreases, depending on the
behavior of p(t)].

As we have already mentioned, it follows from Eq. (4b) that the width on the rogue matter
wave under investigation is inversely proportional to α(t), while its centre of mass, obtained
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Fig. 1 Evolution of the atomic density a, c and density plot for the density |ψ(x, t)|2 associated respectively
to a, b the first-order rational solution (10) and c, d the second-order rational solution (12) of the GP Eq. (1).
To generate different plots, we have used the gain parameter γ (t) = γ− with solution data (A2) for β01 = 1.0
and β02 = 0.1.

by setting X (x, t) = 0, is ξ(t) = −β(t)/α(t) and satisfies the following equation

d2ξ

dt2 − 2kξ − λ = 0. (13)

Indeed,

dξ(t)

dt
= − 1

α2

(
α

dβ

dt
− β

dα

dt

)
,

d2ξ

dt2 = 1

α

[
2

α

dα

dt

dβ

dt
− β

2

α2

(
dα

dt

)2

+ β

α

d2α

dt2 − d2β

dt2

]

.

Replacing d2α
dt2

and d2β

dt2
by their expression from Eqs. (5b) and (5c) and using the definition

of ξ(t) lead to Eq. (13). Equation (13) of the centre of mass of the macroscopic wave packet
shows that we can manipulate the motion of rogue matter waves in the BEC system under
consideration by controlling both the external harmonic and linear trapping potentials. In what
follows, we take some examples to demonstrate the engineering of rogue matter waves in
one-dimensional BEC systems with different kinds of scattering length and complex trapping
potential. In our simulations, we will, without loss of generality, consider only positive α(t)
from Eq. (7).
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3.1 Engineering of dissipative rogue matter waves in BEC system with time-independent
harmonic confining potential

As the first example, we consider the time-independent harmonic potential similar to the one
used by Khaykovich et al. [44] in the creation of bright BEC solitons. In that experiment,
authors used ω⊥ = 2π × 700 Hz and ω0 = 2π × 7 Hz , leading to k(t) = −2κ2 with
κ � 0.05. For such a time-independent harmonic potential, Wu et al. [45] employs the
parameter g(t) = exp [±2κt] of the s-wave scattering length to investigate the dynamics of
bright solitons in BECs with time-independent harmonic potential when gain/loss of atoms
as well as the linear potential were ignored. In the present example, we neglect the linear
potential, setting λ(t) = 0, and take into account the gain (loss) of atoms in the condensate.
Inserting the above g(t) and k(t) into the integrable condition (8) leads to the following
special gain and loss parameters

γ (t) = γ− = κ − 1

2

√
2k and γ (t) = γ+ = κ + 1

2

√
2k. (14)

The corresponding α(t), β(t), and T (t) are given in the appendix (see Eqs. (A2) and (A3)).
While in any experiment the time is considered positive, to avoid introducing a time shift in
Eqs. (A2) and (A3), which would be less convenient for the analytical arguments, we assume
that the experiment starts at non-positive initial time, that is, at t0 ≤ 0. We also assume the
|t0| >> 1 so that the initial homogeneous density distribution is only weakly modulated [8].

With the above consideration on the initial time, the amplitude of the each of the first-order
and the second-order rogue matter waves given respectively by Eqs. (10) and (12) has its
maximum at t � 0 . This is well seen from Fig. 1 showing the evolution of the atomic density
[1(a), 1(c)] and the density plots [1(b), 1(d)] according respectively to the first-order rational
solution (10) and the second-order rational solution (12). From plots of this Fig. 1, it can be
seen that with the increasing of the absolute value of the s-wave scattering length associated
to BECs with feeding of atoms, the rogue matter wave has an increase in the peaking value.
We can also see from Fig. 1 that the first- and second-order rogue matter waves associated to
BECs with feeding of atoms are localized in both the t and x directions, meaning that they
appear from nowhere and disappear without trace. This behavior also means that the rogue
matter waves can concentrate the energy of the BEC system with gain of atoms in a small
region. Unlike rogue matter waves of the NLS equation, it is seen from plots of Fig. 1 that
the nonzero continuous wave (cw) backgrounds of the waves increase (this is well observed
in Fig. 1(a)) because of the presence of the forcing dissipative term γ in Eq. (1). However,
the backgrounds of the waves decrease when γ (t) = γ+ > 0 (loss of atoms) (for simplicity,
we do not include the figures corresponding to the BEC with loss of atoms here). Therefore,
with the increasing (decreasing) of the absolute value of the s-wave scattering length, the
rogue matter wave has an increase (decrease) in the nonzero background.

3.2 Generation of dissipative rogue matter waves in BEC system with the temporal periodic
modulation of the s-wave scattering length

Some years ago, it has been shown that one can introduce certain free (suitable) parameters
in the rogue wave solutions which allow one to split the symmetric form solution into a
multi-peaked solution and that by varying these free parameters one can extract certain novel
patterns of rogue waves [46]. Motivated by this, in the following, we follow Saito and Ueda
[47] and consider the temporal periodic modulation of the s-wave scattering length with
the strength of interaction oscillating rapidly at frequency ω; such a variation of the atomic
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Fig. 2 Evolution of the atomic density a, c and density plots of the density |ψ(x, t)|2 b, d according to a, b
the exact analytical first-order rational solution (10) and c, d exact analytical second-order rational solution
(12) of the GP equation (1) for β01 = β02 = −0.01, γ = 0.3, m = 1.3, and ω = 10

scattering length can be achieved experimentally either by varying the magnetic field or by
using optically induced Feshbach resonances [48,49]. We thus consider the GP equation with
the nonlinearity parameter g(t) = 1 + m sin [ωt] , 0 < m < 1. In this example, we ignore
the linear potential (that is, λ(t) = 0) and, following Kengne and Talla [38], consider the
gain (loss) parameter to be time-independent, that is, γ (t) = γ is a real constant. Imposing
to g and γ to satisfy the integrable condition (8) leads to the temporal periodic modulation
of the trapping potential with strength

k(t) = 2γ

(
γ − 1

g

dg

dt

)
+ 1

g2

(
dg

dt

)2

− 1

2g

d2g

dt2 . (15)

Integrating system (5b)–(7) leads to the α(t), β(t), and T (t) showed in Appendix (A4). For
this example, the suitable free parameters are γ, m, ω and the constants of integration β01.

It should be noted that in the definition γ (t) = γ of the gain (loss) parameter, γ �= 0 is of
any sign, that is, can be taken either positive (loss of atoms) or negative (feeding of atoms).
With the solution parameters given in Appendix (A4) and for positive γ (case of BEC with
loss of atoms), we show in Fig. 2 the evolution of the atomic density (left panels) and the
density plots for the density |ψ(x, t)|2 (right panels) according to the first-order (top panels)
and the second-order (bottom panels) rational solutions (10) and (12). Due to the temporal
periodic modulation of the s-wave scattering length and trapping potential, the rogue matter
waves propagate on a modulated nonzero backgrounds. It is also seen from Fig. 2 that the
nonzero backgrounds of the waves decrease because of the loss of atoms in the condensate.
We note that the nonzero backgrounds of the waves will increase with for BEC system with
gain of atoms (for simplicity we have not included the figures here. We also observe the
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Fig. 3 Evolution of the second-order rogue matter waves according to the exact second-order rational solution
(12) of the GP Eq. (1) for g = 1 and for the solution parameters β01 = 0.8, β02 = −0.2, and γ01 = 25. a:
Evolution of the second-order rogue wave according to Eq. (12) under the effect of bias magnetic field; the
parameters are σ = 0.2 and m = 0. b: Evolution of the second-order rogue wave according to Eq. (12) under
the effect of laser field; the parameters are σ = 0, m = 1, and ω = 1.5. c: Evolution of the second-order
rogue wave according to Eq. (12) under the combined effect of bias magnetic and laser fields; the parameters
are σ = 0.2, m = 1, and ω = 1.5

emergence of the two distinct neighbor rogue waves with different amplitude for each of the
first- and second-order rational solutions (10) and (12).

3.3 Transmission dissipative rogue matter wave in BEC trapped in a temporal periodic
modulated linear complex potential

As the third example, we consider a BEC trapped in a temporal periodic modulated linear
complex potential, meaning that k(t) = 0 and λ(t)γ (t) �= 0 in Eq. (1). If we consider
that the Bose–Einstein condensate under investigation is trapped in the coupling external
magnetic field and a laser field, then the strength λ(t) of the linear potential can be expressed
as followed [50–52]

λ(t) = σ + m cos [ωt] , (16)

where σ and m are the strengths of the linear magnetic field and the time-dependent laser
field, respectively. The intensity of the laser light field is periodically modulated in time with
modulation frequency ω. In what follows, we distinguish two cases, the case of BECs with
a time-independent s-wave scattering length and the case of BECs with a time-dependent
s-wave scattering length.

3.3.1 Case of BECs with a time-independent s-wave scattering length

Let us consider a BEC with a time-independent s-wave scattering length, which is associated
with a GP Eq. (1) with a constant nonlinearity parameter g. Employing Eqs. (5b)–(8) yields

γ (t) = 1

2t + γ01
, α(t) = 2g

2t + γ01
, T (t) = 2g2t

γ01 (2t + γ01)
,

β(t) = β01 − σg

2
t − g

(
8gβ02 + σγ 2

01

)

4 (2t + γ01)
+ 2gm

ω2

cos [ωt]

2t + γ01
, (17)

where γ01, β01, and β02 are three arbitrary real constants (it is preferable to use β01 and β02

which satisfy the condition |β(t)| > 0); γ01 must be taken from condition t �= −γ01/2, for all
t ≥ t0, t0 ≤ 0 being the initial time. It should be noted that γ (0) = 1

γ01
is the initial magnitude

of the feeding/loss parameter γ (t) so that γ01 will play, as we will see in what follows, an
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Fig. 4 Variation of the first-order rogue wave solution (10) at the time t0 = 0 with the solution parameters
are β01 = β02 = 0 for different values of a the nonlinearity parameter g, b the loss parameter γ01, c the
laser field parameter m, d the parameter σ of the magnetic field, and e the laser frequency ω. a: Effects of
the nonlinearity parameter g on the wave propagation with m = 4.0, ω = 0.30, σ = 0.20 and γ01 = 25.0
for g = 0.25 (solid line), g = 0.30 (dashed line), and g = 0.35 (dotted line). b Effects of the loss parameter
γ01 on the wave propagation with m = 4.0, ω = 0.30, σ = 0.20, and g = 0.25 for γ01 = 25.0 (solid line),
γ01 = 26.0 (dashed line), and γ01 = 27.0 (dotted line). c: Effects of the laser parameter m on the wave
propagation with ω = 0.30, σ = 0.20, g = 0.25, and γ01 = 25.0 for m = 3.90 (solid line), m = 3.95
(dashed line), and m = 4.0 (dotted line). d: Effects of the bias magnetic parameter σ on the wave propagation
with m = 4.0, ω = 0.30, g = 0.25, and γ01 = 25.0 for σ = 0.15 (solid line), σ = 0.20 (dashed line), and
σ = 0.25 (dotted line). e: Effects of the laser modulation frequency ω on the wave propagation with m = 4.0,
σ = 0.20, γ01 = 25.0 , and g = 0.25 for ω = 0.25 (solid line), ω = 0.30 (dashed line), and ω = 0.35 (dotted
line)

important role in the dynamics of rogue waves in BEC under consideration. For realistic
Ultracold experiments, this parameter γ01 must be taken from condition |γ (t)| << 1 (that
is, so that γ (t) remains very small in absolute value). For the BEC under consideration, the
amplitude of the first- and second-order rogue wave is proportional, as we can see from Eqs.
(10) and (12), to p(t) = √

2g exp
[−2

∫
γ (t)dt

] = √
2g |2t + γ01|−1. Therefore, the wave

amplitudes increases (decreases) when parameter γ01 of the gain/loss of atoms decreases
(increases).

With the linear potential given by Eq. (16), it is obvious that both the first- and the second-
order rogue matter waves associated respectively with the first- and second-order rational
solutions (10) and (12) are significantly affected by variations of the strengths σ and m of the
linear magnetic field and the time-dependent laser field. This is well seen from plots of Fig. 3
showing the evolution of the second-order rogue matter wave according to Eq. (12) under
the effect of (a) the bias magnetic field, (b) the laser field, and (c) both bias magnetic and
laser fields. The choice of γ01 in this Fig. 3 makes γ (t) positive so that the situation showed
in Fig. 3 corresponds to BEC system with loss of atoms. Therefore, the wave amplitude
decreases during its motion. As we can see from Fig. 3a, the wave packet, in the absence of
the laser field (m = 0), moves in the (x, t) space along a parabolic in the +x direction (the
wave will travel in the −x direction for σ < 0); moreover, the wave motion is uniformly
accelerated, and the acceleration coincides, as we can see from Eq. (13), with the strength
λ of the external potential. When either the bias magnetic field is weak (σ = 0) or both the
bias magnetic and laser fields are strong (mσ �= 0), the trajectory oscillates with frequency ω
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and moves with the temporal periodic acceleration
··
ξ = λ = σ +m cos [ωt]; oscillations that

presents the wave motion here are induced by the laser field. In the situation when mσ �= 0,
these oscillations, as we can well seen from Fig. 3c, are around the parabolic trajectory in the
+x direction created by the linear magnetic field; when σ = 0 and m �= 0, these oscillations
are around a linear trajectory in the −x direction as we can see from Fig. 3b.

As we can see from plots of Fig. 4, the first-order rogue wave solution (10) is significantly
affected by the variations of the nonlinearity parameter g, the gain (loss) parameter γ01, the
laser field parameterm, the parameter σ of the magnetic field, as well as the laser frequency ω.
Different plots of this Fig. 4 reveal that (i) the wave amplitude increases as the nonlinearity
parameter g increases, as we can see from Fig. 4a. (ii) The amplitude of the first-order
dissipative damped rogue wave decreases with increasing of the loss parameter γ01 (Fig. 4b).
This means that increasing the values the loss parameter γ01 can reduce the nonlinearity of
the BEC system, so the pulses of the dissipative rogue matter wave become shorter. (iii) The
velocity of the centre of mass of the wave packet, which here is estimated by the shift of the
peak position, decreases with the increasing of the parameter m of the laser field (Fig. 4c).
(iv) The velocity of the centre of mass of the wave packet increases with the increasing either
parameter σ of the bias magnetic field or the laser modulation frequency ω (Figs. 4d and 4e).

3.3.2 Case of BECs with a time-dependent s-wave scattering length

We now turn to the generation of rogue matter waves in BECs with a time-dependent s-wave
scattering and a temporal periodic modulated linear complex potential. Following Kengne and
Talla [38], we consider a condensate with a time-dependent s-wave scattering length leading
to the nonlinearity parameter g(t) = g01 exp [κt] with g01 |κ| > 0. Using the same gain
(loss) parameter γ (t) = κ/2 as in Ref.[38], one easily verifies that the integrable condition
(8) is satisfied. Using now Eqs. (5b)–(7) yields

α(t) = 2g01, β(t) = β01 + 4g2
01β02t − g01σ t

2 + 2g01m

ω2 cos [ωt] , T (t) = 2g2
01t, (18)

where β01 and β02 are two arbitrary real constants to be taken from the condition that |β(t)| >

0. For such a BEC system, the amplitude of the first- and second-order rogue matter waves, as
we can see from Eqs. (10) and (12), is proportional to p(t) = √

2g(t) exp
[−2

∫
γ (t)dt

] =√
2g01 exp

[− κ
2 t

]
. Therefore, the wave amplitude decreases (increases) when either the s-

wave scattering length κ > 0 increases (decreases) or the s-wave scattering length κ < 0
decreases (increases).

Like in the previous example, different potential’s parameters as well as the parameter
of the s-wave scattering length significantly affect the dissipative rogue wave motion. For
a better understanding, we depict in Figs. 5 and 6 the evolution of respectively the first-
order and the second-order rational solutions (10) and (12) for a negative γ (t), showing the
dynamics of dissipative forced rogue matter waves propagating in the BEC system with a
time-dependent s-wave scattering and a temporal periodic modulated linear potential when
the feeding of atoms is taken into consideration. From plots of Fig. 5, we can observe that:
(i) The first-order dissipative forced rogue waves are localized in both the t and x directions,
showing that the waves can concentrate the energy of the BEC system system in a small
region. We observe from plots 5(a), 5(b), and 5(c) that each of the waves appears from
nowhere, propagates and emerges into a rogue wave and then, propagates and disappears
without trace. (ii) Unlike classical rogue waves, the nonzero continuous backgrounds of the
waves increase because of the presence of the forcing dissipative term (in the case of BEC
with loss of atoms, the nonzero continuous backgrounds of the dissipative damped rogue
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Fig. 5 Spatiotemporal evolution of the first-order dissipative forced rogue wave associated with the first-order
rational solution (10) of the GP Eq. (1) with g01 = 0.5 and γ (t) = −0.05 (case of forcing term in the GP Eq.
(1)) for the solution parameters β10 = 0.1 and β02 = 0.2. a Evolution of a first-order dissipative forced rogue
wave under the effect of bias magnetic field with σ = 0.25. b Evolution of a first-order dissipative forced
rogue wave under the effect of laser field with m = 4 and ω = π/2. c Evolution of a first-order dissipative
forced rogue wave under the combined effect of the bias magnetic and laser fields with σ = 0.25, m = 4 and
ω = π/2

waves will decrease during the wave propagation). (iii) Under the only bias magnetic field
(that is, when the laser field is absent), the dissipative forced rogue matter wave propagates,
as we can see from Fig. 5a, along a parabolic trajectory in the +x direction, with acceleration
··
ξ = σ similar to the one associated with the gravity. (iv) When the bias magnetic field is
neglected and only the laser field acts, the center of mass of the rogue wave oscillates due
to the temporal periodic modulation of the potential and the waves propagate, as we can see
from Fig. 5b, along an oscillating trajectory (these oscillations are around a linear trajectory).
(v) When both the bias magnetic and laser fields act simultaneously, the dissipative forced
rogue waves propagate, as we can see from Fig. 5c, along an oscillating parabolic trajectory
in the +x direction. The oscillations of the centre of mass of the wave packet in this situation
are caused by the laser field, while the parabolic form of the trajectory is caused by the bias
magnetic field.

From Fig. 6, we can well see that the second-order dissipative damped rogue wave asso-
ciated with the second-order rational solution expressed by Eq. (12) is significantly affected
by variations of the nonlinearity parameter g01 as well as the potential parameter σ , m, and
ω: Plots 6(a) and 6(b) indicate that the amplitude of the dissipative damped rogue wave
increases with increasing the parameter g01 of the s-wave scattering length and the bias
magnetic parameter σ . This means that increasing the values of g01 and the bias magnetic
parameters can enhance the nonlinearity of the BEC system and concentrate the energy in
a small region, which increases the amplitude of the pulses. Therefore, the bias magnetic
field enhances the nonlinearity of the BEC system. Increasing the value the laser parameter
m (laser modulation frequency ω) decreases (plot 6(c)) [increases (plot 6(d))] the dissipa-
tive damped rogue wave velocity. Therefore the laser parameter m and the laser modulation
frequency ω have opposite effect on the velocity of the second-order dissipative rogue wave.

3.4 Management of dissipative rogue matter waves in BEC system trapped in combined
time-independent harmonic repulsive and modulated linear potentials

As our last example, we investigate the management of dissipative rogue matter waves in BEC
trapped in combined time-independent harmonic repulsive and modulated linear potentials.
The time-independent harmonic repulsive potential used in this example is similar to that was
used in the creation of bright BEC solitons [44], with strength k(t) = −2κ2 (κ �= 0) of the
magnetic trap. For such a strength of the magnetic trap, we follow Wu et al. [45] and consider
the time-dependent s-wave scattering length leading to parameter g(t) = g01 exp [−2κt]
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Fig. 6 Variation of the second-order rational solution (12) of the GP Eq. (1) with γ (t) = 0.05 and κ = 0.1
for solution parameters β01 = 0.1 and β02 = 0.2, showing the effect of a the nonlinearity parameter g01,
b the bias magnetic parameter σ , c the laser parameter m, and d the laser modulation frequency ω on the
second-order dissipative damped rogue wave associated with the second-order rational solution (12) of the GP
Eq. (1). a: Effect of the nonlinearity parameter g01 on the wave propagation for σ = 0.25, m = 4, ω = π/2,
and g01 = 0.25 (solid line), g01 = 0.30 (dashed line), and g01 = 0.35 (dotted line). b: Effect of the bias
magnetic parameter σ on the wave propagation for g01 = 0.25, m = 4, ω = π/2, and σ = 0.25 (solid line),
σ = 0.30 (dashed line), and σ = 0.35 (dotted line). c: Effect of the laser parameter m on the wave propagation
for g01 = 0.25, σ = 0.25, ω = π/2, and m = 3 (solid line), m = 4 (dashed line), and m = 5 (dotted line). d:
Effect of the laser modulation frequency ω on the wave propagation for g01 = 0.25, σ = 0.25, m = 4, and
ω = 1.4 (solid line), ω = 1.5 (dashed line), and ω = 1.6 (dotted line). Different plots show the wave profile
at time t0 = 0

(with g01 > 0) of the two-body interatomic interactions. We assume that the linear part
λ(t)x of potential (3) is some linear potentials induced by both a bias magnetic field with
strength σ and a laser field with strength m and with modulation frequency ω so that λ(t) =
σ + m cos [ωt] [50–52]. Asking that k(t) and g(t) satisfy the integrability condition (8)
yields the time-independent feeding (loss) parameter γ (t) = −2κ [38]. Employing now
Eqs. (5b)–(7) yields

α(t) = 2g01 exp [2κt] , T (t) = −g2
01

2κ
(1 − exp [4κt]) ,

β(t) = β01 + g01

(
σ

2κ2 + 2m

ω2 + 4κ2 cos [ωt] + β02
g01

κ
exp [2κt]

)
exp [2κt] , (19)

where β01 and β02 are two arbitrary real constants satisfying the condition |β(t)| > 0.
Because the width of the rogue wave investigated in this work is inversely proportional to
α(t), Eq. (19) reveals that for the BECs with feeding of atoms (that for positive κ), the wave
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Fig. 7 Spatiotemporal evolution of the dissipative forced second-order rogue matter waves associated with
the second-order rational solution (12) of the GP Eq. (1) for data (19) with g01 = 0.25 and κ = 0.05 [44]
for the solution parameters β01 = 0.1 and β02 = 0.2. a: Evolution of the dissipative forced second-order
rogue wave for BECs in the time-independent harmonic repulsive potential in the absence of both the bias
magnetic and laser field (σ = m = 0 ). b: Evolution of the dissipative forced second-order rogue wave for
BECs in the time-independent harmonic repulsive potential under the effect of only the bias magnetic field
(m = 0) with σ = 0.25. c: Evolution of the dissipative forced second-order rogue wave for BECs in the
time-independent harmonic repulsive potential under the effect of only the laser field (σ = 0) with m = 5
and ω = 3. d: Evolution of the dissipative forced second-order rogue wave for BECs in the time-independent
harmonic repulsive potential under the combined effects of the bias magnetic and laser fields with σ = 0.25,
m = 5 and ω = 3

width in the present example will decrease as the wave propagates and will increase with an
decreasing the values of parameter g01 of the two-body interatomic interactions.

For the data showed in Eq. (19), we present in Fig. 7 the dynamics of the second-order
dissipative forced rogue matter waves associated with the second-order rational solution (12)
of the GP Eq. (1) in presence of a dissipative forcing term γ (t) = −0.1 (that is, for κ = 0.05
[44]). Figure 7a shows the spatiotemporal evolution of the wave in the case of the absence
of the linear potential (σ = m = 0), Fig. 7a shows the evolution second-order rogue wave
for the linear potential in the absence of the laser field, that is, when the linear potential
λ(t) consists of only the bias magnetic field with strength σ (m = 0). For the wave showed
in Figs. 7c and 7d, the laser field is taken into consideration; Figs. 7c and 7d present the
spatiotemporal evolution of the under respectively the effect of the laser field only (that is,
σ = 0) and the combined effects of the bias magnetic and laser fields. For these four cases, the
second-order dissipative forced rogue waves propagate on nonzero increasing backgrounds
(due to the presence of the forcing dissipative term) and are localized in both the time t and
the space x so that the dissipative forced rogue matter waves can concentrate the energy of
the BEC system in a small region, as it is well seen from Fig. 8 which shows the density plot
of the BEC density |ψ(x, t)|2 associated with the second-order rational solution (12). It is
observed from Figs. 7a and 7b that in the absence of the laser field (m = 0), the wave of
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Fig. 8 Density plots for the BEC density |ψ(x, t |2 of the second-order dissipative forced rogue matter wave
associated with the second-order rational solution (12) of the GP Eq. (1) with data (19 ) for the feeding
parameter γ (t) = −0.1, which corresponds to κ = 0.05. The parameters are the same as those in Fig. 7

each of these plots appears from nowhere, then splits into two bright solitons each of which
propagates along a parabolic trajectory (one in +x direction and another one in −x direction),
and then fuse into a dark soliton which propagates along a straight line trajectory (in time).
Figure 7b, as well as Fig. 8b show that the bias magnetic field delays the wave motion (that
is, decreases the wave velocity) and enhances the region of the concentration of the BEC
energy (this last behavior is well observed if comparing Fig. 8a obtained in the absence of
the bias magnetic field with Fig. 8b generated in the presence of the bias magnetic field).
Each of Figs. 7c and 7d show a wave, probably formed of the fusion of two bright solitons
appearing from nowhere, which after a short time splits into two small bright solitons each
of which propagates along an oscillating parabolic trajectory in the (x, t) space (one in +x
direction and the other one in −x direction); after a certain time, these two bright solitons
fuse in a dark soliton which propagates along an oscillating trajectory in the (x, t) space. The
oscillations of the wave trajectories are induced by the laser field. Comparing either plots (a)
and (c) or plots (b) and (d) of each of Figs. 7 and 8, it is well observed that the laser field
also delays the wave motion (that is, decreases the wave velocity). Thus, the bias magnetic
and laser fields have the same effect on the wave velocity. In passing, we note that the laser
modulation frequency ω coincides with the trajectory frequency and seriously modifies the
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Fig. 9 Spatiotemporal evolution of the second-order dissipative forcing (top panels) and damped (bottom)
rogue waves associated with the exact solution (12) for different values of the feeding/loss parameter κ with
the same parameters as in Fig. 8d. a, d: κ = ±0.01, b, e: κ = ±0.05; (c), (f): κ = ±0.1. Positive κ is
associated with BEC system with gain of atoms (top panels), while negative κ corresponds to BEC system
with loss of atoms (bottom panels)

oscillation trajectory and the wave motion. We also point out that the wave velocity increases
with the increasing the value of the frequency ω. For simplicity, we do not include the figures
here.

For the above given set of parameters of the GP Eq. (1) with potential (3), the amplitude
of the first- and second-order rogue matter waves associated with solutions (10) and (12)
is proportional to p(t) = √

2g(t) exp
[−2

∫
γ (t)dt

] = √
2g01 exp [3κt]. Because each of

α(t), β(t), and T (t) given by Eq. (19) contains the expression exp [nκt] (n ∈ {2 , 4}), the
fact that the wave amplitude is proportional to p(t) = √

2g01 exp [3κt] does not necessary
mean that the wave amplitude will increase (decrease) either with time or with κ for BEC
systems with feeding (κ > 0) (loss (κ < 0)) of atoms. For a better understanding, we show
the spatiotemporal evolution of the second-order rogue wave in Fig. 9 for different values
of the feeding/loss parameter κ , varying κ from κ = ±0.01 to κ = ±0.1. Plots of Fig. 9
reveal that for a given set of parameters of the BEC system and for a given set of the solution
parameters, the second-order dissipative rogue waves have the same value of the main peak,
independently of the value of the feeding/loss parameter κ . Therefore, the feeding and the
loss of the BEC atoms does not affect the magnitude of the atomic density |ψ(x, t)|2.

4 Conclusion

We have presented the exact analytical rogue wave solutions for the quasi-one-dimensional
GP equation, which describes the evolution of cigar shaped BECs when either the gain or
the lost of atoms is taken into consideration. These exact solutions have been obtained by
combining the ansatz method and the similarity transformation technique and are valid in
general for any form of the functional parameters, provided they obey certain conditions
(integrability condition (8)). Using the exact solutions, we have exemplified the controllable
behavior of dissipative rogue matter waves, with (i) time-independent harmonic confining
potential, (ii) periodic nonlinearity, (iii) periodic linear confining potential, and (iv) combined
time-independent harmonic repulsive and periodic linear potentials. Different potentials used
in these examples are experimentally realizable. We then studied the characteristics of the
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constructed dissipative rogue waves in detail. We have found that the external harmonic and
linear trapping potentials can be used simultaneously to manipulate the motion of dissipative
rogue matter waves in the BEC systems; we have also found that control of the scattering
length allows us to manipulate the motion of dissipative rogue wave of the BEC systems.
Our results reveal that the gain (loss) of the BEC atoms seriously modifies the nonzero cw
backgrounds of the dissipative rogue waves, making them increasing (decreasing) during the
wave motion. We also found that the dissipative term of the GP Eq. (1) does not affect the
wave amplitude during its propagation, but affects the wave width. In the case of BECs in
linear external potential (related to the bias magnetic field or/and the laser field), we found
that the linear potential temporally and spatially affects the propagation of waves without
affecting their amplitudes, except in the situation when the external potential consists of only
the bias magnetic field. Developments of controlling the scattering length in the experiments
allow for the experimental investigation of our prediction in the future. Because of the space-
time modulated parameters in the GP Eq. (1), the results obtained in this work will be useful
to study dissipative rogue waves in BECs experimentally and in other fields of nonlinear
science.
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5 Appendix

5.1 On the first- and second-order rational solutions

Following the direct method developed by Akhmediev et al. [15], system (6a)–(6b) admits
a first-order rational solution of form (ψ1, ψ2) = (1, ϕ0T ) ψ1(X, T ), with ψ1(X, T ) =
ρ0/

(
1 + aX2 + bT 2

)
, where ϕ0, ρ0, a, and b are real constants with a > 0 and b > 0.

Asking that the pair (ψ1, ψ2) satisfies system (6a)–(6b) leads to T0λ0 − A2
0g0 = 0. Taking

for simplicity A0 = λ0 = 1 and g0 = 1
2 ,and T0 = 1

2 yields ρ0 = −4/B0, a = B2
0ρ2

0/8 = 2,

b = C0ϕ0
(
8ρ0 + 3B0ρ

2
0

)
/8 = 4, ϕ0 = B2

0ρ0 (8 + 3B0ρ0) /(8C0) = 2B0/C0.
The real functions ψ11, ψi j , and ψ22(X, T ) appearing in Eq. (11a) are given by

⎛

⎝
ψ11(X, T )

ψi j (X, T )

ψ22(X, T )

⎞

⎠ =

⎛

⎜⎜⎜
⎝

3
(
1−4X2)+8T 2(

8T 2−9
)−4

(
X2+6T 2)2

8B0

3
32 + 3

(
22T 2+3X2)

16 +
(
6T 2−X2)2

8 + 8T 6+12T 6X2+6T 2X4+X6

12
15−8T 2+12X2−(

4T 2+2X2)2

4C0

⎞

⎟⎟⎟
⎠

. (A1)
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5.2 Different parametric functions used in 3.1

For the gain (loss) parameter (14), we obtain from Eqs. (5b)–( 7) that for γ (t) = γ−,

⎛

⎝
α(t)
β(t)
T (t)

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

2 exp
[(√

2κ − 4κ
)
t
]

β01 + β02 exp
[
2

(√
2κ − 4κ

)
t
]

1
4κ−√

2κ

(
1 − exp

[
2

(√
2κ − 4κ

)
t
])

⎞

⎟
⎟
⎟
⎟
⎠

, (A2)

and for γ (t) = γ+,

⎛

⎝
α(t)
β(t)
T (t)

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

2 exp
[
−√

2κt
]

β01 + β02 exp
[
−2

√
2κt

]

T = 1√
2κ

(
1 − exp

[
−2

√
2κt

])

⎞

⎟
⎟
⎟
⎟
⎠

, (A3)

where β01 and β02 are arbitrary real constants (it is preferable to use β01 and β02 which
satisfy the condition |β(t)| > 0).

5.3 Different parametric functions used in 3.2

Employing Eqs. (5b)–(7) yields

⎛

⎝
α(t)
β(t)
T (t)

⎞

⎠ =

⎛

⎜⎜
⎝

2 (1 + m sin [ωt]) exp
[−2γ t

]

β01 − 2β02

(
2+m2

4γ
+ 4m(ω cos[ωt]+4γ sin[ωt])

ω2+16γ 2 + m2(ω sin[2ωt]−2γ cos[2ωt])
2(ω2+4γ 2)

)
exp

[−4γ t
]

T10 −
(

2+m2

4γ
+ 4m(ω cos[ωt]+4γ sin[ωt])

ω2+16γ 2 + m2(ω sin[2ωt]−2γ cos[2ωt])
2(ω2+4γ 2)

)
exp

[−4γ t
]

⎞

⎟⎟
⎠ ,

(A4)
where, β01 and β02 are real constants (it is preferable to use β01 and β02 which satisfy the

condition |β(t)| > 0) and T10 = 2+m2

4γ
+ 4mω

ω2+16γ 2 − 2m2γ

2(ω2+4γ 2)
, so that T (0) = 0.
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